-
1
-
-
33750383209
-
K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation
-
November
-
M. Aharon, M. Elad, and A. Bruckstein. K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing, 54 (11), November 2006.
-
(2006)
IEEE Transactions on Signal Processing
, vol.54
, Issue.11
-
-
Aharon, M.1
Elad, M.2
Bruckstein, A.3
-
5
-
-
84898409537
-
Low-complexity single-image super-resolution based on nonnegative neighbor embedding
-
BMVA Press
-
M. Bevilacqua, A. Roumy, C. Guillemot, and M. line Alberi Morel. Low-complexity single-image super-resolution based on nonnegative neighbor embedding. In Proceedings of the British Machine Vision Conference, pages 135. 1-135. 10. BMVA Press, 2012.
-
(2012)
Proceedings of the British Machine Vision Conference
, pp. 1351-13510
-
-
Bevilacqua, M.1
Roumy, A.2
Guillemot, C.3
Line Alberi Morel, M.4
-
6
-
-
5044219639
-
Super-resolution through neighbor embedding
-
IEEE
-
H. Chang, D.-Y. Yeung, and Y. Xiong. Super-resolution through neighbor embedding. In Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on, volume 1, pages I-I. IEEE, 2004.
-
(2004)
Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on
, vol.1
, pp. I-I
-
-
Chang, H.1
Yeung, D.-Y.2
Xiong, Y.3
-
8
-
-
84932137963
-
Jointly optimized regressors for image super-resolution
-
D. Dai, R. Timofte, and L. Van Gool. Jointly optimized regressors for image super-resolution. In Computer Graphics Forum, volume 34, pages 95-104, 2015.
-
(2015)
Computer Graphics Forum
, vol.34
, pp. 95-104
-
-
Dai, D.1
Timofte, R.2
Van Gool, L.3
-
9
-
-
84906484697
-
-
Springer International Publishing, Cham
-
C. Dong, C. C. Loy, K. He, and X. Tang. Learning a Deep Convolutional Network for Image Super-Resolution, pages 184-199. Springer International Publishing, Cham, 2014.
-
(2014)
Learning A Deep Convolutional Network for Image Super-Resolution
, pp. 184-199
-
-
Dong, C.1
Loy, C.C.2
He, K.3
Tang, X.4
-
10
-
-
84962128851
-
Image super-resolution using deep convolutional networks
-
Feb
-
C. Dong, C. C. Loy, K. He, and X. Tang. Image super-resolution using deep convolutional networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38 (2):295-307, Feb 2016.
-
(2016)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.38
, Issue.2
, pp. 295-307
-
-
Dong, C.1
Loy, C.C.2
He, K.3
Tang, X.4
-
11
-
-
84990837045
-
Accelerating the superresolution convolutional neural network
-
Springer
-
C. Dong, C. C. Loy, and X. Tang. Accelerating the superresolution convolutional neural network. In European Conference on Computer Vision, pages 391-407. Springer, 2016.
-
(2016)
European Conference on Computer Vision
, pp. 391-407
-
-
Dong, C.1
Loy, C.C.2
Tang, X.3
-
12
-
-
79959594311
-
Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization
-
W. Dong, L. Zhang, G. Shi, and X. Wu. Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization. IEEE Transactions on Image Processing, 20 (7):1838-1857, 2011.
-
(2011)
IEEE Transactions on Image Processing
, vol.20
, Issue.7
, pp. 1838-1857
-
-
Dong, W.1
Zhang, L.2
Shi, G.3
Wu, X.4
-
13
-
-
0031332301
-
Restoration of a single superresolution image from several blurred, noisy, and undersampled measured images
-
M. Elad and A. Feuer. Restoration of a single superresolution image from several blurred, noisy, and undersampled measured images. IEEE transactions on image processing, 6 (12):1646-1658, 1997.
-
(1997)
IEEE Transactions on Image Processing
, vol.6
, Issue.12
, pp. 1646-1658
-
-
Elad, M.1
Feuer, A.2
-
14
-
-
4544374765
-
Fast and robust multiframe super resolution
-
S. Farsiu, M. D. Robinson, M. Elad, and P. Milanfar. Fast and robust multiframe super resolution. IEEE transactions on image processing, 13 (10):1327-1344, 2004.
-
(2004)
IEEE Transactions on Image Processing
, vol.13
, Issue.10
, pp. 1327-1344
-
-
Farsiu, S.1
Robinson, M.D.2
Elad, M.3
Milanfar, P.4
-
16
-
-
0036500772
-
Examplebased super-resolution
-
W. T. Freeman, T. R. Jones, and E. C. Pasztor. Examplebased super-resolution. IEEE Computer graphics and Applications, 22 (2):56-65, 2002.
-
(2002)
IEEE Computer Graphics and Applications
, vol.22
, Issue.2
, pp. 56-65
-
-
Freeman, W.T.1
Jones, T.R.2
Pasztor, E.C.3
-
17
-
-
77953187337
-
Super-resolution from a single image
-
IEEE
-
D. Glasner, S. Bagon, and M. Irani. Super-resolution from a single image. In Computer Vision, 2009 IEEE 12th International Conference on, pages 349-356. IEEE, 2009.
-
(2009)
Computer Vision, 2009 IEEE 12th International Conference on
, pp. 349-356
-
-
Glasner, D.1
Bagon, S.2
Irani, M.3
-
23
-
-
77951623771
-
Single-image super-resolution using sparse regression and natural image prior
-
K. I. Kim and Y. Kwon. Single-image super-resolution using sparse regression and natural image prior. IEEE transactions on pattern analysis and machine intelligence, 32 (6):1127-1133, 2010.
-
(2010)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.32
, Issue.6
, pp. 1127-1133
-
-
Kim, K.I.1
Kwon, Y.2
-
26
-
-
85019017178
-
-
CoRR, abs/1609. 04802
-
C. Ledig, L. Theis, F. Huszar, J. Caballero, A. P. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi. Photo-realistic single image super-resolution using a generative adversarial network. CoRR, abs/1609. 04802, 2016.
-
(2016)
Photo-realistic Single Image Super-resolution Using A Generative Adversarial Network
-
-
Ledig, C.1
Theis, L.2
Huszar, F.3
Caballero, J.4
Aitken, A.P.5
Tejani, A.6
Totz, J.7
Wang, Z.8
Shi, W.9
-
27
-
-
85030241329
-
-
arXiv preprint arXiv:1703. 10889
-
Y. Liang, R. Timofte, J. Wang, Y. Gong, and N. Zheng. Single image super resolution-when model adaptation matters. arXiv preprint arXiv:1703. 10889, 2017.
-
(2017)
Single Image Super Resolution-when Model Adaptation Matters
-
-
Liang, Y.1
Timofte, R.2
Wang, J.3
Gong, Y.4
Zheng, N.5
-
28
-
-
85030237937
-
Enhanced deep residual networks for single image super-resolution
-
July
-
B. Lim, S. Son, H. Kim, S. Nah, and K. M. Lee. Enhanced deep residual networks for single image super-resolution. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, July 2017.
-
(2017)
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops
-
-
Lim, B.1
Son, S.2
Kim, H.3
Nah, S.4
Lee, K.M.5
-
29
-
-
85010509972
-
Learning a noreference quality metric for single-image super-resolution
-
C. Ma, C.-Y. Yang, X. Yang, and M.-H. Yang. Learning a noreference quality metric for single-image super-resolution. Computer Vision and Image Understanding, 158:1-16, 2017.
-
(2017)
Computer Vision and Image Understanding
, vol.158
, pp. 1-16
-
-
Ma, C.1
Yang, C.-Y.2
Yang, X.3
Yang, M.-H.4
-
30
-
-
39149089704
-
Sparse representation for color image restoration
-
J. Mairal, M. Elad, and G. Sapiro. Sparse representation for color image restoration. IEEE Transactions on image processing, 17 (1):53-69, 2008.
-
(2008)
IEEE Transactions on Image Processing
, vol.17
, Issue.1
, pp. 53-69
-
-
Mairal, J.1
Elad, M.2
Sapiro, G.3
-
31
-
-
0034850577
-
A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics
-
IEEE
-
D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In Computer Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE International Conference on, volume 2, pages 416-423. IEEE, 2001.
-
(2001)
Computer Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE International Conference on
, vol.2
, pp. 416-423
-
-
Martin, D.1
Fowlkes, C.2
Tal, D.3
Malik, J.4
-
32
-
-
19844370110
-
An iterative regularization method for total variation-based image restoration
-
S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin. An iterative regularization method for total variation-based image restoration. Multiscale Modeling & Simulation, 4 (2):460-489, 2005.
-
(2005)
Multiscale Modeling & Simulation
, vol.4
, Issue.2
, pp. 460-489
-
-
Osher, S.1
Burger, M.2
Goldfarb, D.3
Xu, J.4
Yin, W.5
-
34
-
-
84919839405
-
Image database tid2013: Peculiarities, results and perspectives
-
N. Ponomarenko, L. Jin, O. Ieremeiev, V. Lukin, K. Egiazarian, J. Astola, B. Vozel, K. Chehdi, M. Carli, F. Battisti, and C.-C. J. Kuo. Image database tid2013: Peculiarities, results and perspectives. Signal Processing: Image Communication, 30:57-77, 2015.
-
(2015)
Signal Processing: Image Communication
, vol.30
, pp. 57-77
-
-
Ponomarenko, N.1
Jin, L.2
Ieremeiev, O.3
Lukin, V.4
Egiazarian, K.5
Astola, J.6
Vozel, B.7
Chehdi, K.8
Carli, M.9
Battisti, F.10
Kuo, C.-C.J.11
-
35
-
-
62249214246
-
A comparison study of image spatial entropy
-
International Society for Optics and Photonics
-
Q. Razlighi and N. Kehtarnavaz. A comparison study of image spatial entropy. In IS&T/SPIE Electronic Imaging, pages 72571X-72571X. International Society for Optics and Photonics, 2009.
-
(2009)
IS&T/SPIE Electronic Imaging
, pp. 72571X-72571X
-
-
Razlighi, Q.1
Kehtarnavaz, N.2
-
36
-
-
0002594849
-
Bayesian-based iterative method of image restoration
-
W. H. Richardson. Bayesian-based iterative method of image restoration. JOSA, 62 (1):55-59, 1972.
-
(1972)
JOSA
, vol.62
, Issue.1
, pp. 55-59
-
-
Richardson, W.H.1
-
37
-
-
85040556111
-
Raisr: Rapid and accurate image super resolution
-
March
-
Y. Romano, J. Isidoro, and P. Milanfar. Raisr: Rapid and accurate image super resolution. IEEE Transactions on Computational Imaging, 3 (1):110-125, March 2017.
-
(2017)
IEEE Transactions on Computational Imaging
, vol.3
, Issue.1
, pp. 110-125
-
-
Romano, Y.1
Isidoro, J.2
Milanfar, P.3
-
38
-
-
84947041871
-
Imagenet large scale visual recognition challenge
-
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, et al. Imagenet large scale visual recognition challenge. International Journal of Computer Vision, 115 (3):211-252, 2015.
-
(2015)
International Journal of Computer Vision
, vol.115
, Issue.3
, pp. 211-252
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
Krause, J.4
Satheesh, S.5
Ma, S.6
Huang, Z.7
Karpathy, A.8
Khosla, A.9
Bernstein, M.10
-
40
-
-
28844464788
-
An information fidelity criterion for image quality assessment using natural scene statistics
-
H. R. Sheikh, A. C. Bovik, and G. De Veciana. An information fidelity criterion for image quality assessment using natural scene statistics. IEEE Transactions on image processing, 14 (12):2117-2128, 2005.
-
(2005)
IEEE Transactions on Image Processing
, vol.14
, Issue.12
, pp. 2117-2128
-
-
Sheikh, H.R.1
Bovik, A.C.2
De Veciana, G.3
-
41
-
-
33750369245
-
A statistical evaluation of recent full reference image quality assessment algorithms
-
H. R. Sheikh, M. F. Sabir, and A. C. Bovik. A statistical evaluation of recent full reference image quality assessment algorithms. IEEE Transactions on image processing, 15 (11):3440-3451, 2006.
-
(2006)
IEEE Transactions on Image Processing
, vol.15
, Issue.11
, pp. 3440-3451
-
-
Sheikh, H.R.1
Sabir, M.F.2
Bovik, A.C.3
-
42
-
-
84986308391
-
Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network
-
June
-
W. Shi, J. Caballero, F. Huszar, J. Totz, A. P. Aitken, R. Bishop, D. Rueckert, and Z. Wang. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016.
-
(2016)
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
-
-
Shi, W.1
Caballero, J.2
Huszar, F.3
Totz, J.4
Aitken, A.P.5
Bishop, R.6
Rueckert, D.7
Wang, Z.8
-
46
-
-
85030220122
-
Ntire 2017 challenge on single image superresolution: Methods and results
-
July
-
R. Timofte, E. Agustsson, L. Van Gool, M.-H. Yang, L. Zhang, et al. Ntire 2017 challenge on single image superresolution: Methods and results. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, July 2017.
-
(2017)
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops
-
-
Timofte, R.1
Agustsson, E.2
Van Gool, L.3
Yang, M.-H.4
Zhang, L.5
-
48
-
-
84983684720
-
A+: Adjusted anchored neighborhood regression for fast super-resolution
-
In D Cremers, I. Reid, H. Saito, and M.-H. Yang, editors, Singapore, Singapore, November 1-5, 2014 Revised Selected Papers, Part IV, Cham, Springer International Publishing
-
R. Timofte, V. De Smet, and L. Van Gool. A+: Adjusted anchored neighborhood regression for fast super-resolution. In D. Cremers, I. Reid, H. Saito, and M.-H. Yang, editors, Computer Vision-ACCV 2014: 12th Asian Conference on Computer Vision, Singapore, Singapore, November 1-5, 2014, Revised Selected Papers, Part IV, pages 111-126, Cham, 2014. Springer International Publishing.
-
(2014)
Computer Vision-ACCV 2014: 12th Asian Conference on Computer Vision
, pp. 111-126
-
-
Timofte, R.1
De Smet, V.2
Van Gool, L.3
-
50
-
-
1942436689
-
Image quality assessment: From error visibility to structural similarity
-
April
-
Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, 13 (4):600-612, April 2004.
-
(2004)
IEEE Transactions on Image Processing
, vol.13
, Issue.4
, pp. 600-612
-
-
Wang, Z.1
Bovik, A.C.2
Sheikh, H.R.3
Simoncelli, E.P.4
-
51
-
-
84973897612
-
Deep networks for image super-resolution with sparse prior
-
December
-
Z. Wang, D. Liu, J. Yang, W. Han, and T. Huang. Deep networks for image super-resolution with sparse prior. In The IEEE International Conference on Computer Vision (ICCV), December 2015.
-
(2015)
The IEEE International Conference on Computer Vision (ICCV)
-
-
Wang, Z.1
Liu, D.2
Yang, J.3
Han, W.4
Huang, T.5
-
52
-
-
85019130473
-
Generic 3d convolutional fusion for image restoration
-
J. Wu, R. Timofte, and L. Van Gool. Generic 3d convolutional fusion for image restoration. In ACCV Workshops, 2016.
-
(2016)
ACCV Workshops
-
-
Wu, J.1
Timofte, R.2
Van Gool, L.3
-
54
-
-
51949105499
-
Image superresolution as sparse representation of raw image patches
-
June
-
J. Yang, J. Wright, T. Huang, and Y. Ma. Image superresolution as sparse representation of raw image patches. In 2008 IEEE Conference on Computer Vision and Pattern Recognition, pages 1-8, June 2008.
-
(2008)
2008 IEEE Conference on Computer Vision and Pattern Recognition
, pp. 1-8
-
-
Yang, J.1
Wright, J.2
Huang, T.3
Ma, Y.4
-
55
-
-
84866683924
-
Unsupervised feature learning framework for no-reference image quality assessment
-
IEEE
-
P. Ye, J. Kumar, L. Kang, and D. Doermann. Unsupervised feature learning framework for no-reference image quality assessment. In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, pages 1098-1105. IEEE, 2012.
-
(2012)
Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on
, pp. 1098-1105
-
-
Ye, P.1
Kumar, J.2
Kang, L.3
Doermann, D.4
-
56
-
-
84855655878
-
On single image scale-up using sparse-representations
-
Avignon, France, June 24-30, 2010 Revised Selected Papers
-
R. Zeyde, M. Elad, and M. Protter. On single image scale-up using sparse-representations. In Curves and Surfaces: 7th International Conference, Avignon, France, June 24-30, 2010, Revised Selected Papers, pages 711-730, 2012.
-
(2012)
Curves and Surfaces: 7th International Conference
, pp. 711-730
-
-
Zeyde, R.1
Elad, M.2
Protter, M.3
-
57
-
-
79960509746
-
Fsim: A feature similarity index for image quality assessment
-
L. Zhang, L. Zhang, X. Mou, and D. Zhang. Fsim: A feature similarity index for image quality assessment. IEEE transactions on Image Processing, 20 (8):2378-2386, 2011.
-
(2011)
IEEE Transactions on Image Processing
, vol.20
, Issue.8
, pp. 2378-2386
-
-
Zhang, L.1
Zhang, L.2
Mou, X.3
Zhang, D.4
|