-
1
-
-
85032751363
-
Super-resolution image reconstruction: A technical overview
-
Park, S.C., Park, M.K., Kang, M.G.: Super-resolution image reconstruction: a technical overview. IEEE Sig. Process. Mag. 20, 21–36 (2003)
-
(2003)
IEEE Sig. Process. Mag.
, vol.20
, pp. 21-36
-
-
Park, S.C.1
Park, M.K.2
Kang, M.G.3
-
2
-
-
0035680137
-
Image magnification using level-set reconstruction
-
Morse, B.S., Schwartzwald, D.: Image magnification using level-set reconstruction. In: CVPR 2001, vol. 1, 1–333. IEEE (2001)
-
(2001)
IEEE
, vol.1
, pp. 1-333
-
-
Morse, B.S.1
Schwartzwald, D.2
-
3
-
-
36949039914
-
Image upsampling via imposed edge statistics
-
Fattal, R.: Image upsampling via imposed edge statistics. In: ACM Transactions on Graphics (TOG), vol. 26, p. 95. ACM (2007)
-
(2007)
ACM Transactions on Graphics (TOG
, vol.26
, pp. 95
-
-
Fattal, R.1
-
4
-
-
5044219639
-
Super-resolution through neighbor embedding
-
Chang, H., Yeung, D.Y., Xiong, Y.: Super-resolution through neighbor embedding. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2004, vol. 1, p. 1. IEEE (2004)
-
(2004)
Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2004
, vol.1
, pp. 1
-
-
Chang, H.1
Yeung, D.Y.2
Xiong, Y.3
-
5
-
-
77953187337
-
Super-resolution from a single image
-
Glasner, D., Bagon, S., Irani, M.: Super-resolution from a single image. In: ICCV 2009, pp. 349–356. IEEE (2009)
-
(2009)
IEEE
, pp. 349-356
-
-
Glasner, D.1
Bagon, S.2
Irani, M.3
-
6
-
-
78049312324
-
Image super-resolution via sparse representation
-
Yang, J., Wright, J., Huang, T.S., Ma, Y.: Image super-resolution via sparse representation. IEEE Trans. Image Process. 19, 2861–2873 (2010)
-
(2010)
IEEE Trans. Image Process.
, vol.19
, pp. 2861-2873
-
-
Yang, J.1
Wright, J.2
Huang, T.S.3
Ma, Y.4
-
7
-
-
84898792173
-
Anchored neighborhood regression for fast example-based super-resolution
-
Timofte, R., De Smet, V., Van Gool, L.: Anchored neighborhood regression for fast example-based super-resolution. In: 2013 IEEE International Conference on Computer Vision (ICCV), pp. 1920–1927. IEEE (2013)
-
(2013)
2013 IEEE International Conference on Computer Vision (ICCV)
, pp. 1920-1927
-
-
Timofte, R.1
De Smet, V.2
Van Gool, L.3
-
8
-
-
84962128851
-
Image super-resolution using deep convolutional networks
-
Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. TPAMI 38(2), 295–307 (2015)
-
(2015)
TPAMI
, vol.38
, Issue.2
, pp. 295-307
-
-
Dong, C.1
Loy, C.C.2
He, K.3
Tang, X.4
-
9
-
-
84959188745
-
Single image super-resolution from transformed self-exemplars
-
Huang, J.B., Singh, A., Ahuja, N.: Single image super-resolution from transformed self-exemplars. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5197–5206. IEEE (2015)
-
(2015)
2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
, pp. 5197-5206
-
-
Huang, J.B.1
Singh, A.2
Ahuja, N.3
-
10
-
-
84939788770
-
Learning super-resolution jointly from external and internal examples
-
Wang, Z., Yang, Y., Wang, Z., Chang, S., Yang, J., Huang, T.S.: Learning super-resolution jointly from external and internal examples. IEEE Trans. Image Process. 24, 4359–4371 (2015)
-
(2015)
IEEE Trans. Image Process.
, vol.24
, pp. 4359-4371
-
-
Wang, Z.1
Yang, Y.2
Wang, Z.3
Chang, S.4
Yang, J.5
Huang, T.S.6
-
11
-
-
84959234116
-
Fast and accurate image upscaling with super-resolution forests
-
Schulter, S., Leistner, C., Bischof, H.: Fast and accurate image upscaling with super-resolution forests. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3791–3799 (2015)
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 3791-3799
-
-
Schulter, S.1
Leistner, C.2
Bischof, H.3
-
12
-
-
84898409537
-
-
Bevilacqua, M., Roumy, A., Guillemot, C., Alberi-Morel, M.L.: Low-complexity single-image super-resolution based on nonnegative neighbor embedding (2012)
-
(2012)
Low-Complexity Single-Image Super-Resolution Based on Nonnegative Neighbor Embedding
-
-
Bevilacqua, M.1
Roumy, A.2
Guillemot, C.3
Alberi-Morel, M.L.4
-
13
-
-
84983684720
-
A+: Adjusted anchored neighborhood regression for fast super-resolution
-
Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.), Springer, Heidelberg
-
Timofte, R., De Smet, V., Van Gool, L.: A+: adjusted anchored neighborhood regression for fast super-resolution. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9006, pp. 111–126. Springer, Heidelberg (2015). doi:10.1007/978-3-319-16817-38
-
(2015)
ACCV 2014. LNCS
, vol.9006
, pp. 111-126
-
-
Timofte, R.1
De Smet, V.2
Van Gool, L.3
-
14
-
-
84959234961
-
Jointly optimized regressors for image super-resolution
-
Dai, D., Timofte, R., Van Gool, L.: Jointly optimized regressors for image super-resolution. In: Eurographics, vol. 7, p. 8 (2015)
-
(2015)
In: Eurographics
, vol.7
, pp. 8
-
-
Dai, D.1
Timofte, R.2
Van Gool, L.3
-
16
-
-
84906509108
-
Deep network cascade for image super-resolution
-
Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.), Springer, Heidelberg
-
Cui, Z., Chang, H., Shan, S., Zhong, B., Chen, X.: Deep network cascade for image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol.8693, pp. 49–64. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10602-14
-
(2014)
ECCV 2014. LNCS
, vol.8693
, pp. 49-64
-
-
Cui, Z.1
Chang, H.2
Shan, S.3
Zhong, B.4
Chen, X.5
-
17
-
-
84973897612
-
Deep networks for image super-resolution with sparse prior
-
Wang, Z., Liu, D., Yang, J., Han, W., Huang, T.: Deep networks for image super-resolution with sparse prior. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 370–378 (2015)
-
(2015)
Proceedings of the IEEE International Conference on Computer Vision
, pp. 370-378
-
-
Wang, Z.1
Liu, D.2
Yang, J.3
Han, W.4
Huang, T.5
-
18
-
-
84971529522
-
Robust single image super-resolution via deep networks with sparse prior
-
Liu, D., Wang, Z., Wen, B., Yang, J., Han, W., Huang, T.S.: Robust single image super-resolution via deep networks with sparse prior. IEEE Trans. Image Process. 25, 3194–3207 (2016)
-
(2016)
IEEE Trans. Image Process.
, vol.25
, pp. 3194-3207
-
-
Liu, D.1
Wang, Z.2
Wen, B.3
Yang, J.4
Han, W.5
Huang, T.S.6
-
20
-
-
84864128043
-
Coupled dictionary training for image super-resolution
-
Yang, J., Wang, Z., Lin, Z., Cohen, S., Huang, T.: Coupled dictionary training for image super-resolution. IEEE Trans. Image Process. 21, 3467–3478 (2012)
-
(2012)
IEEE Trans. Image Process.
, vol.21
, pp. 3467-3478
-
-
Yang, J.1
Wang, Z.2
Lin, Z.3
Cohen, S.4
Huang, T.5
-
21
-
-
84855655878
-
On single image scale-up using sparse-representations
-
Boissonnat, J.-D., Chenin, P., Cohen, A., Gout, C., Lyche, T., Mazure, M.-L., Schumaker, L. (eds.), Springer, Heidelberg
-
Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-representations. In: Boissonnat, J.-D., Chenin, P., Cohen, A., Gout, C., Lyche, T., Mazure, M.-L., Schumaker, L. (eds.) Curves and Surfaces 2010. LNCS, vol. 6920, pp. 711–730. Springer, Heidelberg (2012). doi:10.1007/978-3-642-27413-847
-
(2012)
Curves and Surfaces 2010. LNCS
, vol.6920
, pp. 711-730
-
-
Zeyde, R.1
Elad, M.2
Protter, M.3
-
22
-
-
0034850577
-
A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics
-
Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of the Eighth IEEE International Conference on Computer Vision, ICCV 2001, vol. 2, pp. 416–423. IEEE (2001)
-
(2001)
Proceedings of the Eighth IEEE International Conference on Computer Vision, ICCV 2001
, vol.2
, pp. 416-423
-
-
Martin, D.1
Fowlkes, C.2
Tal, D.3
Malik, J.4
-
23
-
-
84913580146
-
Caffe: Convolutional architecture for fast feature embedding
-
Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the ACM International Conference on Multimedia, pp. 675–678. ACM (2014)
-
(2014)
Proceedings of the ACM International Conference on Multimedia
, pp. 675-678
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
Karayev, S.4
Long, J.5
Girshick, R.6
Guadarrama, S.7
Darrell, T.8
-
24
-
-
1942436689
-
Image quality assessment: From error visibility to structural similarity
-
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600– 612 (2004)
-
(2004)
IEEE Trans. Image Process.
, vol.13
-
-
Wang, Z.1
Bovik, A.C.2
Sheikh, H.R.3
Simoncelli, E.P.4
-
25
-
-
84986331470
-
Studying very low resolution recognition using deep networks
-
Wang, Z., Chang, S., Yang, Y., Liu, D., Huang, T.: Studying very low resolution recognition using deep networks. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE (2016)
-
(2016)
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE
-
-
Wang, Z.1
Chang, S.2
Yang, Y.3
Liu, D.4
Huang, T.5
|