-
1
-
-
85041907746
-
-
(visited on June 6, 2016)
-
VGG19 and VGG16 on tensorflow. https://github. com/machrisaa/tensorflow-vgg, 2016. (visited on June 6, 2016)
-
(2016)
-
-
-
3
-
-
84898409537
-
Low-complexity single-image super-resolution based on nonnegative neighbor embedding
-
M. Bevilacqua, A. Roumy, C. Guillemot, and M.-L. A. Morel. Low-complexity single-image super-resolution based on nonnegative neighbor embedding. In BMVC, 2012
-
(2012)
BMVC
-
-
Bevilacqua, M.1
Roumy, A.2
Guillemot, C.3
Morel, M.-L.A.4
-
4
-
-
85083954075
-
Super-resolution with deep convolutional sufficient statistics
-
J. Bruna, P. Sprechmann, and Y. LeCun. Super-resolution with deep convolutional sufficient statistics. In ICLR, 2016
-
(2016)
ICLR
-
-
Bruna, J.1
Sprechmann, P.2
LeCun, Y.3
-
5
-
-
5044219639
-
Super-resolution through neighbor embedding
-
H. Chang, D.-Y. Yeung, and Y. Xiong. Super-resolution through neighbor embedding. In CVPR, 2004
-
(2004)
CVPR
-
-
Chang, H.1
Yeung, D.-Y.2
Xiong, Y.3
-
6
-
-
85041898379
-
-
(visited on November 10, 2016)
-
R. Dahl. ResNet in tensorflow. https://github.com/ ry/tensorflow-resnet, 2016. (visited on November 10, 2016)
-
(2016)
-
-
Dahl, R.1
-
7
-
-
84965143571
-
Deep generative image models using a laplacian pyramid of adversarial networks
-
E. L. Denton, S. Chintala, R. Fergus, et al. Deep generative image models using a laplacian pyramid of adversarial networks. In NIPS, 2015
-
(2015)
NIPS
-
-
Denton, E.L.1
Chintala, S.2
Fergus, R.3
-
8
-
-
84921971467
-
Learning a deep convolutional network for image super-resolution
-
C. Dong, C. C. Loy, K. He, and X. Tang. Learning a deep convolutional network for image super-resolution. In ECCV, 2014
-
(2014)
ECCV
-
-
Dong, C.1
Loy, C.C.2
He, K.3
Tang, X.4
-
9
-
-
85030212408
-
Accelerating the superresolution convolutional neural network
-
C. Dong, C. C. Loy, and X. Tang. Accelerating the superresolution convolutional neural network. In ECCV, 2016
-
(2016)
ECCV
-
-
Dong, C.1
Loy, C.C.2
Tang, X.3
-
10
-
-
85019269786
-
Generating images with perceptual similarity metrics based on deep networks
-
A. Dosovitskiy and T. Brox. Generating images with perceptual similarity metrics based on deep networks. In NIPS, 2016
-
(2016)
NIPS
-
-
Dosovitskiy, A.1
Brox, T.2
-
11
-
-
0018506597
-
Lanczos filtering in one and two dimensions
-
C. E. Duchon. Lanczos filtering in one and two dimensions. Journal of Applied Meteorology, 18(8):1016-1022, 1979
-
(1979)
Journal of Applied Meteorology
, vol.18
, Issue.8
, pp. 1016-1022
-
-
Duchon, C.E.1
-
12
-
-
80053175040
-
Evaluation of image resolution and super-resolution on face recognition performance
-
C. Fookes, F. Lin, V. Chandran, and S. Sridharan. Evaluation of image resolution and super-resolution on face recognition performance. JVCIR, 23(1):75-93, 2012
-
(2012)
JVCIR
, vol.23
, Issue.1
, pp. 75-93
-
-
Fookes, C.1
Lin, F.2
Chandran, V.3
Sridharan, S.4
-
13
-
-
79955668981
-
Image and video upscaling from local self-examples
-
G. Freedman and R. Fattal. Image and video upscaling from local self-examples. ACM TOG, 30(2):12, 2011
-
(2011)
ACM TOG
, vol.30
, Issue.2
, pp. 12
-
-
Freedman, G.1
Fattal, R.2
-
14
-
-
0036500772
-
Examplebased super-resolution
-
W. T. Freeman, T. R. Jones, and E. C. Pasztor. Examplebased super-resolution. IEEE CG and A, 22(2):56-65, 2002
-
(2002)
IEEE CG and A
, vol.22
, Issue.2
, pp. 56-65
-
-
Freeman, W.T.1
Jones, T.R.2
Pasztor, E.C.3
-
15
-
-
84965135705
-
Texture synthesis using convolutional neural networks
-
L. Gatys, A. S. Ecker, and M. Bethge. Texture synthesis using convolutional neural networks. In NIPS, 2015
-
(2015)
NIPS
-
-
Gatys, L.1
Ecker, A.S.2
Bethge, M.3
-
16
-
-
84986325538
-
Image style transfer using convolutional neural networks
-
L. A. Gatys, A. S. Ecker, and M. Bethge. Image style transfer using convolutional neural networks. In CVPR, 2016
-
(2016)
CVPR
-
-
Gatys, L.A.1
Ecker, A.S.2
Bethge, M.3
-
17
-
-
77953187337
-
Super-resolution from a single image
-
D. Glasner, S. Bagon, and M. Irani. Super-resolution from a single image. In ICCV, 2009
-
(2009)
ICCV
-
-
Glasner, D.1
Bagon, S.2
Irani, M.3
-
18
-
-
84937849144
-
Generative adversarial nets
-
I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D.Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. In NIPS, 2014
-
(2014)
NIPS
-
-
Goodfellow, I.1
Pouget-Abadie, J.2
Mirza, M.3
Xu, B.4
Warde-Farley, D.5
Ozair, S.6
Courville, A.7
Bengio, Y.8
-
20
-
-
84986274465
-
Deep residual learning for image recognition
-
K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR, 2016
-
(2016)
CVPR
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
21
-
-
84990058751
-
Convolutional neural networks for direct text deblurring
-
M. Hradis, J. Kotera, P. Zemcik, and F. Sroubek. Convolutional neural networks for direct text deblurring. In BMVC, 2015
-
(2015)
BMVC
-
-
Hradis, M.1
Kotera, J.2
Zemcik, P.3
Sroubek, F.4
-
22
-
-
84959188745
-
Single image superresolution from transformed self-exemplars
-
J.-B. Huang, A. Singh, and N. Ahuja. Single image superresolution from transformed self-exemplars. In CVPR, 2015
-
(2015)
CVPR
-
-
Huang, J.-B.1
Singh, A.2
Ahuja, N.3
-
24
-
-
85019245160
-
Perceptual losses for real-time style transfer and super-resolution
-
J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for real-time style transfer and super-resolution. In ECCV, 2016
-
(2016)
ECCV
-
-
Johnson, J.1
Alahi, A.2
Fei-Fei, L.3
-
25
-
-
84986325587
-
Accurate image superresolution using very deep convolutional networks
-
J. Kim, J. Kwon Lee, and K. Mu Lee. Accurate image superresolution using very deep convolutional networks. In CVPR, 2016
-
(2016)
CVPR
-
-
Kim, J.1
Kwon Lee, J.2
Mu Lee, K.3
-
26
-
-
84986253618
-
Deeply-recursive convolutional network for image super-resolution
-
J. Kim, J. Kwon Lee, and K. Mu Lee. Deeply-recursive convolutional network for image super-resolution. In CVPR, 2016
-
(2016)
CVPR
-
-
Kim, J.1
Kwon Lee, J.2
Mu Lee, K.3
-
27
-
-
77951623771
-
Single-image super-resolution using sparse regression and natural image prior
-
K. I. Kim and Y. Kwon. Single-image super-resolution using sparse regression and natural image prior. IEEE TPAMI, 32(6):1127-1133, 2010
-
(2010)
IEEE TPAMI
, vol.32
, Issue.6
, pp. 1127-1133
-
-
Kim, K.I.1
Kwon, Y.2
-
28
-
-
85029843616
-
Perceptual image quality assessment using a normalized laplacian pyramid
-
V. Laparra, J. Balle, A. Berardino, and E. P. Simoncelli. Perceptual image quality assessment using a normalized laplacian pyramid. Electronic Imaging, 2016(16):1-6, 2016
-
(2016)
Electronic Imaging
, vol.2016
, Issue.16
, pp. 1-6
-
-
Laparra, V.1
Balle, J.2
Berardino, A.3
Simoncelli, E.P.4
-
29
-
-
85019017178
-
-
arXiv:1609.04802v3
-
C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi. Photo-realistic single image super-resolution using a generative adversarial network. arXiv:1609.04802v3, 2016
-
(2016)
Photo-realistic Single Image Super-resolution Using A Generative Adversarial Network
-
-
Ledig, C.1
Theis, L.2
Huszar, F.3
Caballero, J.4
Aitken, A.5
Tejani, A.6
Totz, J.7
Wang, Z.8
Shi, W.9
-
30
-
-
85041921311
-
Superresolved faces for improved face recognition from surveillance video
-
F. Lin, C. Fookes, V. Chandran, and S. Sridharan. Superresolved faces for improved face recognition from surveillance video. In ICB, 2007
-
(2007)
ICB
-
-
Lin, F.1
Fookes, C.2
Chandran, V.3
Sridharan, S.4
-
31
-
-
84937834115
-
Microsoft COCO: Common objects in context
-
T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollar, and C. L. Zitnick. Microsoft COCO: Common objects in context. In ECCV, 2014
-
(2014)
ECCV
-
-
Lin, T.-Y.1
Maire, M.2
Belongie, S.3
Hays, J.4
Perona, P.5
Ramanan, D.6
Dollar, P.7
Zitnick, C.L.8
-
32
-
-
84959205572
-
Fully convolutional networks for semantic segmentation
-
J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In CVPR, 2015
-
(2015)
CVPR
-
-
Long, J.1
Shelhamer, E.2
Darrell, T.3
-
33
-
-
84866721916
-
Geometry constrained sparse coding for single image super-resolution
-
X. Lu, H. Yuan, P. Yan, Y. Yuan, and X. Li. Geometry constrained sparse coding for single image super-resolution. In CVPR, 2012
-
(2012)
CVPR
-
-
Lu, X.1
Yuan, H.2
Yan, P.3
Yuan, Y.4
Li, X.5
-
34
-
-
84893676344
-
Rectifier nonlinearities improve neural network acoustic models
-
A. L. Maas, A. Y. Hannun, and A. Y. Ng. Rectifier nonlinearities improve neural network acoustic models. In ICML, 2013
-
(2013)
ICML
-
-
Maas, A.L.1
Hannun, A.Y.2
Ng, A.Y.3
-
36
-
-
84856189788
-
Systematic evaluation of super-resolution using classification
-
IEEE
-
V. P. Namboodiri, V. Smet, and L. Van Gool. Systematic evaluation of super-resolution using classification. In VCIP, pages 1-4. IEEE, 2011
-
(2011)
VCIP
, pp. 1-4
-
-
Namboodiri, V.P.1
Smet, V.2
Van Gool, L.3
-
39
-
-
84986294165
-
Context encoders: Feature learning by inpainting
-
D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros. Context encoders: Feature learning by inpainting. In CVPR, 2016
-
(2016)
CVPR
-
-
Pathak, D.1
Krahenbuhl, P.2
Donahue, J.3
Darrell, T.4
Efros, A.A.5
-
41
-
-
85083950271
-
Unsupervised representation learning with deep convolutional generative adversarial networks
-
A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep convolutional generative adversarial networks. In ICLR, 2016
-
(2016)
ICLR
-
-
Radford, A.1
Metz, L.2
Chintala, S.3
-
42
-
-
85046248766
-
RAISR: Rapid and accurate image super resolution
-
Y. Romano, J. Isidoro, and P. Milanfar. RAISR: Rapid and accurate image super resolution. IEEE TCI, 2016
-
(2016)
IEEE TCI
-
-
Romano, Y.1
Isidoro, J.2
Milanfar, P.3
-
43
-
-
44049111982
-
Nonlinear total variation based noise removal algorithms
-
L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena, 60(1):259-268, 1992
-
(1992)
Physica D: Nonlinear Phenomena
, vol.60
, Issue.1
, pp. 259-268
-
-
Rudin, L.I.1
Osher, S.2
Fatemi, E.3
-
44
-
-
84947041871
-
ImageNet large scale visual recognition challenge
-
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. IJCV, 115(3):211-252, 2015
-
(2015)
IJCV
, vol.115
, Issue.3
, pp. 211-252
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
Krause, J.4
Satheesh, S.5
Ma, S.6
Huang, Z.7
Karpathy, A.8
Khosla, A.9
Bernstein, M.10
Berg, A.C.11
Fei-Fei, L.12
-
45
-
-
84959234116
-
Fast and accu-rate image upscaling with super-resolution forests
-
S. Schulter, C. Leistner, and H. Bischof. Fast and accu-rate image upscaling with super-resolution forests. In CVPR, 2015
-
(2015)
CVPR
-
-
Schulter, S.1
Leistner, C.2
Bischof, H.3
-
46
-
-
85041924100
-
An information fidelity criterion for image quality assessment using natural scene statistics
-
H. R. Sheikh, A. C. Bovik, and G. Veciana. An information fidelity criterion for image quality assessment using natural scene statistics. IEEE TIP, 2005
-
(2005)
IEEE TIP
-
-
Sheikh, H.R.1
Bovik, A.C.2
Veciana, G.3
-
47
-
-
84986308391
-
Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network
-
W. Shi, J. Caballero, F. Huszar, J. Totz, A. P. Aitken, R. Bishop, D. Rueckert, and Z. Wang. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In CVPR, 2016
-
(2016)
CVPR
-
-
Shi, W.1
Caballero, J.2
Huszar, F.3
Totz, J.4
Aitken, A.P.5
Bishop, R.6
Rueckert, D.7
Wang, Z.8
-
48
-
-
84987623662
-
Local-and holisticstructure preserving image super resolution via deep joint component learning
-
Y. Shi, K. Wang, L. Xu, and L. Lin. Local-and holisticstructure preserving image super resolution via deep joint component learning. In ICME, 2016
-
(2016)
ICME
-
-
Shi, Y.1
Wang, K.2
Xu, L.3
Lin, L.4
-
49
-
-
85083953063
-
Very deep convolutional networks for large-scale image recognition
-
K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015
-
(2015)
ICLR
-
-
Simonyan, K.1
Zisserman, A.2
-
50
-
-
77955992643
-
Super resolution using edge prior and single image detail synthesis
-
Y.-W. Tai, S. Liu, M. S. Brown, and S. Lin. Super resolution using edge prior and single image detail synthesis. In CVPR, 2010
-
(2010)
CVPR
-
-
Tai, Y.-W.1
Liu, S.2
Brown, M.S.3
Lin, S.4
-
51
-
-
84932095280
-
A+: Adjusted anchored neighborhood regression for fast super-resolution
-
R. Timofte, V. Smet, and L. Van Gool. A+: Adjusted anchored neighborhood regression for fast super-resolution. In ACCV, 2014
-
(2014)
ACCV
-
-
Timofte, R.1
Smet, V.2
Van Gool, L.3
-
52
-
-
84986249350
-
Seven ways to improve example-based single image super resolution
-
R. Timofte, R. Rothe, and L. Van Gool. Seven ways to improve example-based single image super resolution. In CVPR, 2016
-
(2016)
CVPR
-
-
Timofte, R.1
Rothe, R.2
Van Gool, L.3
-
53
-
-
84998882079
-
Texture networks: Feed-forward synthesis of textures and stylized images
-
D. Ulyanov, V. Lebedev, A. Vedaldi, and V. Lempitsky. Texture networks: Feed-forward synthesis of textures and stylized images. In ICML, 2016
-
(2016)
ICML
-
-
Ulyanov, D.1
Lebedev, V.2
Vedaldi, A.3
Lempitsky, V.4
-
54
-
-
1942436689
-
Image quality assessment: From error visibility to structural similarity
-
Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality assessment: from error visibility to structural similarity. IEEE TIP, 13(4):600-612, 2004
-
(2004)
IEEE TIP
, vol.13
, Issue.4
, pp. 600-612
-
-
Wang, Z.1
Bovik, A.C.2
Sheikh, H.R.3
Simoncelli, E.P.4
-
55
-
-
85041921041
-
Learning high-order filters for efficient blind deconvolution of document photographs
-
L. Xiao, J. Wang, W. Heidrich, and M. Hirsch. Learning high-order filters for efficient blind deconvolution of document photographs. In ECCV, 2016
-
(2016)
ECCV
-
-
Xiao, L.1
Wang, J.2
Heidrich, W.3
Hirsch, M.4
-
56
-
-
84881006925
-
Exploiting selfsimilarities for single frame super-resolution
-
C.-Y. Yang, J.-B. Huang, and M.-H. Yang. Exploiting selfsimilarities for single frame super-resolution. In ACCV, 2010
-
(2010)
ACCV
-
-
Yang, C.-Y.1
Huang, J.-B.2
Yang, M.-H.3
-
57
-
-
84955298423
-
Single-image superresolution: A benchmark
-
C.-Y. Yang, C. Ma, and M.-H. Yang. Single-image superresolution: a benchmark. In ECCV, 2014
-
(2014)
ECCV
-
-
Yang, C.-Y.1
Ma, C.2
Yang, M.-H.3
-
58
-
-
84887347938
-
Fast image super-resolution based on in-place example regression
-
J. Yang, Z. Lin, and S. Cohen. Fast image super-resolution based on in-place example regression. In CVPR, 2013
-
(2013)
CVPR
-
-
Yang, J.1
Lin, Z.2
Cohen, S.3
-
59
-
-
84864128043
-
Coupled dictionary training for image super-resolution
-
J. Yang, Z. Wang, Z. Lin, S. Cohen, and T. Huang. Coupled dictionary training for image super-resolution. IEEE TIP, 21(8):3467-3478, 2012
-
(2012)
IEEE TIP
, vol.21
, Issue.8
, pp. 3467-3478
-
-
Yang, J.1
Wang, Z.2
Lin, Z.3
Cohen, S.4
Huang, T.5
-
60
-
-
51949105499
-
Image superresolution as sparse representation of raw image patches
-
J. Yang, J. Wright, T. Huang, and Y. Ma. Image superresolution as sparse representation of raw image patches. In CVPR, 2008
-
(2008)
CVPR
-
-
Yang, J.1
Wright, J.2
Huang, T.3
Ma, Y.4
-
61
-
-
78049312324
-
Image super-resolution via sparse representation
-
J. Yang, J. Wright, T. S. Huang, and Y. Ma. Image super-resolution via sparse representation. IEEE TIP, 19(11):2861-2873, 2010
-
(2010)
IEEE TIP
, vol.19
, Issue.11
, pp. 2861-2873
-
-
Yang, J.1
Wright, J.2
Huang, T.S.3
Ma, Y.4
-
62
-
-
85041903513
-
Ultra-resolving face images by discriminative generative networks
-
X. Yu and F. Porikli. Ultra-resolving face images by discriminative generative networks. In ECCV, 2016
-
(2016)
ECCV
-
-
Yu, X.1
Porikli, F.2
-
63
-
-
84885148057
-
Landmark image super-resolution by retrieving web images
-
H. Yue, X. Sun, J. Yang, and F. Wu. Landmark image super-resolution by retrieving web images. IEEE TIP, 22(12):4865-4878, 2013
-
(2013)
IEEE TIP
, vol.22
, Issue.12
, pp. 4865-4878
-
-
Yue, H.1
Sun, X.2
Yang, J.3
Wu, F.4
-
64
-
-
84866719241
-
Multi-scale dictionary for single image super-resolution
-
K. Zhang, X. Gao, D. Tao, and X. Li. Multi-scale dictionary for single image super-resolution. In CVPR, 2012
-
(2012)
CVPR
-
-
Zhang, K.1
Gao, X.2
Tao, D.3
Li, X.4
|