메뉴 건너뛰기




Volumn , Issue , 2016, Pages 1830-1838

Architectural complexity measures of recurrent neural networks

Author keywords

[No Author keywords available]

Indexed keywords

ARCHITECTURE; COMPLEX NETWORKS; FEEDFORWARD NEURAL NETWORKS; GRAPH THEORY; NETWORK ARCHITECTURE;

EID: 85019260288     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (136)

References (29)
  • 4
    • 84969544782 scopus 로고    scopus 로고
    • Unsupervised learning of video representations using LSTMs
    • Nitish Srivastava, Elman Mansimov, and Ruslan Salakhutdinov. Unsupervised learning of video representations using LSTMs. In ICML, 2015.
    • (2015) ICML
    • Srivastava, N.1    Mansimov, E.2    Salakhutdinov, R.3
  • 9
    • 0028392483 scopus 로고
    • Learning long-term dependencies with gradient descent is difficult
    • Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies with gradient descent is difficult. Neural Networks, IEEE Transactions on, 5(2):157-166, 1994.
    • (1994) Neural Networks, IEEE Transactions On , vol.5 , Issue.2 , pp. 157-166
    • Bengio, Y.1    Simard, P.2    Frasconi, P.3
  • 14
    • 0001033889 scopus 로고
    • Learning complex, extended sequences using the principle of history compression
    • Jürgen Schmidhuber. Learning complex, extended sequences using the principle of history compression. Neural Computation, 4(2):234-242, 1992.
    • (1992) Neural Computation , vol.4 , Issue.2 , pp. 234-242
    • Schmidhuber, J.1
  • 19
    • 33646241633 scopus 로고    scopus 로고
    • Learning long-term dependencies is not as difficult with NARX recurrent neural networks
    • November
    • T. Lin, B. G. Horne, P. Tino, and C. L. Giles. Learning long-term dependencies is not as difficult with NARX recurrent neural networks. IEEE Transactions on Neural Networks, 7(6):1329-1338, November 1996.
    • (1996) IEEE Transactions on Neural Networks , vol.7 , Issue.6 , pp. 1329-1338
    • Lin, T.1    Horne, B.G.2    Tino, P.3    Giles, C.L.4
  • 20
    • 73949127981 scopus 로고    scopus 로고
    • Temporal-kernel recurrent neural networks
    • Ilya Sutskever and Geoffrey Hinton. Temporal-kernel recurrent neural networks. Neural Networks, 23(2):239-243, 2010.
    • (2010) Neural Networks , vol.23 , Issue.2 , pp. 239-243
    • Sutskever, I.1    Hinton, G.2
  • 22
    • 34249852033 scopus 로고
    • Building a large annotated Corpus of English: The penn treebank
    • Mitchell P Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Building a large annotated corpus of english: The penn treebank. Computational linguistics, 19(2):313-330, 1993.
    • (1993) Computational Linguistics , vol.19 , Issue.2 , pp. 313-330
    • Marcus, M.P.1    Marcinkiewicz, M.A.2    Santorini, B.3
  • 29
    • 84971640658 scopus 로고    scopus 로고
    • François Chollet. Keras. GitHub repository: https://github.com/fchollet/keras, 2015.
    • (2015) Keras
    • Chollet, F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.