메뉴 건너뛰기




Volumn 2017-July, Issue , 2017, Pages 1132-1140

Enhanced Deep Residual Networks for Single Image Super-Resolution

Author keywords

[No Author keywords available]

Indexed keywords

BENCHMARKING; COMPUTER VISION; DEEP NEURAL NETWORKS; NEURAL NETWORKS; OPTICAL RESOLVING POWER; PATTERN RECOGNITION;

EID: 85030237937     PISSN: 21607508     EISSN: 21607516     Source Type: Conference Proceeding    
DOI: 10.1109/CVPRW.2017.151     Document Type: Conference Paper
Times cited : (5893)

References (35)
  • 1
    • 0030421702 scopus 로고    scopus 로고
    • Edge-directed interpolation
    • J. Allebach and P. W. Wong. Edge-directed interpolation. In ICIP 1996.
    • (1996) ICIP
    • Allebach, J.1    Wong, P.W.2
  • 2
    • 84898409537 scopus 로고    scopus 로고
    • Low-complexity single-image super-resolution based on nonnegative neighbor embedding
    • M. Bevilacqua, A. Roumy, C. Guillemot, and M. L. Alberi-Morel. Low-complexity single-image super-resolution based on nonnegative neighbor embedding. In BMVC 2012.
    • (2012) BMVC
    • Bevilacqua, M.1    Roumy, A.2    Guillemot, C.3    Alberi-Morel, M.L.4
  • 3
    • 5044219639 scopus 로고    scopus 로고
    • Super-resolution through neighbor embedding
    • H. Chang, D.-Y. Yeung, and Y. Xiong. Super-resolution through neighbor embedding. In CVPR 2004.
    • (2004) CVPR
    • Chang, H.1    Yeung, D.-Y.2    Xiong, Y.3
  • 4
    • 84921971467 scopus 로고    scopus 로고
    • Learning a deep convolutional network for image super-resolution
    • C. Dong, C. C. Loy, K. He, and X. Tang. Learning a deep convolutional network for image super-resolution. In ECCV 2014.
    • (2014) ECCV
    • Dong, C.1    Loy, C.C.2    He, K.3    Tang, X.4
  • 5
    • 85030212408 scopus 로고    scopus 로고
    • Accelerating the superresolution convolutional neural network
    • C. Dong, C. C. Loy, and X. Tang. Accelerating the superresolution convolutional neural network. In ECCV 2016.
    • (2016) ECCV
    • Dong, C.1    Loy, C.C.2    Tang, X.3
  • 6
    • 79955668981 scopus 로고    scopus 로고
    • Image and video upscaling from local self-examples
    • G. Freedman and R. Fattal. Image and video upscaling from local self-examples. ACM Transactions on Graphics (TOG), 30 (2):12, 2011.
    • (2011) ACM Transactions on Graphics (TOG) , vol.30 , Issue.2 , pp. 12
    • Freedman, G.1    Fattal, R.2
  • 7
    • 84862549633 scopus 로고    scopus 로고
    • Image super-resolution with sparse neighbor embedding
    • X. Gao, K. Zhang, D. Tao, and X. Li. Image super-resolution with sparse neighbor embedding. IEEE Transactions on Image Processing, 21 (7):3194-3205, 2012.
    • (2012) IEEE Transactions on Image Processing , vol.21 , Issue.7 , pp. 3194-3205
    • Gao, X.1    Zhang, K.2    Tao, D.3    Li, X.4
  • 8
    • 77953187337 scopus 로고    scopus 로고
    • Super-resolution from a single image
    • D. Glasner, S. Bagon, and M. Irani. Super-resolution from a single image. In ICCV 2009.
    • (2009) ICCV
    • Glasner, D.1    Bagon, S.2    Irani, M.3
  • 9
    • 84986274465 scopus 로고    scopus 로고
    • Deep residual learning for image recognition
    • K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR 2016.
    • (2016) CVPR
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 10
    • 84959188745 scopus 로고    scopus 로고
    • Single image superresolution from transformed self-exemplars
    • J.-B. Huang, A. Singh, and N. Ahuja. Single image superresolution from transformed self-exemplars. In CVPR 2015.
    • (2015) CVPR
    • Huang, J.-B.1    Singh, A.2    Ahuja, N.3
  • 11
    • 84986325587 scopus 로고    scopus 로고
    • Accurate image superresolution using very deep convolutional networks
    • J. Kim, J. Kwon Lee, and K. M. Lee. Accurate image superresolution using very deep convolutional networks. In CVPR 2016.
    • (2016) CVPR
    • Kim, J.1    Kwon Lee, J.2    Lee, K.M.3
  • 12
    • 84986253618 scopus 로고    scopus 로고
    • Deeply-recursive convolutional network for image super-resolution
    • J. Kim, J. Kwon Lee, and K. M. Lee. Deeply-recursive convolutional network for image super-resolution. In CVPR 2016.
    • (2016) CVPR
    • Kim, J.1    Kwon Lee, J.2    Lee, K.M.3
  • 13
    • 84941620184 scopus 로고    scopus 로고
    • Adam: A method for stochastic optimization
    • D. Kingma and J. Ba. Adam: A method for stochastic optimization. In ICLR 2014.
    • (2014) ICLR
    • Kingma, D.1    Ba, J.2
  • 16
    • 85018922091 scopus 로고    scopus 로고
    • Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections
    • X. Mao, C. Shen, and Y.-B. Yang. Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections. In NIPS 2016.
    • (2016) NIPS
    • Mao, X.1    Shen, C.2    Yang, Y.-B.3
  • 17
    • 0034850577 scopus 로고    scopus 로고
    • A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics
    • D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In ICCV 2001.
    • (2001) ICCV
    • Martin, D.1    Fowlkes, C.2    Tal, D.3    Malik, J.4
  • 18
    • 85019657343 scopus 로고    scopus 로고
    • MATLAB. The Math Works Inc., Natick, Massachusetts
    • MATLAB. version 9. 1. 0 (R2016b). The Math Works Inc., Natick, Massachusetts, 2016.
    • (2016) Version 9. 1. 0 (R2016b)
  • 20
    • 85011287288 scopus 로고    scopus 로고
    • U-net: Convolutional networks for biomedical image segmentation
    • O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation. In MICCAI 2015.
    • (2015) MICCAI
    • Ronneberger, O.1    Fischer, P.2    Brox, T.3
  • 21
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally linear embedding. Science, 290 (5500):2323-2326, 2000.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 22
    • 84986308391 scopus 로고    scopus 로고
    • Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network
    • W. Shi, J. Caballero, F. Huszár, J. Totz, A. P. Aitken, R. Bishop, D. Rueckert, and Z. Wang. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In CVPR 2016.
    • (2016) CVPR
    • Shi, W.1    Caballero, J.2    Huszár, F.3    Totz, J.4    Aitken, A.P.5    Bishop, R.6    Rueckert, D.7    Wang, Z.8
  • 23
    • 51949110386 scopus 로고    scopus 로고
    • Image super-resolution using gradient profile prior
    • J. Sun, Z. Xu, and H.-Y. Shum. Image super-resolution using gradient profile prior. In CVPR 2008.
    • (2008) CVPR
    • Sun, J.1    Xu, Z.2    Shum, H.-Y.3
  • 25
    • 77955992643 scopus 로고    scopus 로고
    • Super resolution using edge prior and single image detail synthesis
    • Y.-W. Tai, S. Liu, M. S. Brown, and S. Lin. Super resolution using edge prior and single image detail synthesis. In CVPR 2010.
    • (2010) CVPR
    • Tai, Y.-W.1    Liu, S.2    Brown, M.S.3    Lin, S.4
  • 27
    • 84932095280 scopus 로고    scopus 로고
    • A+: Adjusted anchored neighborhood regression for fast super-resolution
    • R. Timofte, V. De Smet, and L. Van Gool. A+: Adjusted anchored neighborhood regression for fast super-resolution. In ACCV 2014.
    • (2014) ACCV
    • Timofte, R.1    De Smet, V.2    Van Gool, L.3
  • 28
    • 84986249350 scopus 로고    scopus 로고
    • Seven ways to improve example-based single image super resolution
    • R. Timofte, R. Rothe, and L. Van Gool. Seven ways to improve example-based single image super resolution. In CVPR 2016.
    • (2016) CVPR
    • Timofte, R.1    Rothe, R.2    Van Gool, L.3
  • 30
    • 84898787395 scopus 로고    scopus 로고
    • Fast direct super-resolution by simple functions
    • C.-Y. Yang and M.-H. Yang. Fast direct super-resolution by simple functions. In ICCV 2013.
    • (2013) ICCV
    • Yang, C.-Y.1    Yang, M.-H.2
  • 34
    • 33746265598 scopus 로고    scopus 로고
    • An edge-guided image interpolation algorithm via directional filtering and data fusion
    • L. Zhang and X. Wu. An edge-guided image interpolation algorithm via directional filtering and data fusion. IEEE Transactions on Image Processing, 15 (8):2226-2238, 2006.
    • (2006) IEEE Transactions on Image Processing , vol.15 , Issue.8 , pp. 2226-2238
    • Zhang, L.1    Wu, X.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.