메뉴 건너뛰기




Volumn 17, Issue 1, 2016, Pages

IPMiner: Hidden ncRNA-protein interaction sequential pattern mining with stacked autoencoder for accurate computational prediction

Author keywords

Deep learning; NcRNA; NcRNA protein; Stacked ensembing

Indexed keywords

UNTRANSLATED RNA; PROTEIN BINDING; RNA BINDING PROTEIN;

EID: 84981263658     PISSN: None     EISSN: 14712164     Source Type: Journal    
DOI: 10.1186/s12864-016-2931-8     Document Type: Article
Times cited : (121)

References (62)
  • 1
    • 81355142141 scopus 로고    scopus 로고
    • Non-coding RNAs in human disease
    • Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011; 12:861-74.
    • (2011) Nat Rev Genet , vol.12 , pp. 861-874
    • Esteller, M.1
  • 2
    • 79957840356 scopus 로고    scopus 로고
    • Long noncoding RNAs and human disease
    • Wapinski O, Chang HY. Long noncoding RNAs and human disease. Trends Cell Biol. 2011; 21:354-61.
    • (2011) Trends Cell Biol , vol.21 , pp. 354-361
    • Wapinski, O.1    Chang, H.Y.2
  • 4
    • 84965064340 scopus 로고    scopus 로고
    • OUGENE: a disease associated over-expressed and under-expressed gene database
    • Pan X, Shen HB. OUGENE: a disease associated over-expressed and under-expressed gene database. Sci Bull. 2016; 61:752-4.
    • (2016) Sci Bull , vol.61 , pp. 752-754
    • Pan, X.1    Shen, H.B.2
  • 6
    • 34249316905 scopus 로고    scopus 로고
    • RNA-binding proteins: modular design for efficient function
    • Lunde BM, Moore C, Varani G. RNA-binding proteins: modular design for efficient function. Nat Rev Mol Cell Biol. 2007; 8:479-90.
    • (2007) Nat Rev Mol Cell Biol , vol.8 , pp. 479-490
    • Lunde, B.M.1    Moore, C.2    Varani, G.3
  • 7
    • 0034133037 scopus 로고    scopus 로고
    • RNA-protein interactions in the control of stability and localization of messenger RNA (review)
    • Derrigo M, Cestelli A, Savettieri G, Di LI. RNA-protein interactions in the control of stability and localization of messenger RNA (review). Int J Mol Med. 2000; 5:111-23.
    • (2000) Int J Mol Med , vol.5 , pp. 111-123
    • Derrigo, M.1    Cestelli, A.2    Savettieri, G.3    Di, L.I.4
  • 8
    • 79954510568 scopus 로고    scopus 로고
    • Diverse roles of host RNA binding proteins in RNA virus replication
    • Li ZH, Nagy PD. Diverse roles of host RNA binding proteins in RNA virus replication. RNA Biol. 2011; 8:305-15.
    • (2011) RNA Biol , vol.8 , pp. 305-315
    • Li, Z.H.1    Nagy, P.D.2
  • 12
    • 84938888109 scopus 로고    scopus 로고
    • Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning
    • Alipanahi B, Delong A, Weirauch MT, Frey BJ. Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning. Nat Biotechnol. 2015; 33:831-8.
    • (2015) Nat Biotechnol , vol.33 , pp. 831-838
    • Alipanahi, B.1    Delong, A.2    Weirauch, M.T.3    Frey, B.J.4
  • 13
    • 84936100998 scopus 로고    scopus 로고
    • RPI-Pred: predicting ncRNA-protein interaction using sequence and structural information
    • Suresh V, Liu L, Adjeroh D, Zhou X. RPI-Pred: predicting ncRNA-protein interaction using sequence and structural information. Nucleic Acids Res. 2015; 43:1370-9.
    • (2015) Nucleic Acids Res , vol.43 , pp. 1370-1379
    • Suresh, V.1    Liu, L.2    Adjeroh, D.3    Zhou, X.4
  • 14
    • 84055185205 scopus 로고    scopus 로고
    • Predicting RNA-protein interactions using only sequence information
    • Muppirala UK, Honavar VG, Dobbs D. Predicting RNA-protein interactions using only sequence information. BMC bioinformatics. 2011; 12:489.
    • (2011) BMC bioinformatics , vol.12 , pp. 489
    • Muppirala, U.K.1    Honavar, V.G.2    Dobbs, D.3
  • 15
    • 84884837017 scopus 로고    scopus 로고
    • Computational prediction of associations between long non-coding RNAs and proteins
    • Lu Q, Ren S, Lu M, Zhang Y, Zhu D, Zhang X, Li T. Computational prediction of associations between long non-coding RNAs and proteins. BMC genomics. 2013; 14:651.
    • (2013) BMC genomics , vol.14 , pp. 651
    • Lu, Q.1    Ren, S.2    Lu, M.3    Zhang, Y.4    Zhu, D.5    Zhang, X.6    Li, T.7
  • 17
    • 84960083427 scopus 로고    scopus 로고
    • A comprehensive comparative review of sequence-based predictors of DNA-and RNA-binding residues
    • Yan J, Friedrich S, Kurgan L. A comprehensive comparative review of sequence-based predictors of DNA-and RNA-binding residues. Brief Bioinform. 2015. [10.1093/bib/bbv023].
    • (2015) Brief Bioinform
    • Yan, J.1    Friedrich, S.2    Kurgan, L.3
  • 18
    • 84913530064 scopus 로고    scopus 로고
    • Predicting protein-RNA interaction amino acids using random forest based on submodularity subset selection
    • Pan X, Zhu L, Fan YX, Yan J. Predicting protein-RNA interaction amino acids using random forest based on submodularity subset selection. Comput Biol Chem. 2014; 53:324-30.
    • (2014) Comput Biol Chem , vol.53 , pp. 324-330
    • Pan, X.1    Zhu, L.2    Fan, Y.X.3    Yan, J.4
  • 19
    • 84936879334 scopus 로고    scopus 로고
    • Prediction of nucleic acid binding probability in proteins: a neighboring residue network based score
    • Miao Z, Westhof E. Prediction of nucleic acid binding probability in proteins: a neighboring residue network based score. Nucleic Acids Res. 2015; 43:5340-51.
    • (2015) Nucleic Acids Res , vol.43 , pp. 5340-5351
    • Miao, Z.1    Westhof, E.2
  • 20
    • 80051711205 scopus 로고    scopus 로고
    • In silico characterization and prediction of global protein-mRNA interactions in yeast
    • Pancaldi V, Bähler J. In silico characterization and prediction of global protein-mRNA interactions in yeast. Nucleic Acids Res. 2011; 39:5826-36.
    • (2011) Nucleic Acids Res , vol.39 , pp. 5826-5836
    • Pancaldi, V.1    Bähler, J.2
  • 22
    • 84900394210 scopus 로고    scopus 로고
    • Protein-specific prediction of mRNA binding using RNA sequences, binding motifs and predicted secondary structures
    • Livi CM, Blanzieri E. Protein-specific prediction of mRNA binding using RNA sequences, binding motifs and predicted secondary structures. BMC Bioinformatics. 2014; 15:123.
    • (2014) BMC Bioinformatics , vol.15 , pp. 123
    • Livi, C.M.1    Blanzieri, E.2
  • 23
    • 0035478854 scopus 로고    scopus 로고
    • Random forest
    • Breiman L. Random forest. Mach Learn. 2001; 45:5-32.
    • (2001) Mach Learn , vol.45 , pp. 5-32
    • Breiman, L.1
  • 24
    • 0003991806 scopus 로고    scopus 로고
    • Statistical learning theory
    • 1st edn, New York: Wiley
    • Vapnik VN. Statistical learning theory, 1st edn. New York: Wiley.
    • Vapnik, V.N.1
  • 25
    • 77955167841 scopus 로고    scopus 로고
    • Signatures of RNA binding proteins globally coupled to effective microRNA target sites
    • Jacobsen A, Wen J, Marks DS, Krogh A. Signatures of RNA binding proteins globally coupled to effective microRNA target sites. Genome Res. 2010; 20:1010-9.
    • (2010) Genome Res , vol.20 , pp. 1010-1019
    • Jacobsen, A.1    Wen, J.2    Marks, D.S.3    Krogh, A.4
  • 27
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with neural networks. Science. 2006; 313:504-7.
    • (2006) Science , vol.313 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 29
    • 84878409063 scopus 로고    scopus 로고
    • Recurrent neural net-works for noise reduction in robust ASR
    • Maas AL, et al. Recurrent neural net-works for noise reduction in robust ASR. In: Proc. Interspeech: 2012. https://research.google.com/pubs/pub45168.html.
    • (2012) Proc. Interspeech
    • Maas, A.L.1
  • 30
    • 84958257565 scopus 로고    scopus 로고
    • Predicting effects of noncoding variants with deep learning-based sequence model
    • Zhou J, Troyanskaya OG. Predicting effects of noncoding variants with deep learning-based sequence model. Nat Methods. 2015; 12:931-4.
    • (2015) Nat Methods , vol.12 , pp. 931-934
    • Zhou, J.1    Troyanskaya, O.G.2
  • 31
  • 32
    • 84880427394 scopus 로고    scopus 로고
    • A compendium of RNA-binding motifs for decoding gene regulation
    • Ray D, Kazan H, Cook KB, Weirauch MT, et al. A compendium of RNA-binding motifs for decoding gene regulation. Nature. 2013; 499:172-7.
    • (2013) Nature , vol.499 , pp. 172-177
    • Ray, D.1    Kazan, H.2    Cook, K.B.3    Weirauch, M.T.4
  • 33
    • 84922454174 scopus 로고    scopus 로고
    • High-throughput characterization of protein-RNA interactions
    • Cook KB, Hughes TR, Morris QD. High-throughput characterization of protein-RNA interactions. Brief Funct Genomics. 2015; 14:74-89.
    • (2015) Brief Funct Genomics , vol.14 , pp. 74-89
    • Cook, K.B.1    Hughes, T.R.2    Morris, Q.D.3
  • 35
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
    • Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol PA. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. J Mach Learn Res. 2010; 111:3371-408.
    • (2010) J Mach Learn Res , vol.111 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.A.5
  • 37
    • 54949148332 scopus 로고    scopus 로고
    • Diverse RNA-binding proteins interact with functionally related sets of RNAs, suggesting an extensive regulatory system
    • e255.
    • Hogan DJ, Riordan DP, Gerber AP, Herschlag D, Brown PO. Diverse RNA-binding proteins interact with functionally related sets of RNAs, suggesting an extensive regulatory system. PLoS Biol. 2008; e255:6.
    • (2008) PLoS Biol , pp. 6
    • Hogan, D.J.1    Riordan, D.P.2    Gerber, A.P.3    Herschlag, D.4    Brown, P.O.5
  • 38
  • 40
    • 84900444812 scopus 로고    scopus 로고
    • Computational Tools for Investigating RNA-Protein Interaction Partners
    • Muppirala UK, Lewis BA, Dobbs D. Computational Tools for Investigating RNA-Protein Interaction Partners. J Comput Sci Syst Biol. 2013; 6:182-7.
    • (2013) J Comput Sci Syst Biol , vol.6 , pp. 182-187
    • Muppirala, U.K.1    Lewis, B.A.2    Dobbs, D.3
  • 41
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
    • Kuncheva LI, Whitaker CJ. Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Machine learning. 2003; 51:181-207.
    • (2003) Machine learning , vol.51 , pp. 181-207
    • Kuncheva, L.I.1    Whitaker, C.J.2
  • 42
    • 0029996162 scopus 로고    scopus 로고
    • Incorporation of non-local interactions in protein secondary structure prediction from the amino acid sequence
    • Frishman D, Argos P. Incorporation of non-local interactions in protein secondary structure prediction from the amino acid sequence. Protein Eng. 1996; 9(2):133-42.
    • (1996) Protein Eng , vol.9 , Issue.2 , pp. 133-142
    • Frishman, D.1    Argos, P.2
  • 44
    • 0005924596 scopus 로고    scopus 로고
    • Graph clustering by flow simulation
    • PhD Thesis. Amsterdam, Netherlands: Univ. Utrecht
    • van Dongen S. Graph clustering by flow simulation. PhD Thesis. Amsterdam, Netherlands: Univ. Utrecht; 2001.
    • (2001)
    • van Dongen, S.1
  • 45
    • 84891818924 scopus 로고    scopus 로고
    • starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data
    • Li JH, Liu S, Zhou H, Qu LH, Yang JH. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2014; 42:D92-7.
    • (2014) Nucleic Acids Res , vol.42 , pp. D92-D97
    • Li, J.H.1    Liu, S.2    Zhou, H.3    Qu, L.H.4    Yang, J.H.5
  • 47
    • 78651271270 scopus 로고    scopus 로고
    • CLIPZ: a database and analysis environment for experimentally determined binding sites of RNA-binding proteins
    • Khorshid M, Rodak C, Zavolan M. CLIPZ: a database and analysis environment for experimentally determined binding sites of RNA-binding proteins. Nucleic Acids Res. 2011; 39:D245-52.
    • (2011) Nucleic Acids Res , vol.39 , pp. D245-D252
    • Khorshid, M.1    Rodak, C.2    Zavolan, M.3
  • 48
    • 84965136158 scopus 로고    scopus 로고
    • Deep Belief Nets for Topic Modeling
    • arXiv, arXiv:1501.04325
    • Maaloe L, Arngren M, Winther O. Deep Belief Nets for Topic Modeling. arXiv, 2015; arXiv:1501.04325.
    • (2015)
    • Maaloe, L.1    Arngren, M.2    Winther, O.3
  • 49
    • 84892999996 scopus 로고    scopus 로고
    • Methods for comprehensive experimental identification of RNA-protein interactions
    • McHugh CA, Russell P, Guttman M. Methods for comprehensive experimental identification of RNA-protein interactions. Genome Biol. 2014; 15:203.
    • (2014) Genome Biol , vol.15 , pp. 203
    • McHugh, C.A.1    Russell, P.2    Guttman, M.3
  • 52
    • 84929516625 scopus 로고    scopus 로고
    • Computationally predicting protein-RNA interactions using only positive and unlabeled examples
    • Cheng Z, Zhou S, Guan J. Computationally predicting protein-RNA interactions using only positive and unlabeled examples. J Bioinform Comput Biol. 2015; 13:1541005.
    • (2015) J Bioinform Comput Biol , vol.13 , pp. 1541005
    • Cheng, Z.1    Zhou, S.2    Guan, J.3
  • 54
    • 77949601825 scopus 로고    scopus 로고
    • CD-HIT Suite: a web server for clustering and comparing biological sequences
    • Huang Y, Niu B, Gao Y, Fu L, Li W. CD-HIT Suite: a web server for clustering and comparing biological sequences. Bioinformatics. 2010; 26:680-2.
    • (2010) Bioinformatics , vol.26 , pp. 680-682
    • Huang, Y.1    Niu, B.2    Gao, Y.3    Fu, L.4    Li, W.5
  • 55
    • 77957356489 scopus 로고    scopus 로고
    • Large-Scale Prediction of Human Protein- Protein Interactions from Amino Acid Sequence Based on Latent Topic Features
    • Pan XY, Zhang YN, Shen HB. Large-Scale Prediction of Human Protein- Protein Interactions from Amino Acid Sequence Based on Latent Topic Features. J Proteome Res. 2010; 9:4992-5001.
    • (2010) J Proteome Res , vol.9 , pp. 4992-5001
    • Pan, X.Y.1    Zhang, Y.N.2    Shen, H.B.3
  • 56
    • 84890478042 scopus 로고    scopus 로고
    • Building high-level features using large scale unsupervised learning. IEEE Int Conf Acoustics
    • Le QV. Building high-level features using large scale unsupervised learning. IEEE Int Conf Acoustics. Speech Signal Process. 2013; 26:8595-8.
    • (2013) Speech Signal Process , vol.26 , pp. 8595-8598
    • Le, Q.V.1
  • 58
    • 84941620184 scopus 로고    scopus 로고
    • Adam: A method for stochastic optimization
    • arXiv, arXiv:1412.6980
    • Kingma D, Ba J. Adam: A method for stochastic optimization. arXiv, 2014; arXiv:1412.6980.
    • (2014)
    • Kingma, D.1    Ba, J.2
  • 60
    • 79955522081 scopus 로고    scopus 로고
    • Towards better accuracy for missing value estimation of epistatic miniarray profiling data by a novel ensemble approach
    • Pan XY, Tian Y, Huang Y, Shen HB. Towards better accuracy for missing value estimation of epistatic miniarray profiling data by a novel ensemble approach. Genomics. 2011; 97:257-64.
    • (2011) Genomics , vol.97 , pp. 257-264
    • Pan, X.Y.1    Tian, Y.2    Huang, Y.3    Shen, H.B.4
  • 61
    • 72049095273 scopus 로고    scopus 로고
    • The bigchaos solution to the netflix grand prize
    • Töscher A, et al. The bigchaos solution to the netflix grand prize: 2009. http://www.stat.osu.edu/~dmsl/GrandPrize2009_BPC_BigChaos.pdf.
    • (2009)
    • Töscher, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.