-
1
-
-
84898409537
-
Lowcomplexity single-image super-resolution based on nonnegative neighbor embedding
-
5
-
C. M. Bevilacqua, A. Roumy, and M.-L. A. Morel. Lowcomplexity single-image super-resolution based on nonnegative neighbor embedding. In BMVC, 2012. 1, 5
-
(2012)
BMVC
, pp. 1
-
-
Bevilacqua, C.M.1
Roumy, A.2
Morel, M.-L.A.3
-
2
-
-
84962128851
-
Image super-resolution using deep convolutional networks
-
1, 2, 3, 6, 7, 8
-
C. Dong, C. Loy, K. He, and X. Tang. Image super-resolution using deep convolutional networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(2):295-307, 2016. 1, 2, 3, 6, 7, 8
-
(2016)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.38
, pp. 2295-2307
-
-
Dong, C.1
Loy, C.2
He, K.3
Tang, X.4
-
3
-
-
85030212408
-
Accelerating the superresolution convolutional neural network
-
C. Dong, C. Loy, and X. Tang. Accelerating the superresolution convolutional neural network. In ECCV, 2016. 8
-
(2016)
ECCV
, pp. 8
-
-
Dong, C.1
Loy, C.2
Tang, X.3
-
4
-
-
77953187337
-
Super-resolution from a single image
-
D. Glasner, S. Bagon, and M. Irani. Super-resolution from a single image. In ICCV, 2009. 1
-
(2009)
ICCV
, pp. 1
-
-
Glasner, D.1
Bagon, S.2
Irani, M.3
-
5
-
-
77956515664
-
Learning fast approximations of sparse coding
-
K. Gregor and Y. LeCun. Learning fast approximations of sparse coding. In ICML, 2010. 1
-
(2010)
ICML
, pp. 1
-
-
Gregor, K.1
LeCun, Y.2
-
6
-
-
85083950579
-
Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding
-
S. Han, H. Mao, and W. J. Dally. Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding. In ICLR, 2016. 2
-
(2016)
ICLR
, pp. 2
-
-
Han, S.1
Mao, H.2
Dally, W.J.3
-
7
-
-
84973911419
-
Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification
-
K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification. In ICCV, 2015. 5
-
(2015)
ICCV
, pp. 5
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
8
-
-
84986274465
-
Deep residual learning for image recognition
-
3, 4
-
K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR, 2016. 2, 3, 4
-
(2016)
CVPR
, pp. 2
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
10
-
-
84959188745
-
Single image superresolution from transformed self-exemplars
-
6, 7, 8
-
J.-B. Huang, A. Singh, and N. Ahuja. Single image superresolution from transformed self-exemplars. In CVPR, 2015. 5, 6, 7, 8
-
(2015)
CVPR
, pp. 5
-
-
Huang, J.-B.1
Singh, A.2
Ahuja, N.3
-
11
-
-
84969584486
-
Batch normalization: Accelerating deep network training by reducing internal covariate shift
-
4
-
S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In ICML, 2015. 2, 4
-
(2015)
ICML
, pp. 2
-
-
Ioffe, S.1
Szegedy, C.2
-
12
-
-
84913555165
-
-
arXiv: 1408.5093
-
Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture for fast feature embedding. arXiv:1408.5093, 2014. 5
-
(2014)
Caffe: Convolutional Architecture for Fast Feature Embedding
, pp. 5
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
Karayev, S.4
Long, J.5
Girshick, R.6
Guadarrama, S.7
Darrell, T.8
-
13
-
-
84986325587
-
Accurate image superresolution using very deep convolutional networks
-
2, 3, 5, 6, 7, 8
-
J. Kim, J. K. Lee, and K. M. Lee. Accurate image superresolution using very deep convolutional networks. In CVPR, 2016. 1, 2, 3, 5, 6, 7, 8
-
(2016)
CVPR
, pp. 1
-
-
Kim, J.1
Lee, J.K.2
Lee, K.M.3
-
14
-
-
84986253618
-
Deeply-recursive convolutional network for image super-resolution
-
2, 3, 4, 6, 8
-
J. Kim, J. K. Lee, and K. M. Lee. Deeply-recursive convolutional network for image super-resolution. In CVPR, 2016. 1, 2, 3, 4, 6, 8
-
(2016)
CVPR
, pp. 1
-
-
Kim, J.1
Lee, J.K.2
Lee, K.M.3
-
16
-
-
84959193001
-
Recurrent convolutional neural network for object recognition
-
8
-
M. Liang and X. Hu. Recurrent convolutional neural network for object recognition. In CVPR, 2015. 4, 8
-
(2015)
CVPR
, pp. 4
-
-
Liang, M.1
Hu, X.2
-
17
-
-
85018922091
-
Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections
-
2, 8
-
X.-J. Mao, C. Shen, and Y.-B. Yang. Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections. In NIPS, 2016. 1, 2, 8
-
(2016)
NIPS
, pp. 1
-
-
Mao, X.-J.1
Shen, C.2
Yang, Y.-B.3
-
18
-
-
0034850577
-
A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics
-
D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In ICCV, 2001. 5
-
(2001)
ICCV
, pp. 5
-
-
Martin, D.1
Fowlkes, C.2
Tal, D.3
Malik, J.4
-
19
-
-
77956509090
-
Rectified linear units improve restricted boltzmann machines
-
4
-
V. Nair and G. Hinton. Rectified linear units improve restricted boltzmann machines. In ICML, 2010. 2, 4
-
(2010)
ICML
, pp. 2
-
-
Nair, V.1
Hinton, G.2
-
20
-
-
84986292291
-
PSyCo: Manifold span reduction for super resolution
-
6, 7, 8
-
E. Perez-Pellitero, J. Salvador, J. Ruiz-Hidalgo, and B. Rosenhahn. PSyCo: Manifold span reduction for super resolution. In CVPR, 2016. 1, 6, 7, 8
-
(2016)
CVPR
, pp. 1
-
-
Perez-Pellitero, E.1
Salvador, J.2
Ruiz-Hidalgo, J.3
Rosenhahn, B.4
-
21
-
-
84909978410
-
-
arXiv: 1409.0575
-
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, and et al. ImageNet large scale visual recognition challenge. arXiv:1409.0575, 2014. 2
-
(2014)
ImageNet Large Scale Visual Recognition Challenge
, pp. 2
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
Krause, J.4
Satheesh, S.5
Ma, S.6
Huang, Z.7
Karpathy, A.8
Khosla, A.9
Bernstein, M.10
-
22
-
-
84973894713
-
Naive bayes superresolution forest
-
8
-
J. Salvador and E. Perez-Pellitero. Naive bayes superresolution forest. In ICCV, 2015. 1, 8
-
(2015)
ICCV
, pp. 1
-
-
Salvador, J.1
Perez-Pellitero, E.2
-
23
-
-
84959234116
-
Fast and accurate image upscaling with super-resolution forests
-
5, 6, 7, 8
-
S. Schulter, C. Leistner, and H. Bischof. Fast and accurate image upscaling with super-resolution forests. In CVPR, 2015. 1, 5, 6, 7, 8
-
(2015)
CVPR
, pp. 1
-
-
Schulter, S.1
Leistner, C.2
Bischof, H.3
-
24
-
-
28844464788
-
An information fidelity criterion for image quality assessment using natural scene statistics
-
6
-
H. Sheikh, A. Bovik, and G. de Veciana. An information fidelity criterion for image quality assessment using natural scene statistics. IEEE Transactions on image processing, 14(12):2117-2128, 2005. 6
-
(2005)
IEEE Transactions on Image Processing
, vol.14
, Issue.12
, pp. 2117-2128
-
-
Sheikh, H.1
Bovik, A.2
De Veciana, G.3
-
25
-
-
84986308391
-
Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network
-
2, 8
-
W. Shi, J. Caballero, F. Huszar, J. Totz, A. P. Aitken, R. Bishop, D. Rueckert, and Z. Wang. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In CVPR, 2016. 1, 2, 8
-
(2016)
CVPR
, pp. 1
-
-
Shi, W.1
Caballero, J.2
Huszar, F.3
Totz, J.4
Aitken, A.P.5
Bishop, R.6
Rueckert, D.7
Wang, Z.8
-
26
-
-
84893845487
-
Cardiac image super-resolution with global correspondence using multi-atlas patchmatch
-
W. Shi, J. Caballero, C. Ledig, X. Zhuang, W. Bai, K. Bhatia, A. Marvao, T. Dawes, D. Oregan, and D. Rueckert. Cardiac image super-resolution with global correspondence using multi-atlas patchmatch. In MICCAI, 2013. 1
-
(2013)
MICCAI
, pp. 1
-
-
Shi, W.1
Caballero, J.2
Ledig, C.3
Zhuang, X.4
Bai, W.5
Bhatia, K.6
Marvao, A.7
Dawes, T.8
Oregan, D.9
Rueckert, D.10
-
27
-
-
85083953063
-
Very deep convolutional networks for large-scale image recognition
-
K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015. 2
-
(2015)
ICLR
, pp. 2
-
-
Simonyan, K.1
Zisserman, A.2
-
28
-
-
84937522268
-
Going deeper with convolutions
-
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, and S. Reed. Going deeper with convolutions. In CVPR, 2015. 2
-
(2015)
CVPR
, pp. 2
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
-
29
-
-
33645710660
-
Subpixel mapping of rural land cover objects from fine spatial resolution satellite sensor imagery using super-resolution pixel-swapping
-
1
-
M. W. Thornton, P. M. Atkinson, and D. a. Holland. Subpixel mapping of rural land cover objects from fine spatial resolution satellite sensor imagery using super-resolution pixel-swapping. International Journal of Remote Sensing, 27(3):473-491, 2006. 1
-
(2006)
International Journal of Remote Sensing
, vol.27
, Issue.3
, pp. 473-491
-
-
Thornton, M.W.1
Atkinson, P.M.2
Holland, D.A.3
-
30
-
-
84986249350
-
Seven ways to improve example-based single image super resolution
-
8
-
R. Timofte, R. Rothe, and L. V. Gool. Seven ways to improve example-based single image super resolution. In CVPR, 2016. 5, 8
-
(2016)
CVPR
, pp. 5
-
-
Timofte, R.1
Rothe, R.2
Gool, L.V.3
-
31
-
-
84932095280
-
A+: Adjusted anchored neighborhood regression for fast super-resolution
-
8
-
R. Timofte, V. D. Smet, and L. V. Gool. A+: Adjusted anchored neighborhood regression for fast super-resolution. In ACCV, 2014. 1, 8
-
(2014)
ACCV
, pp. 1
-
-
Timofte, R.1
Smet, V.D.2
Gool, L.V.3
-
32
-
-
84973897612
-
Deep networks for image super-resolution with sparse prior
-
2, 8
-
Z. Wang, D. Liu, J. Yang, W. Han, and T. Huang. Deep networks for image super-resolution with sparse prior. In ICCV, 2015. 1, 2, 8
-
(2015)
ICCV
, pp. 1
-
-
Wang, Z.1
Liu, D.2
Yang, J.3
Han, W.4
Huang, T.5
-
33
-
-
84952028763
-
Self-tuned deep super resolution
-
Z. Wang, Y. Yang, Z. Wang, S. Chang, W. Han, J. Yang, and T. Huang. Self-tuned deep super resolution. In CVPR workshop, 2015. 8
-
(2015)
CVPR Workshop
, pp. 8
-
-
Wang, Z.1
Yang, Y.2
Wang, Z.3
Chang, S.4
Han, W.5
Yang, J.6
Huang, T.7
-
34
-
-
84955298423
-
Single-image superresolution: A benchmark
-
C.-Y. Yang, C. Ma, and M.-H. Yang. Single-image superresolution: A benchmark. In ECCV, 2014. 6
-
(2014)
ECCV
, pp. 6
-
-
Yang, C.-Y.1
Ma, C.2
Yang, M.-H.3
-
35
-
-
78049312324
-
Image superresolution via sparse representation
-
1, 5
-
J. Yang, J. Wright, T. Huang, and Y. Ma. Image superresolution via sparse representation. IEEE Transactions on image processing, 19(11):2861-2873, 2010. 1, 5
-
(2010)
IEEE Transactions on Image Processing
, vol.19
, pp. 112861-112873
-
-
Yang, J.1
Wright, J.2
Huang, T.3
Ma, Y.4
-
36
-
-
84855655878
-
On single image scaleup using sparse-representations
-
5
-
R. Zeyde, M. Elad, and M. Protter. On single image scaleup using sparse-representations. Curves and Surfaces, pages 711-730, 2012. 5
-
(2012)
Curves and Surfaces
, pp. 711-730
-
-
Zeyde, R.1
Elad, M.2
Protter, M.3
-
37
-
-
84255177518
-
Very low resolution face recognition problem
-
1
-
W. Zou and P. C. Yuen. Very low resolution face recognition problem. IEEE Transactions on image processing, 21(1):327-340, 2012. 1
-
(2012)
IEEE Transactions on Image Processing
, vol.21
, pp. 1327-1340
-
-
Zou, W.1
Yuen, P.C.2
|