메뉴 건너뛰기




Volumn 10, Issue 1, 2019, Pages

Single-cell RNA-seq denoising using a deep count autoencoder

Author keywords

[No Author keywords available]

Indexed keywords

SMALL CYTOPLASMIC RNA; RNA;

EID: 85060401600     PISSN: None     EISSN: 20411723     Source Type: Journal    
DOI: 10.1038/s41467-018-07931-2     Document Type: Article
Times cited : (661)

References (54)
  • 1
    • 85020287843 scopus 로고    scopus 로고
    • A unique microglia type associated with restricting development of Alzheimer’s disease
    • COI: 1:CAS:528:DC%2BC2sXpslCqtbY%3D
    • Keren-Shaul, H. et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169, 1276–1290.e17 (2017)
    • (2017) Cell , vol.169 , pp. 1276-1290.e17
    • Keren-Shaul, H.1
  • 2
    • 85042524658 scopus 로고    scopus 로고
    • Single-cell RNA-seq of rheumatoid arthritis synovial tissue using low-cost microfluidic instrumentation
    • Stephenson, W. et al. Single-cell RNA-seq of rheumatoid arthritis synovial tissue using low-cost microfluidic instrumentation. Nat. Commun. 9, 791 (2018)
    • (2018) Nat. Commun. , vol.9
    • Stephenson, W.1
  • 3
    • 84984643819 scopus 로고    scopus 로고
    • Diffusion pseudotime robustly reconstructs lineage branching
    • COI: 1:CAS:528:DC%2BC28XhsVWrs7zI
    • Haghverdi, L., Büttner, M., Wolf, F. A., Buettner, F. & Theis, F. J. Diffusion pseudotime robustly reconstructs lineage branching. Nat. Methods 13, 845–848 (2016)
    • (2016) Nat. Methods , vol.13 , pp. 845-848
    • Haghverdi, L.1    Büttner, M.2    Wolf, F.A.3    Buettner, F.4    Theis, F.J.5
  • 4
    • 84924353105 scopus 로고    scopus 로고
    • Decoding the regulatory network of early blood development from single-cell gene expression measurements
    • COI: 1:CAS:528:DC%2BC2MXitlSgsbg%3D
    • Moignard, V. et al. Decoding the regulatory network of early blood development from single-cell gene expression measurements. Nat. Biotechnol. 33, 269–276 (2015)
    • (2015) Nat. Biotechnol. , vol.33 , pp. 269-276
    • Moignard, V.1
  • 5
    • 85033787094 scopus 로고    scopus 로고
    • Unsupervised trajectory analysis of single-cell rna-seq and imaging data reveals alternative tuft cell origins in the gut
    • COI: 1:CAS:528:DC%2BC1cXisVCgtbc%3D
    • Herring, C. A. et al. Unsupervised trajectory analysis of single-cell rna-seq and imaging data reveals alternative tuft cell origins in the gut. Cell Syst. 6, 37–51.e9 (2018)
    • (2018) Cell Syst. , vol.6 , pp. 37-51.e9
    • Herring, C.A.1
  • 6
    • 85053370500 scopus 로고    scopus 로고
    • Single-Cell Sequencing of the Healthy and Diseased Heart Reveals Ckap4 as a New Modulator of Fibroblasts Activation
    • Gladka, M. M. et al. Single-Cell Sequencing of the Healthy and Diseased Heart Reveals Ckap4 as a New Modulator of Fibroblasts Activation. Circulation 138, 166–180 (2018)
    • (2018) Circulation , vol.138 , pp. 166-180
    • Gladka, M.M.1
  • 7
    • 84923292191 scopus 로고    scopus 로고
    • Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells
    • COI: 1:CAS:528:DC%2BC2MXhtFKjsLs%3D
    • Buettner, F. et al. Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat. Biotechnol. 33, 155–160 (2015)
    • (2015) Nat. Biotechnol. , vol.33 , pp. 155-160
    • Buettner, F.1
  • 8
    • 85021816036 scopus 로고    scopus 로고
    • Normalizing single-cell RNA sequencing data: challenges and opportunities
    • COI: 1:CAS:528:DC%2BC2sXnslKkt7o%3D
    • Vallejos, C. A., Risso, D., Scialdone, A., Dudoit, S. & Marioni, J. C. Normalizing single-cell RNA sequencing data: challenges and opportunities. Nat. Methods 14, 565–571 (2017)
    • (2017) Nat. Methods , vol.14 , pp. 565-571
    • Vallejos, C.A.1    Risso, D.2    Scialdone, A.3    Dudoit, S.4    Marioni, J.C.5
  • 9
    • 84903574951 scopus 로고    scopus 로고
    • Bayesian approach to single-cell differential expression analysis
    • COI: 1:CAS:528:DC%2BC2cXotFCjs70%3D
    • Kharchenko, P. V., Silberstein, L. & Scadden, D. T. Bayesian approach to single-cell differential expression analysis. Nat. Methods 11, 740–742 (2014)
    • (2014) Nat. Methods , vol.11 , pp. 740-742
    • Kharchenko, P.V.1    Silberstein, L.2    Scadden, D.T.3
  • 10
    • 84929684999 scopus 로고    scopus 로고
    • Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets
    • COI: 1:CAS:528:DC%2BC2MXpt1Sgt7o%3D
    • Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015)
    • (2015) Cell , vol.161 , pp. 1202-1214
    • Macosko, E.Z.1
  • 11
    • 84929684998 scopus 로고    scopus 로고
    • Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells
    • COI: 1:CAS:528:DC%2BC2MXpt1SgtL0%3D
    • Klein, A. M. et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187–1201 (2015)
    • (2015) Cell , vol.161 , pp. 1187-1201
    • Klein, A.M.1
  • 12
    • 85009446777 scopus 로고    scopus 로고
    • Massively parallel digital transcriptional profiling of single cells
    • COI: 1:CAS:528:DC%2BC2sXht1WlsLo%3D
    • Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017)
    • (2017) Nat. Commun. , vol.8
    • Zheng, G.X.Y.1
  • 13
    • 85041430720 scopus 로고    scopus 로고
    • Single cells make big data: New challenges and opportunities in transcriptomics
    • Angerer, P. et al. Single cells make big data: New challenges and opportunities in transcriptomics. Curr. Opin. Syst. Biol. 4, 85–91 (2017)
    • (2017) Curr. Opin. Syst. Biol. , vol.4 , pp. 85-91
    • Angerer, P.1
  • 14
    • 85054726691 scopus 로고    scopus 로고
    • Missing data and technical variability in single-cell RNA-sequencing experiments
    • Hicks, S. C., William Townes, F., Teng, M. & Irizarry, R. A. Missing data and technical variability in single-cell RNA-sequencing experiments. Biostatistics 19, 562–578 (2018)
    • (2018) Biostatistics , vol.19 , pp. 562-578
    • Hicks, S.C.1    William Townes, F.2    Teng, M.3    Irizarry, R.A.4
  • 16
    • 84903154900 scopus 로고    scopus 로고
    • From heuristic optimization to dictionary learning: a review and comprehensive comparison of image denoising algorithms
    • Shao, L., Yan, R., Li, X. & Liu, Y. From heuristic optimization to dictionary learning: a review and comprehensive comparison of image denoising algorithms. IEEE Trans. Cybern. 44, 1001–1013 (2014)
    • (2014) IEEE Trans. Cybern. , vol.44 , pp. 1001-1013
    • Shao, L.1    Yan, R.2    Li, X.3    Liu, Y.4
  • 17
    • 85045320368 scopus 로고    scopus 로고
    • Manifold learning-based methods for analyzing single-cell RNA-sequencing data
    • Moon, K. R. et al. Manifold learning-based methods for analyzing single-cell RNA-sequencing data. Curr. Opin. Syst. Biol. 7, 36–46 (2018)
    • (2018) Curr. Opin. Syst. Biol. , vol.7 , pp. 36-46
    • Moon, K.R.1
  • 19
    • 85042152598 scopus 로고    scopus 로고
    • netSmooth: network-smoothing based imputation for single cell RNA-seq
    • Ronen, J. & Akalin, A. netSmooth: network-smoothing based imputation for single cell RNA-seq. F1000Res. 7, 8 (2018)
    • (2018) F1000Res. , vol.7 , pp. 8
    • Ronen, J.1    Akalin, A.2
  • 21
    • 85048974018 scopus 로고    scopus 로고
    • SAVER: gene expression recovery for single-cell RNA sequencing
    • COI: 1:CAS:528:DC%2BC1cXht1WqsLrL
    • Huang, M. et al. SAVER: gene expression recovery for single-cell RNA sequencing. Nat. Methods 15, 539–542 (2018)
    • (2018) Nat. Methods , vol.15 , pp. 539-542
    • Huang, M.1
  • 22
    • 85045314028 scopus 로고    scopus 로고
    • An accurate and robust imputation method scImpute for single-cell RNA-seq data
    • Li, W. V. & Li, J. J. An accurate and robust imputation method scImpute for single-cell RNA-seq data. Nat. Commun. 9, 997 (2018)
    • (2018) Nat. Commun. , vol.9
    • Li, W.V.1    Li, J.J.2
  • 23
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • COI: 1:CAS:528:DC%2BD28Xnt1KntrY%3D
    • Hinton, G. E. Reducing the dimensionality of data with neural networks. Science 313, 504–507 (2006)
    • (2006) Science , vol.313 , pp. 504-507
    • Hinton, G.E.1
  • 26
    • 84991259184 scopus 로고    scopus 로고
    • ADAGE-based integration of publicly available pseudomonas aeruginosa gene expression data with denoising autoencoders illuminates microbe-host interactions
    • Tan, J., Hammond, J. H., Hogan, D. A. & Greene, C. S. ADAGE-based integration of publicly available pseudomonas aeruginosa gene expression data with denoising autoencoders illuminates microbe-host interactions. MSystems 1, e00025 (2016)
    • (2016) Msystems , vol.1
    • Tan, J.1    Hammond, J.H.2    Hogan, D.A.3    Greene, C.S.4
  • 27
    • 84981263658 scopus 로고    scopus 로고
    • IPMiner: hidden ncRNA-protein interaction sequential pattern mining with stacked autoencoder for accurate computational prediction
    • Pan, X., Fan, Y.-X., Yan, J. & Shen, H.-B. IPMiner: hidden ncRNA-protein interaction sequential pattern mining with stacked autoencoder for accurate computational prediction. BMC Genom. 17, 582 (2016)
    • (2016) BMC Genom. , vol.17
    • Pan, X.1    Fan, Y.X.2    Yan, J.3    Shen, H.B.4
  • 28
    • 85048499332 scopus 로고    scopus 로고
    • Extracting a biologically relevant latent space from cancer transcriptomes with variational autoencoders
    • PID: 29218871
    • Way, G. P. & Greene, C. S. Extracting a biologically relevant latent space from cancer transcriptomes with variational autoencoders. Pac. Symp. Biocomput. 23, 80–91 (2018)
    • (2018) Pac. Symp. Biocomput. , vol.23 , pp. 80-91
    • Way, G.P.1    Greene, C.S.2
  • 29
    • 85047423831 scopus 로고    scopus 로고
    • Interpretable dimensionality reduction of single cell transcriptome data with deep generative models
    • Ding, J., Condon, A. E. & Shah, S. P. Interpretable dimensionality reduction of single cell transcriptome data with deep generative models. Nat. Commun. 9, 2002 (2018)
    • (2018) Nat. Commun. , vol.9 , Issue.2002
    • Ding, J.1    Condon, A.E.2    Shah, S.P.3
  • 30
    • 85040785722 scopus 로고    scopus 로고
    • A general and flexible method for signal extraction from single-cell RNA-seq data
    • Risso, D., Perraudeau, F., Gribkova, S., Dudoit, S. & Vert, J.-P. A general and flexible method for signal extraction from single-cell RNA-seq data. Nat. Commun. 9, 284 (2018)
    • (2018) Nat. Commun. , vol.9
    • Risso, D.1    Perraudeau, F.2    Gribkova, S.3    Dudoit, S.4    Vert, J.P.5
  • 32
    • 85047931125 scopus 로고    scopus 로고
    • UMI-count modeling and differential expression analysis for single-cell RNA sequencing
    • Chen, W. et al. UMI-count modeling and differential expression analysis for single-cell RNA sequencing. Genome Biol. 19, 70 (2018)
    • (2018) Genome Biol. , vol.19
    • Chen, W.1
  • 33
    • 85041394976 scopus 로고    scopus 로고
    • SCANPY: large-scale single-cell gene expression data analysis
    • Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018)
    • (2018) Genome Biol. , vol.19
    • Wolf, F.A.1    Angerer, P.2    Theis, F.J.3
  • 34
    • 85029212828 scopus 로고    scopus 로고
    • Splatter: simulation of single-cell RNA sequencing data
    • Zappia, L., Phipson, B. & Oshlack, A. Splatter: simulation of single-cell RNA sequencing data. Genome Biol. 18, 174 (2017)
    • (2017) Genome Biol. , vol.18
    • Zappia, L.1    Phipson, B.2    Oshlack, A.3
  • 35
    • 84950290139 scopus 로고    scopus 로고
    • Transcriptional heterogeneity and lineage commitment in myeloid progenitors
    • COI: 1:CAS:528:DC%2BC2MXhvFagur7P
    • Paul, F. et al. Transcriptional heterogeneity and lineage commitment in myeloid progenitors. Cell 163, 1663–1677 (2015)
    • (2015) Cell , vol.163 , pp. 1663-1677
    • Paul, F.1
  • 36
    • 84892367295 scopus 로고    scopus 로고
    • The effects of genetic variation on gene expression dynamics during development
    • Francesconi, M. & Lehner, B. The effects of genetic variation on gene expression dynamics during development. Nature 505, 208–211 (2013)
    • (2013) Nature , vol.505 , pp. 208-211
    • Francesconi, M.1    Lehner, B.2
  • 37
    • 84923647450 scopus 로고    scopus 로고
    • Computational and analytical challenges in single-cell transcriptomics
    • COI: 1:CAS:528:DC%2BC2MXhs1Shur4%3D
    • Stegle, O., Teichmann, S. A. & Marioni, J. C. Computational and analytical challenges in single-cell transcriptomics. Nat. Rev. Genet. 16, 133–145 (2015)
    • (2015) Nat. Rev. Genet. , vol.16 , pp. 133-145
    • Stegle, O.1    Teichmann, S.A.2    Marioni, J.C.3
  • 38
    • 84989905707 scopus 로고    scopus 로고
    • The time-resolved transcriptome of C. elegans
    • COI: 1:CAS:528:DC%2BC28XhvFyru7rP
    • Boeck, M. E. et al. The time-resolved transcriptome of C. elegans. Genome Res. 26, 1441–1450 (2016)
    • (2016) Genome Res. , vol.26 , pp. 1441-1450
    • Boeck, M.E.1
  • 39
    • 84982085158 scopus 로고    scopus 로고
    • Single-cell RNA-seq reveals novel regulators of human embryonic stem cell differentiation to definitive endoderm
    • Chu, L.-F. et al. Single-cell RNA-seq reveals novel regulators of human embryonic stem cell differentiation to definitive endoderm. Genome Biol. 17, 173 (2016)
    • (2016) Genome Biol. , vol.17
    • Chu, L.F.1
  • 40
    • 84924629414 scopus 로고    scopus 로고
    • Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
    • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014)
    • (2014) Genome Biol. , vol.15
    • Love, M.I.1    Huber, W.2    Anders, S.3
  • 41
    • 0031935539 scopus 로고    scopus 로고
    • Stra3/lefty, a retinoic acid-inducible novel member of the transforming growth factor-beta superfamily
    • COI: 1:CAS:528:DyaK1cXhtlakt7o%3D, PID: 9496783
    • Oulad-Abdelghani, M. et al. Stra3/lefty, a retinoic acid-inducible novel member of the transforming growth factor-beta superfamily. Int. J. Dev. Biol. 42, 23–32 (1998)
    • (1998) Int. J. Dev. Biol. , vol.42 , pp. 23-32
    • Oulad-Abdelghani, M.1
  • 42
    • 79952153009 scopus 로고    scopus 로고
    • Targeting SOX17 in human embryonic stem cells creates unique strategies for isolating and analyzing developing endoderm
    • Wang, P., Rodriguez, R. T., Wang, J., Ghodasara, A. & Kim, S. K. Targeting SOX17 in human embryonic stem cells creates unique strategies for isolating and analyzing developing endoderm. Cell. Stem. Cell. 8, 335–346 (2011)
    • (2011) Cell. Stem. Cell. , vol.8 , pp. 335-346
    • Wang, P.1    Rodriguez, R.T.2    Wang, J.3    Ghodasara, A.4    Kim, S.K.5
  • 43
    • 85028316331 scopus 로고    scopus 로고
    • Simultaneous epitope and transcriptome measurement in single cells
    • COI: 1:CAS:528:DC%2BC2sXht1CkurzK
    • Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14, 865–868 (2017)
    • (2017) Nat. Methods , vol.14 , pp. 865-868
    • Stoeckius, M.1
  • 44
    • 85060536189 scopus 로고    scopus 로고
    • Genomics, 10x. 1.3 Million Brain Cells from E18 Mice
    • Genomics, 10x. 1.3 Million Brain Cells from E18 Mice https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.3.0/1M_neurons (2017)
    • (2017)
  • 45
    • 80051505603 scopus 로고    scopus 로고
    • Hierarchical differentiation of myeloid progenitors is encoded in the transcription factor network
    • COI: 1:CAS:528:DC%2BC3MXhtFCjsL3E
    • Krumsiek, J., Marr, C., Schroeder, T. & Theis, F. J. Hierarchical differentiation of myeloid progenitors is encoded in the transcription factor network. PLoS One 6, e22649 (2011)
    • (2011) PLoS One , vol.6
    • Krumsiek, J.1    Marr, C.2    Schroeder, T.3    Theis, F.J.4
  • 46
    • 39349096526 scopus 로고    scopus 로고
    • Hematopoiesis: an evolving paradigm for stem cell biology
    • COI: 1:CAS:528:DC%2BD1cXivVagtrk%3D
    • Orkin, S. H. & Zon, L. I. Hematopoiesis: an evolving paradigm for stem cell biology. Cell 132, 631–644 (2008)
    • (2008) Cell , vol.132 , pp. 631-644
    • Orkin, S.H.1    Zon, L.I.2
  • 47
    • 84887109584 scopus 로고    scopus 로고
    • Accounting for technical noise in single-cell RNA-seq experiments
    • COI: 1:CAS:528:DC%2BC3sXhsVyqtb3L
    • Brennecke, P. et al. Accounting for technical noise in single-cell RNA-seq experiments. Nat. Methods 10, 1093–1095 (2013)
    • (2013) Nat. Methods , vol.10 , pp. 1093-1095
    • Brennecke, P.1
  • 49
    • 84936803955 scopus 로고    scopus 로고
    • Normalization and noise reduction for single cell RNA-seq experiments
    • COI: 1:CAS:528:DC%2BC28XhtlamsrbM
    • Ding, B. et al. Normalization and noise reduction for single cell RNA-seq experiments. Bioinformatics 31, 2225–2227 (2015)
    • (2015) Bioinformatics , vol.31 , pp. 2225-2227
    • Ding, B.1
  • 50
    • 85037364770 scopus 로고    scopus 로고
    • Granatum: a graphical single-cell RNA-Seq analysis pipeline for genomics scientists
    • Zhu, X. et al. Granatum: a graphical single-cell RNA-Seq analysis pipeline for genomics scientists. Genome Med. 9, 108 (2017)
    • (2017) Genome Med. , vol.9
    • Zhu, X.1
  • 51
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • COI: 1:CAS:528:DC%2BC2MXht1WlurzP
    • LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015)
    • (2015) Nature , vol.521 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 52
    • 84938378229 scopus 로고    scopus 로고
    • Hyperopt: a Python library for model selection and hyperparameter optimization
    • Bergstra, J., Komer, B., Eliasmith, C., Yamins, D. & Cox, D. D. Hyperopt: a Python library for model selection and hyperparameter optimization. Comput. Sci. Discov. 8, 014008 (2015)
    • (2015) Comput. Sci. Discov. , vol.8 , pp. 014008
    • Bergstra, J.1    Komer, B.2    Eliasmith, C.3    Yamins, D.4    Cox, D.D.5
  • 53
    • 85060524341 scopus 로고    scopus 로고
    • Keras. Github
    • Chollet, F. Keras. Github https://github.com/fchollet/keras (2015)
    • (2015)
    • Chollet, F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.