-
1
-
-
81355142141
-
Non-coding RNAs in human disease
-
Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011; 12:861-74.
-
(2011)
Nat Rev Genet
, vol.12
, pp. 861-874
-
-
Esteller, M.1
-
2
-
-
79957840356
-
Long noncoding RNAs and human disease
-
Wapinski O, Chang HY. Long noncoding RNAs and human disease. Trends Cell Biol. 2011; 21:354-61.
-
(2011)
Trends Cell Biol
, vol.21
, pp. 354-361
-
-
Wapinski, O.1
Chang, H.Y.2
-
3
-
-
84939260496
-
Transcriptomic landscape of lncRNAs in inflammatory bowel disease
-
Mirza AH, Berthelsen CH, Seemann SE, Pan X, Frederiksen KS, Vilien M, Gorodkin J, Pociot F. Transcriptomic landscape of lncRNAs in inflammatory bowel disease. Genome Med. 2015; 7:39.
-
(2015)
Genome Med
, vol.7
, pp. 39
-
-
Mirza, A.H.1
Berthelsen, C.H.2
Seemann, S.E.3
Pan, X.4
Frederiksen, K.S.5
Vilien, M.6
Gorodkin, J.7
Pociot, F.8
-
4
-
-
84965064340
-
OUGENE: a disease associated over-expressed and under-expressed gene database
-
Pan X, Shen HB. OUGENE: a disease associated over-expressed and under-expressed gene database. Sci Bull. 2016; 61:752-4.
-
(2016)
Sci Bull
, vol.61
, pp. 752-754
-
-
Pan, X.1
Shen, H.B.2
-
5
-
-
84865760395
-
GENCODE: the reference human genome annotation for The ENCODE Project
-
Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F, Aken BL, Barrell D, Zadissa A, Searle S, et al. GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res. 2012; 22:1760-74.
-
(2012)
Genome Res
, vol.22
, pp. 1760-1774
-
-
Harrow, J.1
Frankish, A.2
Gonzalez, J.M.3
Tapanari, E.4
Diekhans, M.5
Kokocinski, F.6
Aken, B.L.7
Barrell, D.8
Zadissa, A.9
Searle, S.10
-
6
-
-
34249316905
-
RNA-binding proteins: modular design for efficient function
-
Lunde BM, Moore C, Varani G. RNA-binding proteins: modular design for efficient function. Nat Rev Mol Cell Biol. 2007; 8:479-90.
-
(2007)
Nat Rev Mol Cell Biol
, vol.8
, pp. 479-490
-
-
Lunde, B.M.1
Moore, C.2
Varani, G.3
-
7
-
-
0034133037
-
RNA-protein interactions in the control of stability and localization of messenger RNA (review)
-
Derrigo M, Cestelli A, Savettieri G, Di LI. RNA-protein interactions in the control of stability and localization of messenger RNA (review). Int J Mol Med. 2000; 5:111-23.
-
(2000)
Int J Mol Med
, vol.5
, pp. 111-123
-
-
Derrigo, M.1
Cestelli, A.2
Savettieri, G.3
Di, L.I.4
-
8
-
-
79954510568
-
Diverse roles of host RNA binding proteins in RNA virus replication
-
Li ZH, Nagy PD. Diverse roles of host RNA binding proteins in RNA virus replication. RNA Biol. 2011; 8:305-15.
-
(2011)
RNA Biol
, vol.8
, pp. 305-315
-
-
Li, Z.H.1
Nagy, P.D.2
-
10
-
-
67650484984
-
Rapid and systematic analysis of the RNA recognition specificities of RNA-binding proteins
-
Ray D, Kazan H, Chan ET, Castillo L, Chaudhry S, Talukder S, Blencowe BJ, Morris Q, Hughes TR. Rapid and systematic analysis of the RNA recognition specificities of RNA-binding proteins. Nat Biotechnol. 2011; 27:667-70.
-
(2011)
Nat Biotechnol
, vol.27
, pp. 667-670
-
-
Ray, D.1
Kazan, H.2
Chan, E.T.3
Castillo, L.4
Chaudhry, S.5
Talukder, S.6
Blencowe, B.J.7
Morris, Q.8
Hughes, T.R.9
-
11
-
-
77950920903
-
Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP
-
Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P, Rothballer A, Ascano M, Jungkamp AC, Munschauer M, et al. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell. 2010; 141:129-41.
-
(2010)
Cell
, vol.141
, pp. 129-141
-
-
Hafner, M.1
Landthaler, M.2
Burger, L.3
Khorshid, M.4
Hausser, J.5
Berninger, P.6
Rothballer, A.7
Ascano, M.8
Jungkamp, A.C.9
Munschauer, M.10
-
12
-
-
84938888109
-
Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning
-
Alipanahi B, Delong A, Weirauch MT, Frey BJ. Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning. Nat Biotechnol. 2015; 33:831-8.
-
(2015)
Nat Biotechnol
, vol.33
, pp. 831-838
-
-
Alipanahi, B.1
Delong, A.2
Weirauch, M.T.3
Frey, B.J.4
-
13
-
-
84936100998
-
RPI-Pred: predicting ncRNA-protein interaction using sequence and structural information
-
Suresh V, Liu L, Adjeroh D, Zhou X. RPI-Pred: predicting ncRNA-protein interaction using sequence and structural information. Nucleic Acids Res. 2015; 43:1370-9.
-
(2015)
Nucleic Acids Res
, vol.43
, pp. 1370-1379
-
-
Suresh, V.1
Liu, L.2
Adjeroh, D.3
Zhou, X.4
-
14
-
-
84055185205
-
Predicting RNA-protein interactions using only sequence information
-
Muppirala UK, Honavar VG, Dobbs D. Predicting RNA-protein interactions using only sequence information. BMC bioinformatics. 2011; 12:489.
-
(2011)
BMC bioinformatics
, vol.12
, pp. 489
-
-
Muppirala, U.K.1
Honavar, V.G.2
Dobbs, D.3
-
15
-
-
84884837017
-
Computational prediction of associations between long non-coding RNAs and proteins
-
Lu Q, Ren S, Lu M, Zhang Y, Zhu D, Zhang X, Li T. Computational prediction of associations between long non-coding RNAs and proteins. BMC genomics. 2013; 14:651.
-
(2013)
BMC genomics
, vol.14
, pp. 651
-
-
Lu, Q.1
Ren, S.2
Lu, M.3
Zhang, Y.4
Zhu, D.5
Zhang, X.6
Li, T.7
-
17
-
-
84960083427
-
A comprehensive comparative review of sequence-based predictors of DNA-and RNA-binding residues
-
Yan J, Friedrich S, Kurgan L. A comprehensive comparative review of sequence-based predictors of DNA-and RNA-binding residues. Brief Bioinform. 2015. [10.1093/bib/bbv023].
-
(2015)
Brief Bioinform
-
-
Yan, J.1
Friedrich, S.2
Kurgan, L.3
-
18
-
-
84913530064
-
Predicting protein-RNA interaction amino acids using random forest based on submodularity subset selection
-
Pan X, Zhu L, Fan YX, Yan J. Predicting protein-RNA interaction amino acids using random forest based on submodularity subset selection. Comput Biol Chem. 2014; 53:324-30.
-
(2014)
Comput Biol Chem
, vol.53
, pp. 324-330
-
-
Pan, X.1
Zhu, L.2
Fan, Y.X.3
Yan, J.4
-
19
-
-
84936879334
-
Prediction of nucleic acid binding probability in proteins: a neighboring residue network based score
-
Miao Z, Westhof E. Prediction of nucleic acid binding probability in proteins: a neighboring residue network based score. Nucleic Acids Res. 2015; 43:5340-51.
-
(2015)
Nucleic Acids Res
, vol.43
, pp. 5340-5351
-
-
Miao, Z.1
Westhof, E.2
-
20
-
-
80051711205
-
In silico characterization and prediction of global protein-mRNA interactions in yeast
-
Pancaldi V, Bähler J. In silico characterization and prediction of global protein-mRNA interactions in yeast. Nucleic Acids Res. 2011; 39:5826-36.
-
(2011)
Nucleic Acids Res
, vol.39
, pp. 5826-5836
-
-
Pancaldi, V.1
Bähler, J.2
-
21
-
-
84890108824
-
catRAPID omics: a web server for large-scale prediction of protein-RNA interactions
-
Agostini F, Zanzoni A, Klus P, Marchese D, Cirillo D, Tartaglia GG. catRAPID omics: a web server for large-scale prediction of protein-RNA interactions. Bioinformatics. 2013; 29:2928-30.
-
(2013)
Bioinformatics
, vol.29
, pp. 2928-2930
-
-
Agostini, F.1
Zanzoni, A.2
Klus, P.3
Marchese, D.4
Cirillo, D.5
Tartaglia, G.G.6
-
22
-
-
84900394210
-
Protein-specific prediction of mRNA binding using RNA sequences, binding motifs and predicted secondary structures
-
Livi CM, Blanzieri E. Protein-specific prediction of mRNA binding using RNA sequences, binding motifs and predicted secondary structures. BMC Bioinformatics. 2014; 15:123.
-
(2014)
BMC Bioinformatics
, vol.15
, pp. 123
-
-
Livi, C.M.1
Blanzieri, E.2
-
23
-
-
0035478854
-
Random forest
-
Breiman L. Random forest. Mach Learn. 2001; 45:5-32.
-
(2001)
Mach Learn
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
24
-
-
0003991806
-
Statistical learning theory
-
1st edn, New York: Wiley
-
Vapnik VN. Statistical learning theory, 1st edn. New York: Wiley.
-
-
-
Vapnik, V.N.1
-
25
-
-
77955167841
-
Signatures of RNA binding proteins globally coupled to effective microRNA target sites
-
Jacobsen A, Wen J, Marks DS, Krogh A. Signatures of RNA binding proteins globally coupled to effective microRNA target sites. Genome Res. 2010; 20:1010-9.
-
(2010)
Genome Res
, vol.20
, pp. 1010-1019
-
-
Jacobsen, A.1
Wen, J.2
Marks, D.S.3
Krogh, A.4
-
27
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with neural networks. Science. 2006; 313:504-7.
-
(2006)
Science
, vol.313
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
29
-
-
84878409063
-
Recurrent neural net-works for noise reduction in robust ASR
-
Maas AL, et al. Recurrent neural net-works for noise reduction in robust ASR. In: Proc. Interspeech: 2012. https://research.google.com/pubs/pub45168.html.
-
(2012)
Proc. Interspeech
-
-
Maas, A.L.1
-
30
-
-
84958257565
-
Predicting effects of noncoding variants with deep learning-based sequence model
-
Zhou J, Troyanskaya OG. Predicting effects of noncoding variants with deep learning-based sequence model. Nat Methods. 2015; 12:931-4.
-
(2015)
Nat Methods
, vol.12
, pp. 931-934
-
-
Zhou, J.1
Troyanskaya, O.G.2
-
32
-
-
84880427394
-
A compendium of RNA-binding motifs for decoding gene regulation
-
Ray D, Kazan H, Cook KB, Weirauch MT, et al. A compendium of RNA-binding motifs for decoding gene regulation. Nature. 2013; 499:172-7.
-
(2013)
Nature
, vol.499
, pp. 172-177
-
-
Ray, D.1
Kazan, H.2
Cook, K.B.3
Weirauch, M.T.4
-
33
-
-
84922454174
-
High-throughput characterization of protein-RNA interactions
-
Cook KB, Hughes TR, Morris QD. High-throughput characterization of protein-RNA interactions. Brief Funct Genomics. 2015; 14:74-89.
-
(2015)
Brief Funct Genomics
, vol.14
, pp. 74-89
-
-
Cook, K.B.1
Hughes, T.R.2
Morris, Q.D.3
-
35
-
-
79551480483
-
Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
-
Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol PA. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. J Mach Learn Res. 2010; 111:3371-408.
-
(2010)
J Mach Learn Res
, vol.111
, pp. 3371-3408
-
-
Vincent, P.1
Larochelle, H.2
Lajoie, I.3
Bengio, Y.4
Manzagol, P.A.5
-
36
-
-
0033954256
-
The protein data bank
-
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. The protein data bank. Nucleic Acids Res. 2000; 28:235-42.
-
(2000)
Nucleic Acids Res
, vol.28
, pp. 235-242
-
-
Berman, H.M.1
Westbrook, J.2
Feng, Z.3
Gilliland, G.4
Bhat, T.N.5
Weissig, H.6
Shindyalov, I.N.7
Bourne, P.E.8
-
37
-
-
54949148332
-
Diverse RNA-binding proteins interact with functionally related sets of RNAs, suggesting an extensive regulatory system
-
e255.
-
Hogan DJ, Riordan DP, Gerber AP, Herschlag D, Brown PO. Diverse RNA-binding proteins interact with functionally related sets of RNAs, suggesting an extensive regulatory system. PLoS Biol. 2008; e255:6.
-
(2008)
PLoS Biol
, pp. 6
-
-
Hogan, D.J.1
Riordan, D.P.2
Gerber, A.P.3
Herschlag, D.4
Brown, P.O.5
-
38
-
-
84891773261
-
NPInter v2. 0: an updated database of ncRNA interactions
-
Yuan J, Wu W, Xie C, Zhao G, Zhao Y, Chen R. NPInter v2. 0: an updated database of ncRNA interactions. Nucleic Acids Res. 2014; 42:D104-8.
-
(2014)
Nucleic Acids Res
, vol.42
, pp. D104-D108
-
-
Yuan, J.1
Wu, W.2
Xie, C.3
Zhao, G.4
Zhao, Y.5
Chen, R.6
-
39
-
-
84874453404
-
De novo prediction of RNA-protein interactions from sequence information
-
Wang Y, Chen X, Liu ZP, Huang Q, Wang Y, Xu D, Zhang XS, Chen R, Chen L. De novo prediction of RNA-protein interactions from sequence information. Mol Biosyst. 2013; 9:133-42.
-
(2013)
Mol Biosyst
, vol.9
, pp. 133-142
-
-
Wang, Y.1
Chen, X.2
Liu, Z.P.3
Huang, Q.4
Wang, Y.5
Xu, D.6
Zhang, X.S.7
Chen, R.8
Chen, L.9
-
40
-
-
84900444812
-
Computational Tools for Investigating RNA-Protein Interaction Partners
-
Muppirala UK, Lewis BA, Dobbs D. Computational Tools for Investigating RNA-Protein Interaction Partners. J Comput Sci Syst Biol. 2013; 6:182-7.
-
(2013)
J Comput Sci Syst Biol
, vol.6
, pp. 182-187
-
-
Muppirala, U.K.1
Lewis, B.A.2
Dobbs, D.3
-
41
-
-
0037403516
-
Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
-
Kuncheva LI, Whitaker CJ. Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Machine learning. 2003; 51:181-207.
-
(2003)
Machine learning
, vol.51
, pp. 181-207
-
-
Kuncheva, L.I.1
Whitaker, C.J.2
-
42
-
-
0029996162
-
Incorporation of non-local interactions in protein secondary structure prediction from the amino acid sequence
-
Frishman D, Argos P. Incorporation of non-local interactions in protein secondary structure prediction from the amino acid sequence. Protein Eng. 1996; 9(2):133-42.
-
(1996)
Protein Eng
, vol.9
, Issue.2
, pp. 133-142
-
-
Frishman, D.1
Argos, P.2
-
43
-
-
82055164092
-
ViennaRNA Package 2.0
-
Lorenz R, Bernhart SH, Hoener zu Siederdissen C, Tafer H, Flamm C, Stadler PF, Hofacker IL. ViennaRNA Package 2.0. Algorithms Mol Biol. 2011; 6:26.
-
(2011)
Algorithms Mol Biol
, vol.6
, pp. 26
-
-
Lorenz, R.1
Bernhart, S.H.2
Hoener Zu Siederdissen, C.3
Tafer, H.4
Flamm, C.5
Stadler, P.F.6
Hofacker, I.L.7
-
44
-
-
0005924596
-
Graph clustering by flow simulation
-
PhD Thesis. Amsterdam, Netherlands: Univ. Utrecht
-
van Dongen S. Graph clustering by flow simulation. PhD Thesis. Amsterdam, Netherlands: Univ. Utrecht; 2001.
-
(2001)
-
-
van Dongen, S.1
-
45
-
-
84891818924
-
starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data
-
Li JH, Liu S, Zhou H, Qu LH, Yang JH. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2014; 42:D92-7.
-
(2014)
Nucleic Acids Res
, vol.42
, pp. D92-D97
-
-
Li, J.H.1
Liu, S.2
Zhou, H.3
Qu, L.H.4
Yang, J.H.5
-
46
-
-
76349122201
-
Comprehensive discovery of endogenous Argonaute binding sites in Caenorhabditis elegans
-
Zisoulis DG, Lovci MT, Wilbert ML, Hutt KR, Liang TY, Pasquinelli AE, Yeo GW. Comprehensive discovery of endogenous Argonaute binding sites in Caenorhabditis elegans. Nat Struct Mol Biol. 2010; 17:173-9.
-
(2010)
Nat Struct Mol Biol
, vol.17
, pp. 173-179
-
-
Zisoulis, D.G.1
Lovci, M.T.2
Wilbert, M.L.3
Hutt, K.R.4
Liang, T.Y.5
Pasquinelli, A.E.6
Yeo, G.W.7
-
47
-
-
78651271270
-
CLIPZ: a database and analysis environment for experimentally determined binding sites of RNA-binding proteins
-
Khorshid M, Rodak C, Zavolan M. CLIPZ: a database and analysis environment for experimentally determined binding sites of RNA-binding proteins. Nucleic Acids Res. 2011; 39:D245-52.
-
(2011)
Nucleic Acids Res
, vol.39
, pp. D245-D252
-
-
Khorshid, M.1
Rodak, C.2
Zavolan, M.3
-
48
-
-
84965136158
-
Deep Belief Nets for Topic Modeling
-
arXiv, arXiv:1501.04325
-
Maaloe L, Arngren M, Winther O. Deep Belief Nets for Topic Modeling. arXiv, 2015; arXiv:1501.04325.
-
(2015)
-
-
Maaloe, L.1
Arngren, M.2
Winther, O.3
-
49
-
-
84892999996
-
Methods for comprehensive experimental identification of RNA-protein interactions
-
McHugh CA, Russell P, Guttman M. Methods for comprehensive experimental identification of RNA-protein interactions. Genome Biol. 2014; 15:203.
-
(2014)
Genome Biol
, vol.15
, pp. 203
-
-
McHugh, C.A.1
Russell, P.2
Guttman, M.3
-
50
-
-
84921514976
-
A global view of network of lncRNAs and their binding proteins
-
Shang D, Yang H, Xu Y, Yao Q, Zhou W, Shi X, Han J, Su F, Su B, Zhang C, Li C, Li X. A global view of network of lncRNAs and their binding proteins. Mol Biosyst. 2015; 11:656-63.
-
(2015)
Mol Biosyst
, vol.11
, pp. 656-663
-
-
Shang, D.1
Yang, H.2
Xu, Y.3
Yao, Q.4
Zhou, W.5
Shi, X.6
Han, J.7
Su, F.8
Su, B.9
Zhang, C.10
Li, C.11
Li, X.12
-
51
-
-
84927735077
-
Massively Multitask Networks for Drug Discovery
-
arXiv., arXiv:1502.02072
-
Ramsundar B, Kearnes S, Riley P, Webster D, Konerding D, Pande V. Massively Multitask Networks for Drug Discovery. arXiv., 2015;arXiv:1502.02072.
-
(2015)
-
-
Ramsundar, B.1
Kearnes, S.2
Riley, P.3
Webster, D.4
Konerding, D.5
Pande, V.6
-
52
-
-
84929516625
-
Computationally predicting protein-RNA interactions using only positive and unlabeled examples
-
Cheng Z, Zhou S, Guan J. Computationally predicting protein-RNA interactions using only positive and unlabeled examples. J Bioinform Comput Biol. 2015; 13:1541005.
-
(2015)
J Bioinform Comput Biol
, vol.13
, pp. 1541005
-
-
Cheng, Z.1
Zhou, S.2
Guan, J.3
-
53
-
-
78651336757
-
PRIDB: a protein-RNA interface database
-
Lewis BA, Walia RR, Terribilini M, Ferguson J, Zheng C, Honavar V, Dobbs D. PRIDB: a protein-RNA interface database. Nucleic Acids Res. 2011; 39:D277-82.
-
(2011)
Nucleic Acids Res
, vol.39
, pp. D277-D282
-
-
Lewis, B.A.1
Walia, R.R.2
Terribilini, M.3
Ferguson, J.4
Zheng, C.5
Honavar, V.6
Dobbs, D.7
-
54
-
-
77949601825
-
CD-HIT Suite: a web server for clustering and comparing biological sequences
-
Huang Y, Niu B, Gao Y, Fu L, Li W. CD-HIT Suite: a web server for clustering and comparing biological sequences. Bioinformatics. 2010; 26:680-2.
-
(2010)
Bioinformatics
, vol.26
, pp. 680-682
-
-
Huang, Y.1
Niu, B.2
Gao, Y.3
Fu, L.4
Li, W.5
-
55
-
-
77957356489
-
Large-Scale Prediction of Human Protein- Protein Interactions from Amino Acid Sequence Based on Latent Topic Features
-
Pan XY, Zhang YN, Shen HB. Large-Scale Prediction of Human Protein- Protein Interactions from Amino Acid Sequence Based on Latent Topic Features. J Proteome Res. 2010; 9:4992-5001.
-
(2010)
J Proteome Res
, vol.9
, pp. 4992-5001
-
-
Pan, X.Y.1
Zhang, Y.N.2
Shen, H.B.3
-
56
-
-
84890478042
-
Building high-level features using large scale unsupervised learning. IEEE Int Conf Acoustics
-
Le QV. Building high-level features using large scale unsupervised learning. IEEE Int Conf Acoustics. Speech Signal Process. 2013; 26:8595-8.
-
(2013)
Speech Signal Process
, vol.26
, pp. 8595-8598
-
-
Le, Q.V.1
-
57
-
-
84904163933
-
Dropout: A simple way to prevent neural networks from overfitting
-
Srivastava N, Hinton GE, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: A simple way to prevent neural networks from overfitting. J Mach Learn Res. 2014; 15:1929-58.
-
(2014)
J Mach Learn Res
, vol.15
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.E.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
58
-
-
84941620184
-
Adam: A method for stochastic optimization
-
arXiv, arXiv:1412.6980
-
Kingma D, Ba J. Adam: A method for stochastic optimization. arXiv, 2014; arXiv:1412.6980.
-
(2014)
-
-
Kingma, D.1
Ba, J.2
-
60
-
-
79955522081
-
Towards better accuracy for missing value estimation of epistatic miniarray profiling data by a novel ensemble approach
-
Pan XY, Tian Y, Huang Y, Shen HB. Towards better accuracy for missing value estimation of epistatic miniarray profiling data by a novel ensemble approach. Genomics. 2011; 97:257-64.
-
(2011)
Genomics
, vol.97
, pp. 257-264
-
-
Pan, X.Y.1
Tian, Y.2
Huang, Y.3
Shen, H.B.4
-
61
-
-
72049095273
-
The bigchaos solution to the netflix grand prize
-
Töscher A, et al. The bigchaos solution to the netflix grand prize: 2009. http://www.stat.osu.edu/~dmsl/GrandPrize2009_BPC_BigChaos.pdf.
-
(2009)
-
-
Töscher, A.1
-
62
-
-
80555140075
-
Scikit-learn: Machine learning in Python
-
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, et al. Scikit-learn: Machine learning in Python. J Mach Learn Res. 2011; 12:2825-30.
-
(2011)
J Mach Learn Res
, vol.12
, pp. 2825-2830
-
-
Pedregosa, F.1
Varoquaux, G.2
Gramfort, A.3
Michel, V.4
Thirion, B.5
Grisel, O.6
Blondel, M.7
Prettenhofer, P.8
Weiss, R.9
Dubourg, V.10
|