-
1
-
-
85020287843
-
A unique microglia type associated with restricting development of Alzheimer’s disease
-
COI: 1:CAS:528:DC%2BC2sXpslCqtbY%3D
-
Keren-Shaul, H. et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169, 1276–1290.e17 (2017)
-
(2017)
Cell
, vol.169
, pp. 1276-1290.e17
-
-
Keren-Shaul, H.1
-
2
-
-
85042524658
-
Single-cell RNA-seq of rheumatoid arthritis synovial tissue using low-cost microfluidic instrumentation
-
Stephenson, W. et al. Single-cell RNA-seq of rheumatoid arthritis synovial tissue using low-cost microfluidic instrumentation. Nat. Commun. 9, 791 (2018)
-
(2018)
Nat. Commun.
, vol.9
-
-
Stephenson, W.1
-
3
-
-
84984643819
-
Diffusion pseudotime robustly reconstructs lineage branching
-
COI: 1:CAS:528:DC%2BC28XhsVWrs7zI
-
Haghverdi, L., Büttner, M., Wolf, F. A., Buettner, F. & Theis, F. J. Diffusion pseudotime robustly reconstructs lineage branching. Nat. Methods 13, 845–848 (2016)
-
(2016)
Nat. Methods
, vol.13
, pp. 845-848
-
-
Haghverdi, L.1
Büttner, M.2
Wolf, F.A.3
Buettner, F.4
Theis, F.J.5
-
4
-
-
84924353105
-
Decoding the regulatory network of early blood development from single-cell gene expression measurements
-
COI: 1:CAS:528:DC%2BC2MXitlSgsbg%3D
-
Moignard, V. et al. Decoding the regulatory network of early blood development from single-cell gene expression measurements. Nat. Biotechnol. 33, 269–276 (2015)
-
(2015)
Nat. Biotechnol.
, vol.33
, pp. 269-276
-
-
Moignard, V.1
-
5
-
-
85033787094
-
Unsupervised trajectory analysis of single-cell rna-seq and imaging data reveals alternative tuft cell origins in the gut
-
COI: 1:CAS:528:DC%2BC1cXisVCgtbc%3D
-
Herring, C. A. et al. Unsupervised trajectory analysis of single-cell rna-seq and imaging data reveals alternative tuft cell origins in the gut. Cell Syst. 6, 37–51.e9 (2018)
-
(2018)
Cell Syst.
, vol.6
, pp. 37-51.e9
-
-
Herring, C.A.1
-
6
-
-
85053370500
-
Single-Cell Sequencing of the Healthy and Diseased Heart Reveals Ckap4 as a New Modulator of Fibroblasts Activation
-
Gladka, M. M. et al. Single-Cell Sequencing of the Healthy and Diseased Heart Reveals Ckap4 as a New Modulator of Fibroblasts Activation. Circulation 138, 166–180 (2018)
-
(2018)
Circulation
, vol.138
, pp. 166-180
-
-
Gladka, M.M.1
-
7
-
-
84923292191
-
Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells
-
COI: 1:CAS:528:DC%2BC2MXhtFKjsLs%3D
-
Buettner, F. et al. Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat. Biotechnol. 33, 155–160 (2015)
-
(2015)
Nat. Biotechnol.
, vol.33
, pp. 155-160
-
-
Buettner, F.1
-
8
-
-
85021816036
-
Normalizing single-cell RNA sequencing data: challenges and opportunities
-
COI: 1:CAS:528:DC%2BC2sXnslKkt7o%3D
-
Vallejos, C. A., Risso, D., Scialdone, A., Dudoit, S. & Marioni, J. C. Normalizing single-cell RNA sequencing data: challenges and opportunities. Nat. Methods 14, 565–571 (2017)
-
(2017)
Nat. Methods
, vol.14
, pp. 565-571
-
-
Vallejos, C.A.1
Risso, D.2
Scialdone, A.3
Dudoit, S.4
Marioni, J.C.5
-
9
-
-
84903574951
-
Bayesian approach to single-cell differential expression analysis
-
COI: 1:CAS:528:DC%2BC2cXotFCjs70%3D
-
Kharchenko, P. V., Silberstein, L. & Scadden, D. T. Bayesian approach to single-cell differential expression analysis. Nat. Methods 11, 740–742 (2014)
-
(2014)
Nat. Methods
, vol.11
, pp. 740-742
-
-
Kharchenko, P.V.1
Silberstein, L.2
Scadden, D.T.3
-
10
-
-
84929684999
-
Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets
-
COI: 1:CAS:528:DC%2BC2MXpt1Sgt7o%3D
-
Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015)
-
(2015)
Cell
, vol.161
, pp. 1202-1214
-
-
Macosko, E.Z.1
-
11
-
-
84929684998
-
Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells
-
COI: 1:CAS:528:DC%2BC2MXpt1SgtL0%3D
-
Klein, A. M. et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187–1201 (2015)
-
(2015)
Cell
, vol.161
, pp. 1187-1201
-
-
Klein, A.M.1
-
12
-
-
85009446777
-
Massively parallel digital transcriptional profiling of single cells
-
COI: 1:CAS:528:DC%2BC2sXht1WlsLo%3D
-
Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017)
-
(2017)
Nat. Commun.
, vol.8
-
-
Zheng, G.X.Y.1
-
13
-
-
85041430720
-
Single cells make big data: New challenges and opportunities in transcriptomics
-
Angerer, P. et al. Single cells make big data: New challenges and opportunities in transcriptomics. Curr. Opin. Syst. Biol. 4, 85–91 (2017)
-
(2017)
Curr. Opin. Syst. Biol.
, vol.4
, pp. 85-91
-
-
Angerer, P.1
-
14
-
-
85054726691
-
Missing data and technical variability in single-cell RNA-sequencing experiments
-
Hicks, S. C., William Townes, F., Teng, M. & Irizarry, R. A. Missing data and technical variability in single-cell RNA-sequencing experiments. Biostatistics 19, 562–578 (2018)
-
(2018)
Biostatistics
, vol.19
, pp. 562-578
-
-
Hicks, S.C.1
William Townes, F.2
Teng, M.3
Irizarry, R.A.4
-
16
-
-
84903154900
-
From heuristic optimization to dictionary learning: a review and comprehensive comparison of image denoising algorithms
-
Shao, L., Yan, R., Li, X. & Liu, Y. From heuristic optimization to dictionary learning: a review and comprehensive comparison of image denoising algorithms. IEEE Trans. Cybern. 44, 1001–1013 (2014)
-
(2014)
IEEE Trans. Cybern.
, vol.44
, pp. 1001-1013
-
-
Shao, L.1
Yan, R.2
Li, X.3
Liu, Y.4
-
17
-
-
85045320368
-
Manifold learning-based methods for analyzing single-cell RNA-sequencing data
-
Moon, K. R. et al. Manifold learning-based methods for analyzing single-cell RNA-sequencing data. Curr. Opin. Syst. Biol. 7, 36–46 (2018)
-
(2018)
Curr. Opin. Syst. Biol.
, vol.7
, pp. 36-46
-
-
Moon, K.R.1
-
18
-
-
85048260187
-
Bayesian inference for single-cell clustering and imputing
-
Azizi, E., Prabhakaran, S., Carr, A. & Pe’er, D. Bayesian inference for single-cell clustering and imputing. Genom. Comput. Biol. 3, 46 (2017)
-
(2017)
Genom. Comput. Biol.
, vol.3
, pp. 46
-
-
Azizi, E.1
Prabhakaran, S.2
Carr, A.3
Pe’er, D.4
-
19
-
-
85042152598
-
netSmooth: network-smoothing based imputation for single cell RNA-seq
-
Ronen, J. & Akalin, A. netSmooth: network-smoothing based imputation for single cell RNA-seq. F1000Res. 7, 8 (2018)
-
(2018)
F1000Res.
, vol.7
, pp. 8
-
-
Ronen, J.1
Akalin, A.2
-
21
-
-
85048974018
-
SAVER: gene expression recovery for single-cell RNA sequencing
-
COI: 1:CAS:528:DC%2BC1cXht1WqsLrL
-
Huang, M. et al. SAVER: gene expression recovery for single-cell RNA sequencing. Nat. Methods 15, 539–542 (2018)
-
(2018)
Nat. Methods
, vol.15
, pp. 539-542
-
-
Huang, M.1
-
22
-
-
85045314028
-
An accurate and robust imputation method scImpute for single-cell RNA-seq data
-
Li, W. V. & Li, J. J. An accurate and robust imputation method scImpute for single-cell RNA-seq data. Nat. Commun. 9, 997 (2018)
-
(2018)
Nat. Commun.
, vol.9
-
-
Li, W.V.1
Li, J.J.2
-
23
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
COI: 1:CAS:528:DC%2BD28Xnt1KntrY%3D
-
Hinton, G. E. Reducing the dimensionality of data with neural networks. Science 313, 504–507 (2006)
-
(2006)
Science
, vol.313
, pp. 504-507
-
-
Hinton, G.E.1
-
26
-
-
84991259184
-
ADAGE-based integration of publicly available pseudomonas aeruginosa gene expression data with denoising autoencoders illuminates microbe-host interactions
-
Tan, J., Hammond, J. H., Hogan, D. A. & Greene, C. S. ADAGE-based integration of publicly available pseudomonas aeruginosa gene expression data with denoising autoencoders illuminates microbe-host interactions. MSystems 1, e00025 (2016)
-
(2016)
Msystems
, vol.1
-
-
Tan, J.1
Hammond, J.H.2
Hogan, D.A.3
Greene, C.S.4
-
27
-
-
84981263658
-
IPMiner: hidden ncRNA-protein interaction sequential pattern mining with stacked autoencoder for accurate computational prediction
-
Pan, X., Fan, Y.-X., Yan, J. & Shen, H.-B. IPMiner: hidden ncRNA-protein interaction sequential pattern mining with stacked autoencoder for accurate computational prediction. BMC Genom. 17, 582 (2016)
-
(2016)
BMC Genom.
, vol.17
-
-
Pan, X.1
Fan, Y.X.2
Yan, J.3
Shen, H.B.4
-
28
-
-
85048499332
-
Extracting a biologically relevant latent space from cancer transcriptomes with variational autoencoders
-
PID: 29218871
-
Way, G. P. & Greene, C. S. Extracting a biologically relevant latent space from cancer transcriptomes with variational autoencoders. Pac. Symp. Biocomput. 23, 80–91 (2018)
-
(2018)
Pac. Symp. Biocomput.
, vol.23
, pp. 80-91
-
-
Way, G.P.1
Greene, C.S.2
-
29
-
-
85047423831
-
Interpretable dimensionality reduction of single cell transcriptome data with deep generative models
-
Ding, J., Condon, A. E. & Shah, S. P. Interpretable dimensionality reduction of single cell transcriptome data with deep generative models. Nat. Commun. 9, 2002 (2018)
-
(2018)
Nat. Commun.
, vol.9
, Issue.2002
-
-
Ding, J.1
Condon, A.E.2
Shah, S.P.3
-
30
-
-
85040785722
-
A general and flexible method for signal extraction from single-cell RNA-seq data
-
Risso, D., Perraudeau, F., Gribkova, S., Dudoit, S. & Vert, J.-P. A general and flexible method for signal extraction from single-cell RNA-seq data. Nat. Commun. 9, 284 (2018)
-
(2018)
Nat. Commun.
, vol.9
-
-
Risso, D.1
Perraudeau, F.2
Gribkova, S.3
Dudoit, S.4
Vert, J.P.5
-
31
-
-
85060529625
-
-
Lopez, R., Regier, J., Cole, M. B., Jordan, M. & Yosef, N. Bayesian inference for a generative model of transcriptome profiles from single-cell RNA sequencing. Preprint at bioRxiv https://doi.org/10.1101/292037 (2018)
-
(2018)
Bayesian Inference for a Generative Model of Transcriptome Profiles from Single-Cell RNA Sequencing
-
-
Lopez, R.1
Regier, J.2
Cole, M.B.3
Jordan, M.4
Yosef, N.5
-
32
-
-
85047931125
-
UMI-count modeling and differential expression analysis for single-cell RNA sequencing
-
Chen, W. et al. UMI-count modeling and differential expression analysis for single-cell RNA sequencing. Genome Biol. 19, 70 (2018)
-
(2018)
Genome Biol.
, vol.19
-
-
Chen, W.1
-
33
-
-
85041394976
-
SCANPY: large-scale single-cell gene expression data analysis
-
Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018)
-
(2018)
Genome Biol.
, vol.19
-
-
Wolf, F.A.1
Angerer, P.2
Theis, F.J.3
-
34
-
-
85029212828
-
Splatter: simulation of single-cell RNA sequencing data
-
Zappia, L., Phipson, B. & Oshlack, A. Splatter: simulation of single-cell RNA sequencing data. Genome Biol. 18, 174 (2017)
-
(2017)
Genome Biol.
, vol.18
-
-
Zappia, L.1
Phipson, B.2
Oshlack, A.3
-
35
-
-
84950290139
-
Transcriptional heterogeneity and lineage commitment in myeloid progenitors
-
COI: 1:CAS:528:DC%2BC2MXhvFagur7P
-
Paul, F. et al. Transcriptional heterogeneity and lineage commitment in myeloid progenitors. Cell 163, 1663–1677 (2015)
-
(2015)
Cell
, vol.163
, pp. 1663-1677
-
-
Paul, F.1
-
36
-
-
84892367295
-
The effects of genetic variation on gene expression dynamics during development
-
Francesconi, M. & Lehner, B. The effects of genetic variation on gene expression dynamics during development. Nature 505, 208–211 (2013)
-
(2013)
Nature
, vol.505
, pp. 208-211
-
-
Francesconi, M.1
Lehner, B.2
-
37
-
-
84923647450
-
Computational and analytical challenges in single-cell transcriptomics
-
COI: 1:CAS:528:DC%2BC2MXhs1Shur4%3D
-
Stegle, O., Teichmann, S. A. & Marioni, J. C. Computational and analytical challenges in single-cell transcriptomics. Nat. Rev. Genet. 16, 133–145 (2015)
-
(2015)
Nat. Rev. Genet.
, vol.16
, pp. 133-145
-
-
Stegle, O.1
Teichmann, S.A.2
Marioni, J.C.3
-
38
-
-
84989905707
-
The time-resolved transcriptome of C. elegans
-
COI: 1:CAS:528:DC%2BC28XhvFyru7rP
-
Boeck, M. E. et al. The time-resolved transcriptome of C. elegans. Genome Res. 26, 1441–1450 (2016)
-
(2016)
Genome Res.
, vol.26
, pp. 1441-1450
-
-
Boeck, M.E.1
-
39
-
-
84982085158
-
Single-cell RNA-seq reveals novel regulators of human embryonic stem cell differentiation to definitive endoderm
-
Chu, L.-F. et al. Single-cell RNA-seq reveals novel regulators of human embryonic stem cell differentiation to definitive endoderm. Genome Biol. 17, 173 (2016)
-
(2016)
Genome Biol.
, vol.17
-
-
Chu, L.F.1
-
40
-
-
84924629414
-
Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
-
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014)
-
(2014)
Genome Biol.
, vol.15
-
-
Love, M.I.1
Huber, W.2
Anders, S.3
-
41
-
-
0031935539
-
Stra3/lefty, a retinoic acid-inducible novel member of the transforming growth factor-beta superfamily
-
COI: 1:CAS:528:DyaK1cXhtlakt7o%3D, PID: 9496783
-
Oulad-Abdelghani, M. et al. Stra3/lefty, a retinoic acid-inducible novel member of the transforming growth factor-beta superfamily. Int. J. Dev. Biol. 42, 23–32 (1998)
-
(1998)
Int. J. Dev. Biol.
, vol.42
, pp. 23-32
-
-
Oulad-Abdelghani, M.1
-
42
-
-
79952153009
-
Targeting SOX17 in human embryonic stem cells creates unique strategies for isolating and analyzing developing endoderm
-
Wang, P., Rodriguez, R. T., Wang, J., Ghodasara, A. & Kim, S. K. Targeting SOX17 in human embryonic stem cells creates unique strategies for isolating and analyzing developing endoderm. Cell. Stem. Cell. 8, 335–346 (2011)
-
(2011)
Cell. Stem. Cell.
, vol.8
, pp. 335-346
-
-
Wang, P.1
Rodriguez, R.T.2
Wang, J.3
Ghodasara, A.4
Kim, S.K.5
-
43
-
-
85028316331
-
Simultaneous epitope and transcriptome measurement in single cells
-
COI: 1:CAS:528:DC%2BC2sXht1CkurzK
-
Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14, 865–868 (2017)
-
(2017)
Nat. Methods
, vol.14
, pp. 865-868
-
-
Stoeckius, M.1
-
44
-
-
85060536189
-
-
Genomics, 10x. 1.3 Million Brain Cells from E18 Mice
-
Genomics, 10x. 1.3 Million Brain Cells from E18 Mice https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.3.0/1M_neurons (2017)
-
(2017)
-
-
-
45
-
-
80051505603
-
Hierarchical differentiation of myeloid progenitors is encoded in the transcription factor network
-
COI: 1:CAS:528:DC%2BC3MXhtFCjsL3E
-
Krumsiek, J., Marr, C., Schroeder, T. & Theis, F. J. Hierarchical differentiation of myeloid progenitors is encoded in the transcription factor network. PLoS One 6, e22649 (2011)
-
(2011)
PLoS One
, vol.6
-
-
Krumsiek, J.1
Marr, C.2
Schroeder, T.3
Theis, F.J.4
-
46
-
-
39349096526
-
Hematopoiesis: an evolving paradigm for stem cell biology
-
COI: 1:CAS:528:DC%2BD1cXivVagtrk%3D
-
Orkin, S. H. & Zon, L. I. Hematopoiesis: an evolving paradigm for stem cell biology. Cell 132, 631–644 (2008)
-
(2008)
Cell
, vol.132
, pp. 631-644
-
-
Orkin, S.H.1
Zon, L.I.2
-
47
-
-
84887109584
-
Accounting for technical noise in single-cell RNA-seq experiments
-
COI: 1:CAS:528:DC%2BC3sXhsVyqtb3L
-
Brennecke, P. et al. Accounting for technical noise in single-cell RNA-seq experiments. Nat. Methods 10, 1093–1095 (2013)
-
(2013)
Nat. Methods
, vol.10
, pp. 1093-1095
-
-
Brennecke, P.1
-
49
-
-
84936803955
-
Normalization and noise reduction for single cell RNA-seq experiments
-
COI: 1:CAS:528:DC%2BC28XhtlamsrbM
-
Ding, B. et al. Normalization and noise reduction for single cell RNA-seq experiments. Bioinformatics 31, 2225–2227 (2015)
-
(2015)
Bioinformatics
, vol.31
, pp. 2225-2227
-
-
Ding, B.1
-
50
-
-
85037364770
-
Granatum: a graphical single-cell RNA-Seq analysis pipeline for genomics scientists
-
Zhu, X. et al. Granatum: a graphical single-cell RNA-Seq analysis pipeline for genomics scientists. Genome Med. 9, 108 (2017)
-
(2017)
Genome Med.
, vol.9
-
-
Zhu, X.1
-
51
-
-
84930630277
-
Deep learning
-
COI: 1:CAS:528:DC%2BC2MXht1WlurzP
-
LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015)
-
(2015)
Nature
, vol.521
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
52
-
-
84938378229
-
Hyperopt: a Python library for model selection and hyperparameter optimization
-
Bergstra, J., Komer, B., Eliasmith, C., Yamins, D. & Cox, D. D. Hyperopt: a Python library for model selection and hyperparameter optimization. Comput. Sci. Discov. 8, 014008 (2015)
-
(2015)
Comput. Sci. Discov.
, vol.8
, pp. 014008
-
-
Bergstra, J.1
Komer, B.2
Eliasmith, C.3
Yamins, D.4
Cox, D.D.5
-
53
-
-
85060524341
-
-
Keras. Github
-
Chollet, F. Keras. Github https://github.com/fchollet/keras (2015)
-
(2015)
-
-
Chollet, F.1
|