메뉴 건너뛰기




Volumn 2017-January, Issue , 2017, Pages 2790-2798

Image super-resolution via deep recursive residual network

Author keywords

[No Author keywords available]

Indexed keywords

CONVOLUTION; NEURAL NETWORKS; OPTICAL RESOLVING POWER;

EID: 85041918798     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2017.298     Document Type: Conference Paper
Times cited : (2173)

References (37)
  • 1
    • 84898409537 scopus 로고    scopus 로고
    • Lowcomplexity single-image super-resolution based on nonnegative neighbor embedding
    • 5
    • C. M. Bevilacqua, A. Roumy, and M.-L. A. Morel. Lowcomplexity single-image super-resolution based on nonnegative neighbor embedding. In BMVC, 2012. 1, 5
    • (2012) BMVC , pp. 1
    • Bevilacqua, C.M.1    Roumy, A.2    Morel, M.-L.A.3
  • 3
    • 85030212408 scopus 로고    scopus 로고
    • Accelerating the superresolution convolutional neural network
    • C. Dong, C. Loy, and X. Tang. Accelerating the superresolution convolutional neural network. In ECCV, 2016. 8
    • (2016) ECCV , pp. 8
    • Dong, C.1    Loy, C.2    Tang, X.3
  • 4
    • 77953187337 scopus 로고    scopus 로고
    • Super-resolution from a single image
    • D. Glasner, S. Bagon, and M. Irani. Super-resolution from a single image. In ICCV, 2009. 1
    • (2009) ICCV , pp. 1
    • Glasner, D.1    Bagon, S.2    Irani, M.3
  • 5
    • 77956515664 scopus 로고    scopus 로고
    • Learning fast approximations of sparse coding
    • K. Gregor and Y. LeCun. Learning fast approximations of sparse coding. In ICML, 2010. 1
    • (2010) ICML , pp. 1
    • Gregor, K.1    LeCun, Y.2
  • 6
    • 85083950579 scopus 로고    scopus 로고
    • Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding
    • S. Han, H. Mao, and W. J. Dally. Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding. In ICLR, 2016. 2
    • (2016) ICLR , pp. 2
    • Han, S.1    Mao, H.2    Dally, W.J.3
  • 7
    • 84973911419 scopus 로고    scopus 로고
    • Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification
    • K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification. In ICCV, 2015. 5
    • (2015) ICCV , pp. 5
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 8
    • 84986274465 scopus 로고    scopus 로고
    • Deep residual learning for image recognition
    • 3, 4
    • K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR, 2016. 2, 3, 4
    • (2016) CVPR , pp. 2
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 10
    • 84959188745 scopus 로고    scopus 로고
    • Single image superresolution from transformed self-exemplars
    • 6, 7, 8
    • J.-B. Huang, A. Singh, and N. Ahuja. Single image superresolution from transformed self-exemplars. In CVPR, 2015. 5, 6, 7, 8
    • (2015) CVPR , pp. 5
    • Huang, J.-B.1    Singh, A.2    Ahuja, N.3
  • 11
    • 84969584486 scopus 로고    scopus 로고
    • Batch normalization: Accelerating deep network training by reducing internal covariate shift
    • 4
    • S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In ICML, 2015. 2, 4
    • (2015) ICML , pp. 2
    • Ioffe, S.1    Szegedy, C.2
  • 13
    • 84986325587 scopus 로고    scopus 로고
    • Accurate image superresolution using very deep convolutional networks
    • 2, 3, 5, 6, 7, 8
    • J. Kim, J. K. Lee, and K. M. Lee. Accurate image superresolution using very deep convolutional networks. In CVPR, 2016. 1, 2, 3, 5, 6, 7, 8
    • (2016) CVPR , pp. 1
    • Kim, J.1    Lee, J.K.2    Lee, K.M.3
  • 14
    • 84986253618 scopus 로고    scopus 로고
    • Deeply-recursive convolutional network for image super-resolution
    • 2, 3, 4, 6, 8
    • J. Kim, J. K. Lee, and K. M. Lee. Deeply-recursive convolutional network for image super-resolution. In CVPR, 2016. 1, 2, 3, 4, 6, 8
    • (2016) CVPR , pp. 1
    • Kim, J.1    Lee, J.K.2    Lee, K.M.3
  • 16
    • 84959193001 scopus 로고    scopus 로고
    • Recurrent convolutional neural network for object recognition
    • 8
    • M. Liang and X. Hu. Recurrent convolutional neural network for object recognition. In CVPR, 2015. 4, 8
    • (2015) CVPR , pp. 4
    • Liang, M.1    Hu, X.2
  • 17
    • 85018922091 scopus 로고    scopus 로고
    • Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections
    • 2, 8
    • X.-J. Mao, C. Shen, and Y.-B. Yang. Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections. In NIPS, 2016. 1, 2, 8
    • (2016) NIPS , pp. 1
    • Mao, X.-J.1    Shen, C.2    Yang, Y.-B.3
  • 18
    • 0034850577 scopus 로고    scopus 로고
    • A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics
    • D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In ICCV, 2001. 5
    • (2001) ICCV , pp. 5
    • Martin, D.1    Fowlkes, C.2    Tal, D.3    Malik, J.4
  • 19
    • 77956509090 scopus 로고    scopus 로고
    • Rectified linear units improve restricted boltzmann machines
    • 4
    • V. Nair and G. Hinton. Rectified linear units improve restricted boltzmann machines. In ICML, 2010. 2, 4
    • (2010) ICML , pp. 2
    • Nair, V.1    Hinton, G.2
  • 22
    • 84973894713 scopus 로고    scopus 로고
    • Naive bayes superresolution forest
    • 8
    • J. Salvador and E. Perez-Pellitero. Naive bayes superresolution forest. In ICCV, 2015. 1, 8
    • (2015) ICCV , pp. 1
    • Salvador, J.1    Perez-Pellitero, E.2
  • 23
    • 84959234116 scopus 로고    scopus 로고
    • Fast and accurate image upscaling with super-resolution forests
    • 5, 6, 7, 8
    • S. Schulter, C. Leistner, and H. Bischof. Fast and accurate image upscaling with super-resolution forests. In CVPR, 2015. 1, 5, 6, 7, 8
    • (2015) CVPR , pp. 1
    • Schulter, S.1    Leistner, C.2    Bischof, H.3
  • 24
    • 28844464788 scopus 로고    scopus 로고
    • An information fidelity criterion for image quality assessment using natural scene statistics
    • 6
    • H. Sheikh, A. Bovik, and G. de Veciana. An information fidelity criterion for image quality assessment using natural scene statistics. IEEE Transactions on image processing, 14(12):2117-2128, 2005. 6
    • (2005) IEEE Transactions on Image Processing , vol.14 , Issue.12 , pp. 2117-2128
    • Sheikh, H.1    Bovik, A.2    De Veciana, G.3
  • 25
    • 84986308391 scopus 로고    scopus 로고
    • Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network
    • 2, 8
    • W. Shi, J. Caballero, F. Huszar, J. Totz, A. P. Aitken, R. Bishop, D. Rueckert, and Z. Wang. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In CVPR, 2016. 1, 2, 8
    • (2016) CVPR , pp. 1
    • Shi, W.1    Caballero, J.2    Huszar, F.3    Totz, J.4    Aitken, A.P.5    Bishop, R.6    Rueckert, D.7    Wang, Z.8
  • 27
    • 85083953063 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015. 2
    • (2015) ICLR , pp. 2
    • Simonyan, K.1    Zisserman, A.2
  • 29
    • 33645710660 scopus 로고    scopus 로고
    • Subpixel mapping of rural land cover objects from fine spatial resolution satellite sensor imagery using super-resolution pixel-swapping
    • 1
    • M. W. Thornton, P. M. Atkinson, and D. a. Holland. Subpixel mapping of rural land cover objects from fine spatial resolution satellite sensor imagery using super-resolution pixel-swapping. International Journal of Remote Sensing, 27(3):473-491, 2006. 1
    • (2006) International Journal of Remote Sensing , vol.27 , Issue.3 , pp. 473-491
    • Thornton, M.W.1    Atkinson, P.M.2    Holland, D.A.3
  • 30
    • 84986249350 scopus 로고    scopus 로고
    • Seven ways to improve example-based single image super resolution
    • 8
    • R. Timofte, R. Rothe, and L. V. Gool. Seven ways to improve example-based single image super resolution. In CVPR, 2016. 5, 8
    • (2016) CVPR , pp. 5
    • Timofte, R.1    Rothe, R.2    Gool, L.V.3
  • 31
    • 84932095280 scopus 로고    scopus 로고
    • A+: Adjusted anchored neighborhood regression for fast super-resolution
    • 8
    • R. Timofte, V. D. Smet, and L. V. Gool. A+: Adjusted anchored neighborhood regression for fast super-resolution. In ACCV, 2014. 1, 8
    • (2014) ACCV , pp. 1
    • Timofte, R.1    Smet, V.D.2    Gool, L.V.3
  • 32
    • 84973897612 scopus 로고    scopus 로고
    • Deep networks for image super-resolution with sparse prior
    • 2, 8
    • Z. Wang, D. Liu, J. Yang, W. Han, and T. Huang. Deep networks for image super-resolution with sparse prior. In ICCV, 2015. 1, 2, 8
    • (2015) ICCV , pp. 1
    • Wang, Z.1    Liu, D.2    Yang, J.3    Han, W.4    Huang, T.5
  • 34
    • 84955298423 scopus 로고    scopus 로고
    • Single-image superresolution: A benchmark
    • C.-Y. Yang, C. Ma, and M.-H. Yang. Single-image superresolution: A benchmark. In ECCV, 2014. 6
    • (2014) ECCV , pp. 6
    • Yang, C.-Y.1    Ma, C.2    Yang, M.-H.3
  • 36
    • 84855655878 scopus 로고    scopus 로고
    • On single image scaleup using sparse-representations
    • 5
    • R. Zeyde, M. Elad, and M. Protter. On single image scaleup using sparse-representations. Curves and Surfaces, pages 711-730, 2012. 5
    • (2012) Curves and Surfaces , pp. 711-730
    • Zeyde, R.1    Elad, M.2    Protter, M.3
  • 37
    • 84255177518 scopus 로고    scopus 로고
    • Very low resolution face recognition problem
    • 1
    • W. Zou and P. C. Yuen. Very low resolution face recognition problem. IEEE Transactions on image processing, 21(1):327-340, 2012. 1
    • (2012) IEEE Transactions on Image Processing , vol.21 , pp. 1327-1340
    • Zou, W.1    Yuen, P.C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.