메뉴 건너뛰기




Volumn 2017-October, Issue , 2017, Pages 4501-4510

EnhanceNet: Single Image Super-Resolution Through Automated Texture Synthesis

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER GRAPHICS; COMPUTER VISION; IMAGE ENHANCEMENT; IMAGE PROCESSING; IMAGE QUALITY; NEURAL NETWORKS; OPTICAL RESOLVING POWER; SIGNAL TO NOISE RATIO;

EID: 85041907399     PISSN: 15505499     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2017.481     Document Type: Conference Paper
Times cited : (1150)

References (66)
  • 1
    • 85041907746 scopus 로고    scopus 로고
    • (visited on June 6, 2016)
    • VGG19 and VGG16 on tensorflow. https://github. com/machrisaa/tensorflow-vgg, 2016. (visited on June 6, 2016)
    • (2016)
  • 3
    • 84898409537 scopus 로고    scopus 로고
    • Low-complexity single-image super-resolution based on nonnegative neighbor embedding
    • M. Bevilacqua, A. Roumy, C. Guillemot, and M.-L. A. Morel. Low-complexity single-image super-resolution based on nonnegative neighbor embedding. In BMVC, 2012
    • (2012) BMVC
    • Bevilacqua, M.1    Roumy, A.2    Guillemot, C.3    Morel, M.-L.A.4
  • 4
    • 85083954075 scopus 로고    scopus 로고
    • Super-resolution with deep convolutional sufficient statistics
    • J. Bruna, P. Sprechmann, and Y. LeCun. Super-resolution with deep convolutional sufficient statistics. In ICLR, 2016
    • (2016) ICLR
    • Bruna, J.1    Sprechmann, P.2    LeCun, Y.3
  • 5
    • 5044219639 scopus 로고    scopus 로고
    • Super-resolution through neighbor embedding
    • H. Chang, D.-Y. Yeung, and Y. Xiong. Super-resolution through neighbor embedding. In CVPR, 2004
    • (2004) CVPR
    • Chang, H.1    Yeung, D.-Y.2    Xiong, Y.3
  • 6
    • 85041898379 scopus 로고    scopus 로고
    • (visited on November 10, 2016)
    • R. Dahl. ResNet in tensorflow. https://github.com/ ry/tensorflow-resnet, 2016. (visited on November 10, 2016)
    • (2016)
    • Dahl, R.1
  • 7
    • 84965143571 scopus 로고    scopus 로고
    • Deep generative image models using a laplacian pyramid of adversarial networks
    • E. L. Denton, S. Chintala, R. Fergus, et al. Deep generative image models using a laplacian pyramid of adversarial networks. In NIPS, 2015
    • (2015) NIPS
    • Denton, E.L.1    Chintala, S.2    Fergus, R.3
  • 8
    • 84921971467 scopus 로고    scopus 로고
    • Learning a deep convolutional network for image super-resolution
    • C. Dong, C. C. Loy, K. He, and X. Tang. Learning a deep convolutional network for image super-resolution. In ECCV, 2014
    • (2014) ECCV
    • Dong, C.1    Loy, C.C.2    He, K.3    Tang, X.4
  • 9
    • 85030212408 scopus 로고    scopus 로고
    • Accelerating the superresolution convolutional neural network
    • C. Dong, C. C. Loy, and X. Tang. Accelerating the superresolution convolutional neural network. In ECCV, 2016
    • (2016) ECCV
    • Dong, C.1    Loy, C.C.2    Tang, X.3
  • 10
    • 85019269786 scopus 로고    scopus 로고
    • Generating images with perceptual similarity metrics based on deep networks
    • A. Dosovitskiy and T. Brox. Generating images with perceptual similarity metrics based on deep networks. In NIPS, 2016
    • (2016) NIPS
    • Dosovitskiy, A.1    Brox, T.2
  • 11
    • 0018506597 scopus 로고
    • Lanczos filtering in one and two dimensions
    • C. E. Duchon. Lanczos filtering in one and two dimensions. Journal of Applied Meteorology, 18(8):1016-1022, 1979
    • (1979) Journal of Applied Meteorology , vol.18 , Issue.8 , pp. 1016-1022
    • Duchon, C.E.1
  • 12
    • 80053175040 scopus 로고    scopus 로고
    • Evaluation of image resolution and super-resolution on face recognition performance
    • C. Fookes, F. Lin, V. Chandran, and S. Sridharan. Evaluation of image resolution and super-resolution on face recognition performance. JVCIR, 23(1):75-93, 2012
    • (2012) JVCIR , vol.23 , Issue.1 , pp. 75-93
    • Fookes, C.1    Lin, F.2    Chandran, V.3    Sridharan, S.4
  • 13
    • 79955668981 scopus 로고    scopus 로고
    • Image and video upscaling from local self-examples
    • G. Freedman and R. Fattal. Image and video upscaling from local self-examples. ACM TOG, 30(2):12, 2011
    • (2011) ACM TOG , vol.30 , Issue.2 , pp. 12
    • Freedman, G.1    Fattal, R.2
  • 15
    • 84965135705 scopus 로고    scopus 로고
    • Texture synthesis using convolutional neural networks
    • L. Gatys, A. S. Ecker, and M. Bethge. Texture synthesis using convolutional neural networks. In NIPS, 2015
    • (2015) NIPS
    • Gatys, L.1    Ecker, A.S.2    Bethge, M.3
  • 16
    • 84986325538 scopus 로고    scopus 로고
    • Image style transfer using convolutional neural networks
    • L. A. Gatys, A. S. Ecker, and M. Bethge. Image style transfer using convolutional neural networks. In CVPR, 2016
    • (2016) CVPR
    • Gatys, L.A.1    Ecker, A.S.2    Bethge, M.3
  • 17
    • 77953187337 scopus 로고    scopus 로고
    • Super-resolution from a single image
    • D. Glasner, S. Bagon, and M. Irani. Super-resolution from a single image. In ICCV, 2009
    • (2009) ICCV
    • Glasner, D.1    Bagon, S.2    Irani, M.3
  • 19
    • 78149462552 scopus 로고    scopus 로고
    • Image upsampling via texture hallucination
    • Y. HaCohen, R. Fattal, and D. Lischinski. Image upsampling via texture hallucination. In ICCP, 2010
    • (2010) ICCP
    • HaCohen, Y.1    Fattal, R.2    Lischinski, D.3
  • 20
    • 84986274465 scopus 로고    scopus 로고
    • Deep residual learning for image recognition
    • K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR, 2016
    • (2016) CVPR
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 21
    • 84990058751 scopus 로고    scopus 로고
    • Convolutional neural networks for direct text deblurring
    • M. Hradis, J. Kotera, P. Zemcik, and F. Sroubek. Convolutional neural networks for direct text deblurring. In BMVC, 2015
    • (2015) BMVC
    • Hradis, M.1    Kotera, J.2    Zemcik, P.3    Sroubek, F.4
  • 22
    • 84959188745 scopus 로고    scopus 로고
    • Single image superresolution from transformed self-exemplars
    • J.-B. Huang, A. Singh, and N. Ahuja. Single image superresolution from transformed self-exemplars. In CVPR, 2015
    • (2015) CVPR
    • Huang, J.-B.1    Singh, A.2    Ahuja, N.3
  • 24
    • 85019245160 scopus 로고    scopus 로고
    • Perceptual losses for real-time style transfer and super-resolution
    • J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for real-time style transfer and super-resolution. In ECCV, 2016
    • (2016) ECCV
    • Johnson, J.1    Alahi, A.2    Fei-Fei, L.3
  • 25
    • 84986325587 scopus 로고    scopus 로고
    • Accurate image superresolution using very deep convolutional networks
    • J. Kim, J. Kwon Lee, and K. Mu Lee. Accurate image superresolution using very deep convolutional networks. In CVPR, 2016
    • (2016) CVPR
    • Kim, J.1    Kwon Lee, J.2    Mu Lee, K.3
  • 26
    • 84986253618 scopus 로고    scopus 로고
    • Deeply-recursive convolutional network for image super-resolution
    • J. Kim, J. Kwon Lee, and K. Mu Lee. Deeply-recursive convolutional network for image super-resolution. In CVPR, 2016
    • (2016) CVPR
    • Kim, J.1    Kwon Lee, J.2    Mu Lee, K.3
  • 27
    • 77951623771 scopus 로고    scopus 로고
    • Single-image super-resolution using sparse regression and natural image prior
    • K. I. Kim and Y. Kwon. Single-image super-resolution using sparse regression and natural image prior. IEEE TPAMI, 32(6):1127-1133, 2010
    • (2010) IEEE TPAMI , vol.32 , Issue.6 , pp. 1127-1133
    • Kim, K.I.1    Kwon, Y.2
  • 28
    • 85029843616 scopus 로고    scopus 로고
    • Perceptual image quality assessment using a normalized laplacian pyramid
    • V. Laparra, J. Balle, A. Berardino, and E. P. Simoncelli. Perceptual image quality assessment using a normalized laplacian pyramid. Electronic Imaging, 2016(16):1-6, 2016
    • (2016) Electronic Imaging , vol.2016 , Issue.16 , pp. 1-6
    • Laparra, V.1    Balle, J.2    Berardino, A.3    Simoncelli, E.P.4
  • 30
    • 85041921311 scopus 로고    scopus 로고
    • Superresolved faces for improved face recognition from surveillance video
    • F. Lin, C. Fookes, V. Chandran, and S. Sridharan. Superresolved faces for improved face recognition from surveillance video. In ICB, 2007
    • (2007) ICB
    • Lin, F.1    Fookes, C.2    Chandran, V.3    Sridharan, S.4
  • 32
    • 84959205572 scopus 로고    scopus 로고
    • Fully convolutional networks for semantic segmentation
    • J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In CVPR, 2015
    • (2015) CVPR
    • Long, J.1    Shelhamer, E.2    Darrell, T.3
  • 33
    • 84866721916 scopus 로고    scopus 로고
    • Geometry constrained sparse coding for single image super-resolution
    • X. Lu, H. Yuan, P. Yan, Y. Yuan, and X. Li. Geometry constrained sparse coding for single image super-resolution. In CVPR, 2012
    • (2012) CVPR
    • Lu, X.1    Yuan, H.2    Yan, P.3    Yuan, Y.4    Li, X.5
  • 34
    • 84893676344 scopus 로고    scopus 로고
    • Rectifier nonlinearities improve neural network acoustic models
    • A. L. Maas, A. Y. Hannun, and A. Y. Ng. Rectifier nonlinearities improve neural network acoustic models. In ICML, 2013
    • (2013) ICML
    • Maas, A.L.1    Hannun, A.Y.2    Ng, A.Y.3
  • 36
    • 84856189788 scopus 로고    scopus 로고
    • Systematic evaluation of super-resolution using classification
    • IEEE
    • V. P. Namboodiri, V. Smet, and L. Van Gool. Systematic evaluation of super-resolution using classification. In VCIP, pages 1-4. IEEE, 2011
    • (2011) VCIP , pp. 1-4
    • Namboodiri, V.P.1    Smet, V.2    Van Gool, L.3
  • 41
    • 85083950271 scopus 로고    scopus 로고
    • Unsupervised representation learning with deep convolutional generative adversarial networks
    • A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep convolutional generative adversarial networks. In ICLR, 2016
    • (2016) ICLR
    • Radford, A.1    Metz, L.2    Chintala, S.3
  • 42
    • 85046248766 scopus 로고    scopus 로고
    • RAISR: Rapid and accurate image super resolution
    • Y. Romano, J. Isidoro, and P. Milanfar. RAISR: Rapid and accurate image super resolution. IEEE TCI, 2016
    • (2016) IEEE TCI
    • Romano, Y.1    Isidoro, J.2    Milanfar, P.3
  • 43
    • 44049111982 scopus 로고
    • Nonlinear total variation based noise removal algorithms
    • L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena, 60(1):259-268, 1992
    • (1992) Physica D: Nonlinear Phenomena , vol.60 , Issue.1 , pp. 259-268
    • Rudin, L.I.1    Osher, S.2    Fatemi, E.3
  • 45
    • 84959234116 scopus 로고    scopus 로고
    • Fast and accu-rate image upscaling with super-resolution forests
    • S. Schulter, C. Leistner, and H. Bischof. Fast and accu-rate image upscaling with super-resolution forests. In CVPR, 2015
    • (2015) CVPR
    • Schulter, S.1    Leistner, C.2    Bischof, H.3
  • 46
    • 85041924100 scopus 로고    scopus 로고
    • An information fidelity criterion for image quality assessment using natural scene statistics
    • H. R. Sheikh, A. C. Bovik, and G. Veciana. An information fidelity criterion for image quality assessment using natural scene statistics. IEEE TIP, 2005
    • (2005) IEEE TIP
    • Sheikh, H.R.1    Bovik, A.C.2    Veciana, G.3
  • 47
    • 84986308391 scopus 로고    scopus 로고
    • Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network
    • W. Shi, J. Caballero, F. Huszar, J. Totz, A. P. Aitken, R. Bishop, D. Rueckert, and Z. Wang. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In CVPR, 2016
    • (2016) CVPR
    • Shi, W.1    Caballero, J.2    Huszar, F.3    Totz, J.4    Aitken, A.P.5    Bishop, R.6    Rueckert, D.7    Wang, Z.8
  • 48
    • 84987623662 scopus 로고    scopus 로고
    • Local-and holisticstructure preserving image super resolution via deep joint component learning
    • Y. Shi, K. Wang, L. Xu, and L. Lin. Local-and holisticstructure preserving image super resolution via deep joint component learning. In ICME, 2016
    • (2016) ICME
    • Shi, Y.1    Wang, K.2    Xu, L.3    Lin, L.4
  • 49
    • 85083953063 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015
    • (2015) ICLR
    • Simonyan, K.1    Zisserman, A.2
  • 50
    • 77955992643 scopus 로고    scopus 로고
    • Super resolution using edge prior and single image detail synthesis
    • Y.-W. Tai, S. Liu, M. S. Brown, and S. Lin. Super resolution using edge prior and single image detail synthesis. In CVPR, 2010
    • (2010) CVPR
    • Tai, Y.-W.1    Liu, S.2    Brown, M.S.3    Lin, S.4
  • 51
    • 84932095280 scopus 로고    scopus 로고
    • A+: Adjusted anchored neighborhood regression for fast super-resolution
    • R. Timofte, V. Smet, and L. Van Gool. A+: Adjusted anchored neighborhood regression for fast super-resolution. In ACCV, 2014
    • (2014) ACCV
    • Timofte, R.1    Smet, V.2    Van Gool, L.3
  • 52
    • 84986249350 scopus 로고    scopus 로고
    • Seven ways to improve example-based single image super resolution
    • R. Timofte, R. Rothe, and L. Van Gool. Seven ways to improve example-based single image super resolution. In CVPR, 2016
    • (2016) CVPR
    • Timofte, R.1    Rothe, R.2    Van Gool, L.3
  • 53
    • 84998882079 scopus 로고    scopus 로고
    • Texture networks: Feed-forward synthesis of textures and stylized images
    • D. Ulyanov, V. Lebedev, A. Vedaldi, and V. Lempitsky. Texture networks: Feed-forward synthesis of textures and stylized images. In ICML, 2016
    • (2016) ICML
    • Ulyanov, D.1    Lebedev, V.2    Vedaldi, A.3    Lempitsky, V.4
  • 54
    • 1942436689 scopus 로고    scopus 로고
    • Image quality assessment: From error visibility to structural similarity
    • Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality assessment: from error visibility to structural similarity. IEEE TIP, 13(4):600-612, 2004
    • (2004) IEEE TIP , vol.13 , Issue.4 , pp. 600-612
    • Wang, Z.1    Bovik, A.C.2    Sheikh, H.R.3    Simoncelli, E.P.4
  • 55
    • 85041921041 scopus 로고    scopus 로고
    • Learning high-order filters for efficient blind deconvolution of document photographs
    • L. Xiao, J. Wang, W. Heidrich, and M. Hirsch. Learning high-order filters for efficient blind deconvolution of document photographs. In ECCV, 2016
    • (2016) ECCV
    • Xiao, L.1    Wang, J.2    Heidrich, W.3    Hirsch, M.4
  • 56
    • 84881006925 scopus 로고    scopus 로고
    • Exploiting selfsimilarities for single frame super-resolution
    • C.-Y. Yang, J.-B. Huang, and M.-H. Yang. Exploiting selfsimilarities for single frame super-resolution. In ACCV, 2010
    • (2010) ACCV
    • Yang, C.-Y.1    Huang, J.-B.2    Yang, M.-H.3
  • 57
    • 84955298423 scopus 로고    scopus 로고
    • Single-image superresolution: A benchmark
    • C.-Y. Yang, C. Ma, and M.-H. Yang. Single-image superresolution: a benchmark. In ECCV, 2014
    • (2014) ECCV
    • Yang, C.-Y.1    Ma, C.2    Yang, M.-H.3
  • 58
    • 84887347938 scopus 로고    scopus 로고
    • Fast image super-resolution based on in-place example regression
    • J. Yang, Z. Lin, and S. Cohen. Fast image super-resolution based on in-place example regression. In CVPR, 2013
    • (2013) CVPR
    • Yang, J.1    Lin, Z.2    Cohen, S.3
  • 59
    • 84864128043 scopus 로고    scopus 로고
    • Coupled dictionary training for image super-resolution
    • J. Yang, Z. Wang, Z. Lin, S. Cohen, and T. Huang. Coupled dictionary training for image super-resolution. IEEE TIP, 21(8):3467-3478, 2012
    • (2012) IEEE TIP , vol.21 , Issue.8 , pp. 3467-3478
    • Yang, J.1    Wang, Z.2    Lin, Z.3    Cohen, S.4    Huang, T.5
  • 60
    • 51949105499 scopus 로고    scopus 로고
    • Image superresolution as sparse representation of raw image patches
    • J. Yang, J. Wright, T. Huang, and Y. Ma. Image superresolution as sparse representation of raw image patches. In CVPR, 2008
    • (2008) CVPR
    • Yang, J.1    Wright, J.2    Huang, T.3    Ma, Y.4
  • 61
    • 78049312324 scopus 로고    scopus 로고
    • Image super-resolution via sparse representation
    • J. Yang, J. Wright, T. S. Huang, and Y. Ma. Image super-resolution via sparse representation. IEEE TIP, 19(11):2861-2873, 2010
    • (2010) IEEE TIP , vol.19 , Issue.11 , pp. 2861-2873
    • Yang, J.1    Wright, J.2    Huang, T.S.3    Ma, Y.4
  • 62
    • 85041903513 scopus 로고    scopus 로고
    • Ultra-resolving face images by discriminative generative networks
    • X. Yu and F. Porikli. Ultra-resolving face images by discriminative generative networks. In ECCV, 2016
    • (2016) ECCV
    • Yu, X.1    Porikli, F.2
  • 63
    • 84885148057 scopus 로고    scopus 로고
    • Landmark image super-resolution by retrieving web images
    • H. Yue, X. Sun, J. Yang, and F. Wu. Landmark image super-resolution by retrieving web images. IEEE TIP, 22(12):4865-4878, 2013
    • (2013) IEEE TIP , vol.22 , Issue.12 , pp. 4865-4878
    • Yue, H.1    Sun, X.2    Yang, J.3    Wu, F.4
  • 64
    • 84866719241 scopus 로고    scopus 로고
    • Multi-scale dictionary for single image super-resolution
    • K. Zhang, X. Gao, D. Tao, and X. Li. Multi-scale dictionary for single image super-resolution. In CVPR, 2012
    • (2012) CVPR
    • Zhang, K.1    Gao, X.2    Tao, D.3    Li, X.4
  • 66
    • 85030465393 scopus 로고    scopus 로고
    • Generative visual manipulation on the natural image manifold
    • J.-Y. Zhu, P. Krahenbuhl, E. Shechtman, and A. A. Efros. Generative visual manipulation on the natural image manifold. In ECCV, 2016
    • (2016) ECCV
    • Zhu, J.-Y.1    Krahenbuhl, P.2    Shechtman, E.3    Efros, A.A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.