-
1
-
-
84902668801
-
Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma
-
Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science. 2014;344:1396-401.
-
(2014)
Science
, vol.344
, pp. 1396-1401
-
-
Patel, A.P.1
Tirosh, I.2
Trombetta, J.J.3
Shalek, A.K.4
Gillespie, S.M.5
Wakimoto, H.6
-
2
-
-
11844278458
-
Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets
-
Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120:15-20.
-
(2005)
Cell
, vol.120
, pp. 15-20
-
-
Lewis, B.P.1
Burge, C.B.2
Bartel, D.P.3
-
3
-
-
84900873950
-
The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells
-
Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol. 2014;32:381-6.
-
(2014)
Nat Biotechnol
, vol.32
, pp. 381-386
-
-
Trapnell, C.1
Cacchiarelli, D.2
Grimsby, J.3
Pokharel, P.4
Li, S.5
Morse, M.6
-
4
-
-
84887109584
-
Accounting for technical noise in single-cell RNA-seq experiments
-
Brennecke P, Anders S, Kim JK, Kołodziejczyk AA, Zhang X, Proserpio V, et al. Accounting for technical noise in single-cell RNA-seq experiments. Nat. Methods. 2013;10:1093-5.
-
(2013)
Nat. Methods.
, vol.10
, pp. 1093-1095
-
-
Brennecke, P.1
Anders, S.2
Kim, J.K.3
Kołodziejczyk, A.A.4
Zhang, X.5
Proserpio, V.6
-
5
-
-
84992163193
-
Single-cell transcriptomics bioinformatics and computational challenges
-
Poirion OB, Zhu X, Ching T, Garmire L. Single-cell transcriptomics bioinformatics and computational challenges. Front. Genet. 2016;7:163.
-
(2016)
Front. Genet.
, vol.7
, pp. 163
-
-
Poirion, O.B.1
Zhu, X.2
Ching, T.3
Garmire, L.4
-
6
-
-
84930161442
-
R: A language and environment for statistical computing
-
Accessed 15 Oct 2017.
-
Team RC. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. 2015. http://www.R-project.org. Accessed 15 Oct 2017.
-
(2015)
Vienna, Austria: R Foundation for Statistical Computing
-
-
-
7
-
-
85010007467
-
Scater: pre-processing, quality control, normalisation and visualisation of single-cell RNA-seq data in R. bioRxiv
-
Accessed 15 Oct 2017.
-
McCarthy DJ, Campbell KR, Lun ATL, Wills QF. scater: pre-processing, quality control, normalisation and visualisation of single-cell RNA-seq data in R. bioRxiv. 2016. http://biorxiv.org/content/early/2016/08/15/069633. Accessed 15 Oct 2017.
-
(2016)
-
-
McCarthy, D.J.1
Campbell, K.R.2
Lun, A.T.L.3
Wills, Q.F.4
-
8
-
-
0030305457
-
R: a language for data analysis and graphics
-
Ihaka R, Gentleman R. R: a language for data analysis and graphics. J Comput Graph Stat. 1996;5:299-314.
-
(1996)
J Comput Graph Stat
, vol.5
, pp. 299-314
-
-
Ihaka, R.1
Gentleman, R.2
-
9
-
-
85037355042
-
-
Easy web applications in R
-
RStudio, Inc. Easy web applications in R. 2013.
-
(2013)
-
-
-
10
-
-
85037336534
-
Shinyjs: easily improve the user experience of your shiny apps in seconds
-
Attali D. shinyjs: easily improve the user experience of your shiny apps in seconds. 2016. https://cran.r-project.org/package=shinyjs.
-
(2016)
-
-
Attali, D.1
-
11
-
-
85041241010
-
VisNetwork: network visualization using "vis.js" library
-
Almende BV, Thieurmel B. visNetwork: network visualization using "vis.js" library. 2016. https://cran.r-project.org/package=visNetwork.
-
(2016)
-
-
Almende, B.V.1
Thieurmel, B.2
-
12
-
-
85037364453
-
DT: a wrapper of the JavaScript library DataTables
-
Xie Y. DT: a wrapper of the JavaScript library "DataTables". 2016. https://cran.r-project.org/package=DT.
-
(2016)
-
-
Xie, Y.1
-
13
-
-
84991504520
-
Plotly: create interactive web graphics via "plotly.js"
-
Sievert C, Parmer C, Hocking T, Chamberlain S, Ram K, Corvellec M, et al. plotly: create interactive web graphics via "plotly.js". 2016. https://cran.r-project.org/package=plotly.
-
(2016)
-
-
Sievert, C.1
Parmer, C.2
Hocking, T.3
Chamberlain, S.4
Ram, K.5
Corvellec, M.6
-
15
-
-
84962641396
-
On the widespread and critical impact of systematic bias and batch effects in single-cell RNA-Seq data
-
bioRxiv
-
Hicks SC, Teng M, Irizarry RA. On the widespread and critical impact of systematic bias and batch effects in single-cell RNA-Seq data. bioRxiv. 2015;25528.
-
(2015)
, pp. 25528
-
-
Hicks, S.C.1
Teng, M.2
Irizarry, R.A.3
-
16
-
-
33845432928
-
Adjusting batch effects in microarray expression data using empirical Bayes methods
-
Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics. 2007;8:118-27.
-
(2007)
Biostatistics
, vol.8
, pp. 118-127
-
-
Johnson, W.E.1
Li, C.2
Rabinovic, A.3
-
17
-
-
84937573360
-
Single-cell mRNA sequencing identifies subclonal heterogeneity in anti-cancer drug responses of lung adenocarcinoma cells
-
Kim K-T, Lee HW, Lee H-O, Kim SC, Seo YJ, Chung W, et al. Single-cell mRNA sequencing identifies subclonal heterogeneity in anti-cancer drug responses of lung adenocarcinoma cells. Genome Biol. 2015;16:127.
-
(2015)
Genome Biol
, vol.16
, pp. 127
-
-
Kim, K.-T.1
Lee, H.W.2
Lee, H.-O.3
Kim, S.C.4
Seo, Y.J.5
Chung, W.6
-
18
-
-
85014067631
-
Application of single-cell RNA sequencing in optimizing a combinatorial therapeutic strategy in metastatic renal cell carcinoma
-
Kim K-T, Lee HW, Lee H-O, Song HJ, Shin S, Kim H, et al. Application of single-cell RNA sequencing in optimizing a combinatorial therapeutic strategy in metastatic renal cell carcinoma. Genome Biol. 2016;17:80.
-
(2016)
Genome Biol
, vol.17
, pp. 80
-
-
Kim, K.-T.1
Lee, H.W.2
Lee, H.-O.3
Song, H.J.4
Shin, S.5
Kim, H.6
-
19
-
-
84962688754
-
Single-cell RNA-Seq reveals lineage and X chromosome dynamics in human preimplantation embryos
-
Petropoulos S, Edsgärd D, Reinius B, Deng Q, Panula SP, Codeluppi S, et al. Single-cell RNA-Seq reveals lineage and X chromosome dynamics in human preimplantation embryos. Cell. 2016:165:1012-26.
-
(2016)
Cell
, vol.165
, pp. 1012-1026
-
-
Petropoulos, S.1
Edsgärd, D.2
Reinius, B.3
Deng, Q.4
Panula, S.P.5
Codeluppi, S.6
-
20
-
-
34848914038
-
Capturing heterogeneity in gene expression studies by surrogate variable analysis
-
Leek JT, Storey JD. Capturing heterogeneity in gene expression studies by surrogate variable analysis. PLoS Genet. 2007;3:e161.
-
(2007)
PLoS Genet
, vol.3
-
-
Leek, J.T.1
Storey, J.D.2
-
22
-
-
85037371307
-
Detecting heterogeneity in single-cell RNA-Seq data by non-negative matrix factorization
-
Zhu X, Ching T, Pan X, Weissman S, Garmire L. Detecting heterogeneity in single-cell RNA-Seq data by non-negative matrix factorization. PeerJ Prepr. 2016;4:e1839v1.
-
(2016)
PeerJ Prepr
, vol.4
-
-
Zhu, X.1
Ching, T.2
Pan, X.3
Weissman, S.4
Garmire, L.5
-
23
-
-
84926494057
-
Shiny: Web Application Framework for R, 2015
-
R package version 0.11
-
Chang, Winston, et al. Shiny: Web Application Framework for R, 2015. R package version 0.11 (2015). https://cran.r-project.org/package=shiny.
-
(2015)
-
-
Chang, W.1
-
24
-
-
77954069195
-
A flexible R package for nonnegative matrix factorization BMC
-
Gaujoux R, Seoighe C. A flexible R package for nonnegative matrix factorization BMC Bioinformatics. 2010;11:367.
-
(2010)
Bioinformatics
, vol.11
, pp. 367
-
-
Gaujoux, R.1
Seoighe, C.2
-
25
-
-
0020102027
-
Least squares quantization in PCM
-
Lloyd S. Least squares quantization in PCM. IEEE Trans Inf Theory IEEE. 1982;28:129-37.
-
(1982)
IEEE Trans Inf Theory IEEE
, vol.28
, pp. 129-137
-
-
Lloyd, S.1
-
26
-
-
84902830586
-
Methods of hierarchical clustering
-
arXiv prepr. arXiv1105.0121
-
Murtagh F, Contreras P. Methods of hierarchical clustering. arXiv prepr. arXiv1105.0121. 2011. https://arxiv.org/abs/1105.0121.
-
(2011)
-
-
Murtagh, F.1
Contreras, P.2
-
27
-
-
84975773169
-
Rtsne: t-distributed stochastic neighbor embedding using Barnes-Hut implementation
-
Accessed 15 Oct 2017.
-
Krijthe J. Rtsne: t-distributed stochastic neighbor embedding using Barnes-Hut implementation. R Package version 0.10. 2015. http://CRAN.R-project.org/package=Rtsne. Accessed 15 Oct 2017.
-
(2015)
R Package version 0.10
-
-
Krijthe, J.1
-
29
-
-
85029783271
-
Single-cell regulome data analysis by SCRAT
-
Ji Z, Zhou W, Ji H. Single-cell regulome data analysis by SCRAT. Bioinformatics. 2017;33:2930-32.
-
(2017)
Bioinformatics.
, vol.33
, pp. 2930-2932
-
-
Ji, Z.1
Zhou, W.2
Ji, H.3
-
30
-
-
85042592208
-
Fast, scalable and accurate differential expression analysis for single cells
-
bioRxiv
-
Sengupta D, Rayan NA, Lim M, Lim B, Prabhakar S. Fast, scalable and accurate differential expression analysis for single cells. bioRxiv. 2016;49734.
-
(2016)
, pp. 49734
-
-
Sengupta, D.1
Rayan, N.A.2
Lim, M.3
Lim, B.4
Prabhakar, S.5
-
31
-
-
84903574951
-
Bayesian approach to single-cell differential expression analysis
-
Kharchenko PV, Silberstein L, Scadden DT. Bayesian approach to single-cell differential expression analysis. Nat Methods. 2014;11:740-2.
-
(2014)
Nat Methods
, vol.11
, pp. 740-742
-
-
Kharchenko, P.V.1
Silberstein, L.2
Scadden, D.T.3
-
32
-
-
75249087100
-
edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
-
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139-40.
-
(2010)
Bioinformatics
, vol.26
, pp. 139-140
-
-
Robinson, M.D.1
McCarthy, D.J.2
Smyth, G.K.3
-
33
-
-
84926507971
-
limma powers differential expression analyses for RNA-sequencing and microarray studies
-
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47.
-
(2015)
Nucleic Acids Res
, vol.43
-
-
Ritchie, M.E.1
Phipson, B.2
Wu, D.3
Hu, Y.4
Law, C.W.5
Shi, W.6
-
34
-
-
84937703271
-
Single-cell RNA-seq transcriptome analysis of linear and circular RNAs in mouse preimplantation embryos
-
Fan X, Zhang X, Wu X, Guo H, Hu Y, Tang F, et al. Single-cell RNA-seq transcriptome analysis of linear and circular RNAs in mouse preimplantation embryos. Genome Biol. 2015;16:148.
-
(2015)
Genome Biol
, vol.16
, pp. 148
-
-
Fan, X.1
Zhang, X.2
Wu, X.3
Guo, H.4
Hu, Y.5
Tang, F.6
-
35
-
-
84961327715
-
Adult mouse cortical cell taxonomy by single cell transcriptomics
-
Tasic B, Menon V, Nguyen TN, Kim TK, Jarsky T, Yao Z, et al. Adult mouse cortical cell taxonomy by single cell transcriptomics. Nat Neurosci. 2016;19:335.
-
(2016)
Nat Neurosci
, vol.19
, pp. 335
-
-
Tasic, B.1
Menon, V.2
Nguyen, T.N.3
Kim, T.K.4
Jarsky, T.5
Yao, Z.6
-
36
-
-
85037330563
-
An algorithm for fast preranked gene set enrichment analysis using cumulative statistic calculation
-
bioRxiv Accessed 15 Oct 2017.
-
Sergushichev A. An algorithm for fast preranked gene set enrichment analysis using cumulative statistic calculation. bioRxiv. 2016. http://biorxiv.org/content/early/2016/06/20/060012. Accessed 15 Oct 2017.
-
(2016)
-
-
Sergushichev, A.1
-
37
-
-
27344435774
-
Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles
-
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102:15545-50.
-
(2005)
Proc Natl Acad Sci U S A
, vol.102
, pp. 15545-15550
-
-
Subramanian, A.1
Tamayo, P.2
Mootha, V.K.3
Mukherjee, S.4
Ebert, B.L.5
Gillette, M.A.6
-
38
-
-
0001677717
-
Controlling the false discovery rate: a practical and powerful approach to multiple testing
-
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B. 1995;57:289-300.
-
(1995)
J R Stat Soc B.
, vol.57
, pp. 289-300
-
-
Benjamini, Y.1
Hochberg, Y.2
-
39
-
-
85037349885
-
ASAP: a web-based platform for the analysis and inter-active visualization of single-cell RNA-seq data
-
bioRxiv
-
Gardeux V, David F, Shajkofci A, Schwalie PC, Deplancke B. ASAP: a web-based platform for the analysis and inter-active visualization of single-cell RNA-seq data. bioRxiv. 2016;96222.
-
(2016)
, pp. 96222
-
-
Gardeux, V.1
David, F.2
Shajkofci, A.3
Schwalie, P.C.4
Deplancke, B.5
-
40
-
-
85055653418
-
Splatter: simulation of single-cell RNA sequencing data
-
bioRxiv
-
Zappia L, Phipson B, Oshlack A. Splatter: simulation of single-cell RNA sequencing data. bioRxiv. 2017;133173.
-
(2017)
, pp. 133173
-
-
Zappia, L.1
Phipson, B.2
Oshlack, A.3
-
41
-
-
57249084011
-
Visualizing data using t-SNE
-
van der Maaten L, Hinton G. Visualizing data using t-SNE. J Mach Learn Res. 2008;9:2579-605.
-
(2008)
J Mach Learn Res
, vol.9
, pp. 2579-2605
-
-
Maaten, L.1
Hinton, G.2
-
42
-
-
0037316303
-
A comparison of normalization methods for high density oligonucleotide array data based on variance and bias
-
Bolstad BM, Irizarry RA, Åstrand M, Speed TP. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics. 2003;19:185-93.
-
(2003)
Bioinformatics
, vol.19
, pp. 185-193
-
-
Bolstad, B.M.1
Irizarry, R.A.2
Åstrand, M.3
Speed, T.P.4
-
43
-
-
84924629414
-
Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2
-
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2. Genome Biol. 2014;15:550.
-
(2014)
Genome Biol.
, vol.15
, pp. 550
-
-
Love, M.I.1
Huber, W.2
Anders, S.3
-
44
-
-
84896735766
-
Voom: precision weights unlock linear model analysis tools for RNA-seq read counts
-
Law CW, Chen Y, Shi W, Smyth GK. Voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 2014;15:R29.
-
(2014)
Genome Biol
, vol.15
-
-
Law, C.W.1
Chen, Y.2
Shi, W.3
Smyth, G.K.4
-
45
-
-
84883134780
-
Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing
-
Xue Z, Huang K, Cai C, Cai L, Jiang C, Feng Y, et al. Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing. Nature. 2013;500:593.
-
(2013)
Nature
, vol.500
, pp. 593
-
-
Xue, Z.1
Huang, K.2
Cai, C.3
Cai, L.4
Jiang, C.5
Feng, Y.6
-
46
-
-
84858068675
-
Removing technical variability in RNA-seq data using conditional quantile normalization
-
Hansen KD, Irizarry RA, Wu Z. Removing technical variability in RNA-seq data using conditional quantile normalization. Biostatistics. 2012;13:204-16.
-
(2012)
Biostatistics
, vol.13
, pp. 204-216
-
-
Hansen, K.D.1
Irizarry, R.A.2
Wu, Z.3
-
47
-
-
84955706109
-
ZIFA: dimensionality reduction for zero-inflated single-cell gene expression analysis
-
Pierson E, Yau C. ZIFA: dimensionality reduction for zero-inflated single-cell gene expression analysis. Genome Biol. 2015;16:1-10.
-
(2015)
Genome Biol
, vol.16
, pp. 1-10
-
-
Pierson, E.1
Yau, C.2
-
48
-
-
85029209389
-
ScImpute: accurate and robust imputation for single cell RNA-seq data
-
bioRxiv
-
Li WV, Li JJ. scImpute: accurate and robust imputation for single cell RNA-seq data. bioRxiv. 2017;141598.
-
(2017)
, pp. 141598
-
-
Li, W.V.1
Li, J.J.2
-
49
-
-
85029229611
-
Gene expression recovery for single cell RNA sequencing
-
bioRxiv
-
Huang M, Wang J, Torre E, Dueck H, Shaffer S, Bonasio R, et al. Gene expression recovery for single cell RNA sequencing. bioRxiv. 2017;138677.
-
(2017)
, pp. 138677
-
-
Huang, M.1
Wang, J.2
Torre, E.3
Dueck, H.4
Shaffer, S.5
Bonasio, R.6
-
50
-
-
0031114483
-
GeneCards: integrating information about genes, proteins and diseases
-
Rebhan M, Chalifa-Caspi V, Prilusky J, Lancet D. GeneCards: integrating information about genes, proteins and diseases. Trends Genet. 1997;13:163.
-
(1997)
Trends Genet
, vol.13
, pp. 163
-
-
Rebhan, M.1
Chalifa-Caspi, V.2
Prilusky, J.3
Lancet, D.4
-
51
-
-
85016149190
-
KEGG: new perspectives on genomes, pathways, diseases and drugs
-
Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017;45:D353-61.
-
(2017)
Nucleic Acids Res
, vol.45
, pp. D353-D361
-
-
Kanehisa, M.1
Furumichi, M.2
Tanabe, M.3
Sato, Y.4
Morishima, K.5
-
52
-
-
84946735654
-
Gene ontology consortium: going forward
-
Consortium GO. Gene ontology consortium: going forward. Nucleic Acids Res. 2015;43:D1049-56.
-
(2015)
Nucleic Acids Res
, vol.43
, pp. D1049-D1056
-
-
Consortium, G.O.1
-
53
-
-
0034069495
-
Gene Ontology: tool for the unification of biology
-
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene Ontology: tool for the unification of biology. Nat Genet. 2000;25:25-9.
-
(2000)
Nat Genet
, vol.25
, pp. 25-29
-
-
Ashburner, M.1
Ball, C.A.2
Blake, J.A.3
Botstein, D.4
Butler, H.5
Cherry, J.M.6
-
54
-
-
33846330896
-
Nod-like proteins in immunity, inflammation and disease
-
Fritz JH, Ferrero RL, Philpott DJ, Girardin SE. Nod-like proteins in immunity, inflammation and disease. Nat Immunol. 2006;7:1250-7.
-
(2006)
Nat Immunol
, vol.7
, pp. 1250-1257
-
-
Fritz, J.H.1
Ferrero, R.L.2
Philpott, D.J.3
Girardin, S.E.4
-
55
-
-
68949128792
-
PPAR-γ agonists and their effects on IGF-I receptor signaling: implications for cancer
-
Belfiore A, Genua M, Malaguarnera R. PPAR-γ agonists and their effects on IGF-I receptor signaling: implications for cancer. PPAR Res. 2009;2009:830501.
-
(2009)
PPAR Res.
, vol.2009
, pp. 830501
-
-
Belfiore, A.1
Genua, M.2
Malaguarnera, R.3
-
56
-
-
0242669237
-
Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer
-
Watkins DN, Berman DM, Burkholder SG, Wang B, Beachy PA, Baylin SB. Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer. Nature. 2003;422:313-7.
-
(2003)
Nature
, vol.422
, pp. 313-317
-
-
Watkins, D.N.1
Berman, D.M.2
Burkholder, S.G.3
Wang, B.4
Beachy, P.A.5
Baylin, S.B.6
-
57
-
-
0033990336
-
Heat shock factors and the control of the stress response
-
Santoro MG. Heat shock factors and the control of the stress response. Biochem Pharmacol. 2000;59:55-63.
-
(2000)
Biochem Pharmacol
, vol.59
, pp. 55-63
-
-
Santoro, M.G.1
-
58
-
-
0030820099
-
Immunotherapy of tumors with autologous tumor-derived heat shock protein preparations
-
Tamura Y, Peng P, Liu K, Daou M, Srivastava PK. Immunotherapy of tumors with autologous tumor-derived heat shock protein preparations. Science. 1997;278:117-20.
-
(1997)
Science
, vol.278
, pp. 117-120
-
-
Tamura, Y.1
Peng, P.2
Liu, K.3
Daou, M.4
Srivastava, P.K.5
-
59
-
-
42349084306
-
NVP-AUY922: a novel heat shock protein 90 inhibitor active against xenograft tumor growth, angiogenesis, and metastasis
-
Eccles SA, Massey A, Raynaud FI, Sharp SY, Box G, Valenti M, et al. NVP-AUY922: a novel heat shock protein 90 inhibitor active against xenograft tumor growth, angiogenesis, and metastasis. Cancer Res. 2008;68:2850-60.
-
(2008)
Cancer Res
, vol.68
, pp. 2850-2860
-
-
Eccles, S.A.1
Massey, A.2
Raynaud, F.I.3
Sharp, S.Y.4
Box, G.5
Valenti, M.6
-
60
-
-
85009446777
-
Massively parallel digital transcriptional profiling of single cells
-
Zheng, Grace XY, et al. Massively parallel digital transcriptional profiling of single cells. Nature communications 8. 2017:14049.
-
(2017)
Nature communications
, vol.8
-
-
Zheng, G.X.Y.1
-
61
-
-
85041108250
-
Integrated analysis of single cell transcriptomic data across conditions, technologies, and species
-
bioRxiv
-
Satija R, Butler, Andrew. Integrated analysis of single cell transcriptomic data across conditions, technologies, and species. bioRxiv. 2017:164889.
-
(2017)
-
-
Satija, R.1
Butler, A.2
-
62
-
-
84947805126
-
Sincell: an R/Bioconductor package for statistical assessment of cell-state hierarchies from single-cell RNA-seq
-
Juliá, Miguel, Telenti A, Rausell A. Sincell: an R/Bioconductor package for statistical assessment of cell-state hierarchies from single-cell RNA-seq. Bioinformatics 31.20. 2015:3380-3382.
-
(2015)
Bioinformatics
, vol.31
, Issue.20
, pp. 3380-3382
-
-
Juliá, M.1
Telenti, A.2
Rausell, A.3
-
63
-
-
84949293695
-
SINCERA: a pipeline for single-cell RNA-Seq profiling analysis
-
Guo M, et al. SINCERA: a pipeline for single-cell RNA-Seq profiling analysis. PLoS computational biology 11.11. 2015:e1004575.
-
(2015)
PLoS computational biology 11.11
-
-
Guo, M.1
|