메뉴 건너뛰기




Volumn 9, Issue 1, 2017, Pages

Granatum: A graphical single-cell RNA-Seq analysis pipeline for genomics scientists

Author keywords

Clustering; Differential expression; Gene expression; Graphical; Imputation; Normalization; Pathway; Pseudo time; Single cell; Software

Indexed keywords

ACCESS TO INFORMATION; ARTICLE; BIOINFORMATICS; CLUSTER ANALYSIS; CONTROLLED STUDY; DATA ANALYSIS; GENE EXPRESSION; GENE ONTOLOGY; GENOMICS; PRIORITY JOURNAL; PROTEIN PROTEIN INTERACTION; RNA SEQUENCE; SEQUENCE ANALYSIS; SINGLE CELL ANALYSIS; SOFTWARE; TIME SERIES ANALYSIS; PROCEDURES;

EID: 85037364770     PISSN: None     EISSN: 1756994X     Source Type: Journal    
DOI: 10.1186/s13073-017-0492-3     Document Type: Article
Times cited : (55)

References (63)
  • 2
    • 11844278458 scopus 로고    scopus 로고
    • Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets
    • Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120:15-20.
    • (2005) Cell , vol.120 , pp. 15-20
    • Lewis, B.P.1    Burge, C.B.2    Bartel, D.P.3
  • 3
    • 84900873950 scopus 로고    scopus 로고
    • The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells
    • Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol. 2014;32:381-6.
    • (2014) Nat Biotechnol , vol.32 , pp. 381-386
    • Trapnell, C.1    Cacchiarelli, D.2    Grimsby, J.3    Pokharel, P.4    Li, S.5    Morse, M.6
  • 5
    • 84992163193 scopus 로고    scopus 로고
    • Single-cell transcriptomics bioinformatics and computational challenges
    • Poirion OB, Zhu X, Ching T, Garmire L. Single-cell transcriptomics bioinformatics and computational challenges. Front. Genet. 2016;7:163.
    • (2016) Front. Genet. , vol.7 , pp. 163
    • Poirion, O.B.1    Zhu, X.2    Ching, T.3    Garmire, L.4
  • 6
    • 84930161442 scopus 로고    scopus 로고
    • R: A language and environment for statistical computing
    • Accessed 15 Oct 2017.
    • Team RC. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. 2015. http://www.R-project.org. Accessed 15 Oct 2017.
    • (2015) Vienna, Austria: R Foundation for Statistical Computing
  • 7
    • 85010007467 scopus 로고    scopus 로고
    • Scater: pre-processing, quality control, normalisation and visualisation of single-cell RNA-seq data in R. bioRxiv
    • Accessed 15 Oct 2017.
    • McCarthy DJ, Campbell KR, Lun ATL, Wills QF. scater: pre-processing, quality control, normalisation and visualisation of single-cell RNA-seq data in R. bioRxiv. 2016. http://biorxiv.org/content/early/2016/08/15/069633. Accessed 15 Oct 2017.
    • (2016)
    • McCarthy, D.J.1    Campbell, K.R.2    Lun, A.T.L.3    Wills, Q.F.4
  • 8
    • 0030305457 scopus 로고    scopus 로고
    • R: a language for data analysis and graphics
    • Ihaka R, Gentleman R. R: a language for data analysis and graphics. J Comput Graph Stat. 1996;5:299-314.
    • (1996) J Comput Graph Stat , vol.5 , pp. 299-314
    • Ihaka, R.1    Gentleman, R.2
  • 9
    • 85037355042 scopus 로고    scopus 로고
    • Easy web applications in R
    • RStudio, Inc. Easy web applications in R. 2013.
    • (2013)
  • 10
    • 85037336534 scopus 로고    scopus 로고
    • Shinyjs: easily improve the user experience of your shiny apps in seconds
    • Attali D. shinyjs: easily improve the user experience of your shiny apps in seconds. 2016. https://cran.r-project.org/package=shinyjs.
    • (2016)
    • Attali, D.1
  • 11
    • 85041241010 scopus 로고    scopus 로고
    • VisNetwork: network visualization using "vis.js" library
    • Almende BV, Thieurmel B. visNetwork: network visualization using "vis.js" library. 2016. https://cran.r-project.org/package=visNetwork.
    • (2016)
    • Almende, B.V.1    Thieurmel, B.2
  • 12
    • 85037364453 scopus 로고    scopus 로고
    • DT: a wrapper of the JavaScript library DataTables
    • Xie Y. DT: a wrapper of the JavaScript library "DataTables". 2016. https://cran.r-project.org/package=DT.
    • (2016)
    • Xie, Y.1
  • 15
    • 84962641396 scopus 로고    scopus 로고
    • On the widespread and critical impact of systematic bias and batch effects in single-cell RNA-Seq data
    • bioRxiv
    • Hicks SC, Teng M, Irizarry RA. On the widespread and critical impact of systematic bias and batch effects in single-cell RNA-Seq data. bioRxiv. 2015;25528.
    • (2015) , pp. 25528
    • Hicks, S.C.1    Teng, M.2    Irizarry, R.A.3
  • 16
    • 33845432928 scopus 로고    scopus 로고
    • Adjusting batch effects in microarray expression data using empirical Bayes methods
    • Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics. 2007;8:118-27.
    • (2007) Biostatistics , vol.8 , pp. 118-127
    • Johnson, W.E.1    Li, C.2    Rabinovic, A.3
  • 17
    • 84937573360 scopus 로고    scopus 로고
    • Single-cell mRNA sequencing identifies subclonal heterogeneity in anti-cancer drug responses of lung adenocarcinoma cells
    • Kim K-T, Lee HW, Lee H-O, Kim SC, Seo YJ, Chung W, et al. Single-cell mRNA sequencing identifies subclonal heterogeneity in anti-cancer drug responses of lung adenocarcinoma cells. Genome Biol. 2015;16:127.
    • (2015) Genome Biol , vol.16 , pp. 127
    • Kim, K.-T.1    Lee, H.W.2    Lee, H.-O.3    Kim, S.C.4    Seo, Y.J.5    Chung, W.6
  • 18
    • 85014067631 scopus 로고    scopus 로고
    • Application of single-cell RNA sequencing in optimizing a combinatorial therapeutic strategy in metastatic renal cell carcinoma
    • Kim K-T, Lee HW, Lee H-O, Song HJ, Shin S, Kim H, et al. Application of single-cell RNA sequencing in optimizing a combinatorial therapeutic strategy in metastatic renal cell carcinoma. Genome Biol. 2016;17:80.
    • (2016) Genome Biol , vol.17 , pp. 80
    • Kim, K.-T.1    Lee, H.W.2    Lee, H.-O.3    Song, H.J.4    Shin, S.5    Kim, H.6
  • 19
    • 84962688754 scopus 로고    scopus 로고
    • Single-cell RNA-Seq reveals lineage and X chromosome dynamics in human preimplantation embryos
    • Petropoulos S, Edsgärd D, Reinius B, Deng Q, Panula SP, Codeluppi S, et al. Single-cell RNA-Seq reveals lineage and X chromosome dynamics in human preimplantation embryos. Cell. 2016:165:1012-26.
    • (2016) Cell , vol.165 , pp. 1012-1026
    • Petropoulos, S.1    Edsgärd, D.2    Reinius, B.3    Deng, Q.4    Panula, S.P.5    Codeluppi, S.6
  • 20
    • 34848914038 scopus 로고    scopus 로고
    • Capturing heterogeneity in gene expression studies by surrogate variable analysis
    • Leek JT, Storey JD. Capturing heterogeneity in gene expression studies by surrogate variable analysis. PLoS Genet. 2007;3:e161.
    • (2007) PLoS Genet , vol.3
    • Leek, J.T.1    Storey, J.D.2
  • 22
    • 85037371307 scopus 로고    scopus 로고
    • Detecting heterogeneity in single-cell RNA-Seq data by non-negative matrix factorization
    • Zhu X, Ching T, Pan X, Weissman S, Garmire L. Detecting heterogeneity in single-cell RNA-Seq data by non-negative matrix factorization. PeerJ Prepr. 2016;4:e1839v1.
    • (2016) PeerJ Prepr , vol.4
    • Zhu, X.1    Ching, T.2    Pan, X.3    Weissman, S.4    Garmire, L.5
  • 23
    • 84926494057 scopus 로고    scopus 로고
    • Shiny: Web Application Framework for R, 2015
    • R package version 0.11
    • Chang, Winston, et al. Shiny: Web Application Framework for R, 2015. R package version 0.11 (2015). https://cran.r-project.org/package=shiny.
    • (2015)
    • Chang, W.1
  • 24
    • 77954069195 scopus 로고    scopus 로고
    • A flexible R package for nonnegative matrix factorization BMC
    • Gaujoux R, Seoighe C. A flexible R package for nonnegative matrix factorization BMC Bioinformatics. 2010;11:367.
    • (2010) Bioinformatics , vol.11 , pp. 367
    • Gaujoux, R.1    Seoighe, C.2
  • 25
    • 0020102027 scopus 로고
    • Least squares quantization in PCM
    • Lloyd S. Least squares quantization in PCM. IEEE Trans Inf Theory IEEE. 1982;28:129-37.
    • (1982) IEEE Trans Inf Theory IEEE , vol.28 , pp. 129-137
    • Lloyd, S.1
  • 26
    • 84902830586 scopus 로고    scopus 로고
    • Methods of hierarchical clustering
    • arXiv prepr. arXiv1105.0121
    • Murtagh F, Contreras P. Methods of hierarchical clustering. arXiv prepr. arXiv1105.0121. 2011. https://arxiv.org/abs/1105.0121.
    • (2011)
    • Murtagh, F.1    Contreras, P.2
  • 27
    • 84975773169 scopus 로고    scopus 로고
    • Rtsne: t-distributed stochastic neighbor embedding using Barnes-Hut implementation
    • Accessed 15 Oct 2017.
    • Krijthe J. Rtsne: t-distributed stochastic neighbor embedding using Barnes-Hut implementation. R Package version 0.10. 2015. http://CRAN.R-project.org/package=Rtsne. Accessed 15 Oct 2017.
    • (2015) R Package version 0.10
    • Krijthe, J.1
  • 29
    • 85029783271 scopus 로고    scopus 로고
    • Single-cell regulome data analysis by SCRAT
    • Ji Z, Zhou W, Ji H. Single-cell regulome data analysis by SCRAT. Bioinformatics. 2017;33:2930-32.
    • (2017) Bioinformatics. , vol.33 , pp. 2930-2932
    • Ji, Z.1    Zhou, W.2    Ji, H.3
  • 30
    • 85042592208 scopus 로고    scopus 로고
    • Fast, scalable and accurate differential expression analysis for single cells
    • bioRxiv
    • Sengupta D, Rayan NA, Lim M, Lim B, Prabhakar S. Fast, scalable and accurate differential expression analysis for single cells. bioRxiv. 2016;49734.
    • (2016) , pp. 49734
    • Sengupta, D.1    Rayan, N.A.2    Lim, M.3    Lim, B.4    Prabhakar, S.5
  • 31
    • 84903574951 scopus 로고    scopus 로고
    • Bayesian approach to single-cell differential expression analysis
    • Kharchenko PV, Silberstein L, Scadden DT. Bayesian approach to single-cell differential expression analysis. Nat Methods. 2014;11:740-2.
    • (2014) Nat Methods , vol.11 , pp. 740-742
    • Kharchenko, P.V.1    Silberstein, L.2    Scadden, D.T.3
  • 32
    • 75249087100 scopus 로고    scopus 로고
    • edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
    • Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139-40.
    • (2010) Bioinformatics , vol.26 , pp. 139-140
    • Robinson, M.D.1    McCarthy, D.J.2    Smyth, G.K.3
  • 33
    • 84926507971 scopus 로고    scopus 로고
    • limma powers differential expression analyses for RNA-sequencing and microarray studies
    • Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47.
    • (2015) Nucleic Acids Res , vol.43
    • Ritchie, M.E.1    Phipson, B.2    Wu, D.3    Hu, Y.4    Law, C.W.5    Shi, W.6
  • 34
    • 84937703271 scopus 로고    scopus 로고
    • Single-cell RNA-seq transcriptome analysis of linear and circular RNAs in mouse preimplantation embryos
    • Fan X, Zhang X, Wu X, Guo H, Hu Y, Tang F, et al. Single-cell RNA-seq transcriptome analysis of linear and circular RNAs in mouse preimplantation embryos. Genome Biol. 2015;16:148.
    • (2015) Genome Biol , vol.16 , pp. 148
    • Fan, X.1    Zhang, X.2    Wu, X.3    Guo, H.4    Hu, Y.5    Tang, F.6
  • 36
    • 85037330563 scopus 로고    scopus 로고
    • An algorithm for fast preranked gene set enrichment analysis using cumulative statistic calculation
    • bioRxiv Accessed 15 Oct 2017.
    • Sergushichev A. An algorithm for fast preranked gene set enrichment analysis using cumulative statistic calculation. bioRxiv. 2016. http://biorxiv.org/content/early/2016/06/20/060012. Accessed 15 Oct 2017.
    • (2016)
    • Sergushichev, A.1
  • 38
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: a practical and powerful approach to multiple testing
    • Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B. 1995;57:289-300.
    • (1995) J R Stat Soc B. , vol.57 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 39
    • 85037349885 scopus 로고    scopus 로고
    • ASAP: a web-based platform for the analysis and inter-active visualization of single-cell RNA-seq data
    • bioRxiv
    • Gardeux V, David F, Shajkofci A, Schwalie PC, Deplancke B. ASAP: a web-based platform for the analysis and inter-active visualization of single-cell RNA-seq data. bioRxiv. 2016;96222.
    • (2016) , pp. 96222
    • Gardeux, V.1    David, F.2    Shajkofci, A.3    Schwalie, P.C.4    Deplancke, B.5
  • 40
    • 85055653418 scopus 로고    scopus 로고
    • Splatter: simulation of single-cell RNA sequencing data
    • bioRxiv
    • Zappia L, Phipson B, Oshlack A. Splatter: simulation of single-cell RNA sequencing data. bioRxiv. 2017;133173.
    • (2017) , pp. 133173
    • Zappia, L.1    Phipson, B.2    Oshlack, A.3
  • 41
    • 57249084011 scopus 로고    scopus 로고
    • Visualizing data using t-SNE
    • van der Maaten L, Hinton G. Visualizing data using t-SNE. J Mach Learn Res. 2008;9:2579-605.
    • (2008) J Mach Learn Res , vol.9 , pp. 2579-2605
    • Maaten, L.1    Hinton, G.2
  • 42
    • 0037316303 scopus 로고    scopus 로고
    • A comparison of normalization methods for high density oligonucleotide array data based on variance and bias
    • Bolstad BM, Irizarry RA, Åstrand M, Speed TP. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics. 2003;19:185-93.
    • (2003) Bioinformatics , vol.19 , pp. 185-193
    • Bolstad, B.M.1    Irizarry, R.A.2    Åstrand, M.3    Speed, T.P.4
  • 43
    • 84924629414 scopus 로고    scopus 로고
    • Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2
    • Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2. Genome Biol. 2014;15:550.
    • (2014) Genome Biol. , vol.15 , pp. 550
    • Love, M.I.1    Huber, W.2    Anders, S.3
  • 44
    • 84896735766 scopus 로고    scopus 로고
    • Voom: precision weights unlock linear model analysis tools for RNA-seq read counts
    • Law CW, Chen Y, Shi W, Smyth GK. Voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 2014;15:R29.
    • (2014) Genome Biol , vol.15
    • Law, C.W.1    Chen, Y.2    Shi, W.3    Smyth, G.K.4
  • 45
    • 84883134780 scopus 로고    scopus 로고
    • Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing
    • Xue Z, Huang K, Cai C, Cai L, Jiang C, Feng Y, et al. Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing. Nature. 2013;500:593.
    • (2013) Nature , vol.500 , pp. 593
    • Xue, Z.1    Huang, K.2    Cai, C.3    Cai, L.4    Jiang, C.5    Feng, Y.6
  • 46
    • 84858068675 scopus 로고    scopus 로고
    • Removing technical variability in RNA-seq data using conditional quantile normalization
    • Hansen KD, Irizarry RA, Wu Z. Removing technical variability in RNA-seq data using conditional quantile normalization. Biostatistics. 2012;13:204-16.
    • (2012) Biostatistics , vol.13 , pp. 204-216
    • Hansen, K.D.1    Irizarry, R.A.2    Wu, Z.3
  • 47
    • 84955706109 scopus 로고    scopus 로고
    • ZIFA: dimensionality reduction for zero-inflated single-cell gene expression analysis
    • Pierson E, Yau C. ZIFA: dimensionality reduction for zero-inflated single-cell gene expression analysis. Genome Biol. 2015;16:1-10.
    • (2015) Genome Biol , vol.16 , pp. 1-10
    • Pierson, E.1    Yau, C.2
  • 48
    • 85029209389 scopus 로고    scopus 로고
    • ScImpute: accurate and robust imputation for single cell RNA-seq data
    • bioRxiv
    • Li WV, Li JJ. scImpute: accurate and robust imputation for single cell RNA-seq data. bioRxiv. 2017;141598.
    • (2017) , pp. 141598
    • Li, W.V.1    Li, J.J.2
  • 49
    • 85029229611 scopus 로고    scopus 로고
    • Gene expression recovery for single cell RNA sequencing
    • bioRxiv
    • Huang M, Wang J, Torre E, Dueck H, Shaffer S, Bonasio R, et al. Gene expression recovery for single cell RNA sequencing. bioRxiv. 2017;138677.
    • (2017) , pp. 138677
    • Huang, M.1    Wang, J.2    Torre, E.3    Dueck, H.4    Shaffer, S.5    Bonasio, R.6
  • 50
    • 0031114483 scopus 로고    scopus 로고
    • GeneCards: integrating information about genes, proteins and diseases
    • Rebhan M, Chalifa-Caspi V, Prilusky J, Lancet D. GeneCards: integrating information about genes, proteins and diseases. Trends Genet. 1997;13:163.
    • (1997) Trends Genet , vol.13 , pp. 163
    • Rebhan, M.1    Chalifa-Caspi, V.2    Prilusky, J.3    Lancet, D.4
  • 52
    • 84946735654 scopus 로고    scopus 로고
    • Gene ontology consortium: going forward
    • Consortium GO. Gene ontology consortium: going forward. Nucleic Acids Res. 2015;43:D1049-56.
    • (2015) Nucleic Acids Res , vol.43 , pp. D1049-D1056
    • Consortium, G.O.1
  • 55
    • 68949128792 scopus 로고    scopus 로고
    • PPAR-γ agonists and their effects on IGF-I receptor signaling: implications for cancer
    • Belfiore A, Genua M, Malaguarnera R. PPAR-γ agonists and their effects on IGF-I receptor signaling: implications for cancer. PPAR Res. 2009;2009:830501.
    • (2009) PPAR Res. , vol.2009 , pp. 830501
    • Belfiore, A.1    Genua, M.2    Malaguarnera, R.3
  • 56
  • 57
    • 0033990336 scopus 로고    scopus 로고
    • Heat shock factors and the control of the stress response
    • Santoro MG. Heat shock factors and the control of the stress response. Biochem Pharmacol. 2000;59:55-63.
    • (2000) Biochem Pharmacol , vol.59 , pp. 55-63
    • Santoro, M.G.1
  • 58
    • 0030820099 scopus 로고    scopus 로고
    • Immunotherapy of tumors with autologous tumor-derived heat shock protein preparations
    • Tamura Y, Peng P, Liu K, Daou M, Srivastava PK. Immunotherapy of tumors with autologous tumor-derived heat shock protein preparations. Science. 1997;278:117-20.
    • (1997) Science , vol.278 , pp. 117-120
    • Tamura, Y.1    Peng, P.2    Liu, K.3    Daou, M.4    Srivastava, P.K.5
  • 59
    • 42349084306 scopus 로고    scopus 로고
    • NVP-AUY922: a novel heat shock protein 90 inhibitor active against xenograft tumor growth, angiogenesis, and metastasis
    • Eccles SA, Massey A, Raynaud FI, Sharp SY, Box G, Valenti M, et al. NVP-AUY922: a novel heat shock protein 90 inhibitor active against xenograft tumor growth, angiogenesis, and metastasis. Cancer Res. 2008;68:2850-60.
    • (2008) Cancer Res , vol.68 , pp. 2850-2860
    • Eccles, S.A.1    Massey, A.2    Raynaud, F.I.3    Sharp, S.Y.4    Box, G.5    Valenti, M.6
  • 60
    • 85009446777 scopus 로고    scopus 로고
    • Massively parallel digital transcriptional profiling of single cells
    • Zheng, Grace XY, et al. Massively parallel digital transcriptional profiling of single cells. Nature communications 8. 2017:14049.
    • (2017) Nature communications , vol.8
    • Zheng, G.X.Y.1
  • 61
    • 85041108250 scopus 로고    scopus 로고
    • Integrated analysis of single cell transcriptomic data across conditions, technologies, and species
    • bioRxiv
    • Satija R, Butler, Andrew. Integrated analysis of single cell transcriptomic data across conditions, technologies, and species. bioRxiv. 2017:164889.
    • (2017)
    • Satija, R.1    Butler, A.2
  • 62
    • 84947805126 scopus 로고    scopus 로고
    • Sincell: an R/Bioconductor package for statistical assessment of cell-state hierarchies from single-cell RNA-seq
    • Juliá, Miguel, Telenti A, Rausell A. Sincell: an R/Bioconductor package for statistical assessment of cell-state hierarchies from single-cell RNA-seq. Bioinformatics 31.20. 2015:3380-3382.
    • (2015) Bioinformatics , vol.31 , Issue.20 , pp. 3380-3382
    • Juliá, M.1    Telenti, A.2    Rausell, A.3
  • 63
    • 84949293695 scopus 로고    scopus 로고
    • SINCERA: a pipeline for single-cell RNA-Seq profiling analysis
    • Guo M, et al. SINCERA: a pipeline for single-cell RNA-Seq profiling analysis. PLoS computational biology 11.11. 2015:e1004575.
    • (2015) PLoS computational biology 11.11
    • Guo, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.