메뉴 건너뛰기




Volumn 10, Issue 12, 2018, Pages

A new method for region-based majority voting CNNs for very high resolution image classification

Author keywords

CNN; GEOBIA; Region based classification; Remote sensing; Very high resolution image

Indexed keywords

DEEP LEARNING; NEURAL NETWORKS; PIXELS; REMOTE SENSING; SUPERPIXELS; VOTING MACHINES;

EID: 85058871481     PISSN: None     EISSN: 20724292     Source Type: Journal    
DOI: 10.3390/rs10121946     Document Type: Article
Times cited : (62)

References (51)
  • 2
    • 85059547513 scopus 로고    scopus 로고
    • Vegetation species mapping in a coastal-dune ecosystem using high resolution satellite imagery
    • Machín, A.M.; Marcello, J.; Cordero, A.I.H.; Eugenio, F. Vegetation species mapping in a coastal-dune ecosystem using high resolution satellite imagery. GISci. Remote Sens. 2018
    • (2018) GISci. Remote Sens
    • Machín, A.M.1    Marcello, J.2    Cordero, A.I.H.3    Eugenio, F.4
  • 4
    • 84953340965 scopus 로고    scopus 로고
    • A study of a Gaussian mixture model for urban land-cover mapping based on VHR remote sensing imagery
    • Tao, J.; Shu, N.; Wang, Y.; Hu, Q.; Zhang, Y. A study of a Gaussian mixture model for urban land-cover mapping based on VHR remote sensing imagery. Int. J. Remote Sens. 2016, 37, 1-13
    • (2016) Int. J. Remote Sens , vol.37 , pp. 1-13
    • Tao, J.1    Shu, N.2    Wang, Y.3    Hu, Q.4    Zhang, Y.5
  • 5
    • 73249139477 scopus 로고    scopus 로고
    • Object based image analysis for remote sensing
    • Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 2010, 65, 2-16
    • (2010) ISPRS J. Photogramm. Remote Sens , vol.65 , pp. 2-16
    • Blaschke, T.1
  • 7
    • 84884974860 scopus 로고    scopus 로고
    • Bayesian framework for mapping and classifying shallow landslides exploiting remote sensing and topographic data
    • Mondini, A.C.; Marchesini, I.; Rossi, M.; Chang, K.T.; Pasquariello, G.; Guzzetti, F. Bayesian framework for mapping and classifying shallow landslides exploiting remote sensing and topographic data. Geomorphology 2013, 201, 135-147
    • (2013) Geomorphology , vol.201 , pp. 135-147
    • Mondini, A.C.1    Marchesini, I.2    Rossi, M.3    Chang, K.T.4    Pasquariello, G.5    Guzzetti, F.6
  • 8
    • 33751564661 scopus 로고    scopus 로고
    • Bayesian Multi-net Classifier for classification of remote sensing data
    • Ouyang, Y.; Ma, J.; Dai, Q. Bayesian Multi-net Classifier for classification of remote sensing data. Int. J. Remote Sens. 2006, 27, 4943-4961
    • (2006) Int. J. Remote Sens , vol.27 , pp. 4943-4961
    • Ouyang, Y.1    Ma, J.2    Dai, Q.3
  • 9
    • 85042546366 scopus 로고    scopus 로고
    • Hierarchical Terrain Classification Based on Multilayer Bayesian Network and Conditional Random Field
    • He, C.; Liu, X.; Feng, D.; Shi, B.; Luo, B.; Liao, M. Hierarchical Terrain Classification Based on Multilayer Bayesian Network and Conditional Random Field. Remote Sens. 2017, 9, 96
    • (2017) Remote Sens , vol.9 , pp. 96
    • He, C.1    Liu, X.2    Feng, D.3    Shi, B.4    Luo, B.5    Liao, M.6
  • 10
    • 0030148684 scopus 로고    scopus 로고
    • Bayesian Image Classification Using Markov Random Fields
    • Berthod, M.; Kato, Z.; Yu, S.; Zerubia, J. Bayesian Image Classification Using Markov Random Fields. Image Vis. Comput. 1996, 14, 285-295
    • (1996) Image Vis. Comput , vol.14 , pp. 285-295
    • Berthod, M.1    Kato, Z.2    Yu, S.3    Zerubia, J.4
  • 12
    • 84860909030 scopus 로고    scopus 로고
    • Local SVM approaches for fast and accurate classification of remote-sensing images
    • Segata, N.; Pasolli, E.; Melgani, F.; Blanzieri, E. Local SVM approaches for fast and accurate classification of remote-sensing images. Int. J. Remote Sens. 2012, 33, 6186-6201
    • (2012) Int. J. Remote Sens , vol.33 , pp. 6186-6201
    • Segata, N.1    Pasolli, E.2    Melgani, F.3    Blanzieri, E.4
  • 13
    • 84978419156 scopus 로고    scopus 로고
    • SVM-based soft classification of urban tree species using very high-spatial resolution remote-sensing imagery
    • Zhou, J.; Qin, J.; Gao, K.; Leng, H. SVM-based soft classification of urban tree species using very high-spatial resolution remote-sensing imagery. Int. J. Remote Sens. 2016, 37, 2541-2559
    • (2016) Int. J. Remote Sens , vol.37 , pp. 2541-2559
    • Zhou, J.1    Qin, J.2    Gao, K.3    Leng, H.4
  • 14
    • 84890734733 scopus 로고    scopus 로고
    • An innovative support vector machine based method for contextual image classification
    • Negri, R.G.; Dutra, L.V.; Sant'Anna, S.J.S. An innovative support vector machine based method for contextual image classification. ISPRS J. Photogramm. Remote Sens. 2014, 87, 241-248
    • (2014) ISPRS J. Photogramm. Remote Sens , vol.87 , pp. 241-248
    • Negri, R.G.1    Dutra, L.V.2    Sant'Anna, S.J.S.3
  • 16
    • 85049083388 scopus 로고    scopus 로고
    • Stratified Object-Oriented Image Classification Based on Remote Sensing Image Scene Division
    • Zhou, W.; Ming, D.; Xu, L.; Bao, H.; Wang, M. Stratified Object-Oriented Image Classification Based on Remote Sensing Image Scene Division. J. Spectrosc. 2018
    • (2018) J. Spectrosc
    • Zhou, W.1    Ming, D.2    Xu, L.3    Bao, H.4    Wang, M.5
  • 17
    • 84983648146 scopus 로고    scopus 로고
    • Exploring the Capability of ALOS PALSAR L-Band Fully Polarimetric Data for Land Cover Classification in Tropical Environments
    • Negri, R.G.; Dutra, L.V.; Freitas, C.D.C.; Lu, D. Exploring the Capability of ALOS PALSAR L-Band Fully Polarimetric Data for Land Cover Classification in Tropical Environments. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 5369-5384
    • (2016) IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens , vol.9 , pp. 5369-5384
    • Negri, R.G.1    Dutra, L.V.2    Freitas, C.D.C.3    Lu, D.4
  • 18
    • 85047397877 scopus 로고    scopus 로고
    • Inducing Contextual ClassificationsWith Kernel Functions Into Support Vector Machines
    • Negri, R.G.; Silva, E.A.D.; Casaca,W. Inducing Contextual ClassificationsWith Kernel Functions Into Support Vector Machines. IEEE Geosci. Remote Sens. Lett. 2018, 15, 962-966
    • (2018) IEEE Geosci. Remote Sens. Lett , vol.15 , pp. 962-966
    • Negri, R.G.1    Silva, E.A.D.2    Casaca, W.3
  • 19
    • 65449189515 scopus 로고    scopus 로고
    • Using Geometrical, Textural, and Contextual Information of Land Parcels for Classification of Detailed Urban Land Use
    • Wu, S.-S.; Qiu, X.; Usery, E.L.;Wang, L. Using Geometrical, Textural, and Contextual Information of Land Parcels for Classification of Detailed Urban Land Use. Ann. Assoc. Am. Geogr. 2009, 99, 76-98
    • (2009) Ann. Assoc. Am. Geogr , vol.99 , pp. 76-98
    • Wu, S.-S.1    Qiu, X.2    Usery, E.L.3    Wang, L.4
  • 20
    • 84937137588 scopus 로고    scopus 로고
    • On combining multiscale deep learning features for the classification of hyperspectral remote sensing imagery
    • Zhao, W.; Guo, Z.; Yue, J.; Luo, L.; Luo, L. On combining multiscale deep learning features for the classification of hyperspectral remote sensing imagery. Int. J. Remote Sens. 2015, 36, 3368-3379
    • (2015) Int. J. Remote Sens , vol.36 , pp. 3368-3379
    • Zhao, W.1    Guo, Z.2    Yue, J.3    Luo, L.4    Luo, L.5
  • 23
    • 85014892308 scopus 로고    scopus 로고
    • Automatic Road Detection and Centerline Extraction via Cascaded End-to-End Convolutional Neural Network
    • Cheng, G.;Wang, Y.; Xu, S.;Wang, H.; Xiang, S.; Pan, C. Automatic Road Detection and Centerline Extraction via Cascaded End-to-End Convolutional Neural Network. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3322-3337
    • (2017) IEEE Trans. Geosci. Remote Sens , vol.55 , pp. 3322-3337
    • Cheng, G.1    Wang, Y.2    Xu, S.3    Wang, H.4    Xiang, S.5    Pan, C.6
  • 24
    • 84950141946 scopus 로고    scopus 로고
    • Transferring Deep Convolutional Neural Networks for the Scene Classification of High-Resolution Remote Sensing Imagery
    • Hu, F.; Xia, G.S.; Hu, J.; Zhang, L. Transferring Deep Convolutional Neural Networks for the Scene Classification of High-Resolution Remote Sensing Imagery. Remote Sens. 2015, 7, 14680-14707
    • (2015) Remote Sens , vol.7 , pp. 14680-14707
    • Hu, F.1    Xia, G.S.2    Hu, J.3    Zhang, L.4
  • 25
    • 84978388572 scopus 로고    scopus 로고
    • Using convolutional features and a sparse autoencoder for land-use scene classification
    • Othman, E.; Bazi, Y.; Alajlan, N.; Alhichri, H.; Melgani, F. Using convolutional features and a sparse autoencoder for land-use scene classification. Int. J. Remote Sens. 2016, 37, 2149-2167
    • (2016) Int. J. Remote Sens , vol.37 , pp. 2149-2167
    • Othman, E.1    Bazi, Y.2    Alajlan, N.3    Alhichri, H.4    Melgani, F.5
  • 27
    • 85045970125 scopus 로고    scopus 로고
    • Automatic Ship Classification from Optical Aerial Images with Convolutional Neural Networks
    • Gallego, A.J.; Pertusa, A.; Gil, P. Automatic Ship Classification from Optical Aerial Images with Convolutional Neural Networks. Remote Sens. 2018, 10, 511
    • (2018) Remote Sens , vol.10 , pp. 511
    • Gallego, A.J.1    Pertusa, A.2    Gil, P.3
  • 28
    • 84978805819 scopus 로고    scopus 로고
    • Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks
    • Chen, Y.; Jiang, H.; Li, C.; Jia, X.; Ghamisi, P. Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6232-6251
    • (2016) IEEE Trans. Geosci. Remote Sens , vol.54 , pp. 6232-6251
    • Chen, Y.1    Jiang, H.2    Li, C.3    Jia, X.4    Ghamisi, P.5
  • 29
    • 85048953794 scopus 로고    scopus 로고
    • Concentric Circle Pooling in Deep Convolutional Networks for Remote Sensing Scene Classification
    • Qi, K.; Guan, Q.; Yang, C.; Peng, F.; Shen, S.; Wu, H. Concentric Circle Pooling in Deep Convolutional Networks for Remote Sensing Scene Classification. Remote Sens. 2018, 10, 934
    • (2018) Remote Sens , vol.10 , pp. 934
    • Qi, K.1    Guan, Q.2    Yang, C.3    Peng, F.4    Shen, S.5    Wu, H.6
  • 30
    • 85048956941 scopus 로고    scopus 로고
    • Region-Wise Deep Feature Representation for Remote Sensing Images
    • Li, P.; Ren, P.; Zhang, X.; Wang, Q.; Zhu, X.; Wang, L. Region-Wise Deep Feature Representation for Remote Sensing Images. Remote Sens. 2018, 10, 871
    • (2018) Remote Sens , vol.10 , pp. 871
    • Li, P.1    Ren, P.2    Zhang, X.3    Wang, Q.4    Zhu, X.5    Wang, L.6
  • 31
    • 84992121956 scopus 로고    scopus 로고
    • Convolutional Neural Networks for Large-Scale Remote-Sensing Image Classification
    • Maggiori, E.; Tarabalka, Y.; Charpiat, G.; Alliez, P. Convolutional Neural Networks for Large-Scale Remote-Sensing Image Classification. IEEE Trans. Geosci. Remote Sens. 2016, 55, 645-657
    • (2016) IEEE Trans. Geosci. Remote Sens , vol.55 , pp. 645-657
    • Maggiori, E.1    Tarabalka, Y.2    Charpiat, G.3    Alliez, P.4
  • 32
    • 84988933890 scopus 로고    scopus 로고
    • Land cover classification using random forest with genetic algorithm-based parameter optimization
    • Ming, D.; Zhou, T.; Wang, M.; Tan, T. Land cover classification using random forest with genetic algorithm-based parameter optimization. J. Appl. Remote Sens. 2016, 10, 035021
    • (2016) J. Appl. Remote Sens , vol.10
    • Ming, D.1    Zhou, T.2    Wang, M.3    Tan, T.4
  • 33
    • 85045743328 scopus 로고    scopus 로고
    • VPRS-Based Regional Decision Fusion of CNN and MRF Classifications for Very Fine Resolution Remotely Sensed Images
    • Zhang, C.; Sargent, I.; Pan, X.; Gardiner, A.; Hare, J.; Atkinson, P.M. VPRS-Based Regional Decision Fusion of CNN and MRF Classifications for Very Fine Resolution Remotely Sensed Images. IEEE Trans. Geosci. Remote Sens. 2018, 56, 4507-4521
    • (2018) IEEE Trans. Geosci. Remote Sens , vol.56 , pp. 4507-4521
    • Zhang, C.1    Sargent, I.2    Pan, X.3    Gardiner, A.4    Hare, J.5    Atkinson, P.M.6
  • 35
    • 85018640168 scopus 로고    scopus 로고
    • Superpixel-Based Multiple Local CNN for Panchromatic and Multispectral Image Classification
    • Zhao, W.; Jiao, L.; Ma, W.; Zhao, J.; Zhao, J.; Liu, H.; Cao, X.; Yang, S. Superpixel-Based Multiple Local CNN for Panchromatic and Multispectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4141-4156
    • (2017) IEEE Trans. Geosci. Remote Sens , vol.55 , pp. 4141-4156
    • Zhao, W.1    Jiao, L.2    Ma, W.3    Zhao, J.4    Zhao, J.5    Liu, H.6    Cao, X.7    Yang, S.8
  • 37
    • 85007427844 scopus 로고    scopus 로고
    • Deep Convolutional networks with superpixel segmentation for hyperspectral image classification
    • Beijing, China, 10-15 July
    • Cao, J.; Chen, Z.;Wang, B. Deep Convolutional networks with superpixel segmentation for hyperspectral image classification. In Proceedings of the Geoscience and Remote Sensing Symposium, Beijing, China, 10-15 July 2016; pp. 3310-3313
    • (2016) Proceedings of the Geoscience and Remote Sensing Symposium , pp. 3310-3313
    • Cao, J.1    Chen, Z.2    Wang, B.3
  • 40
    • 85017657736 scopus 로고    scopus 로고
    • Fast Segmentation and Classification of Very High Resolution Remote Sensing Data Using SLIC Superpixels
    • Csillik, O. Fast Segmentation and Classification of Very High Resolution Remote Sensing Data Using SLIC Superpixels. Remote Sens. 2017, 9, 243
    • (2017) Remote Sens , vol.9 , pp. 243
    • Csillik, O.1
  • 42
    • 84956620231 scopus 로고    scopus 로고
    • Learning multiscale and deep representations for classifying remotely sensed imagery
    • Zhao, W.; Du, S. Learning multiscale and deep representations for classifying remotely sensed imagery. ISPRS J. Photogramm. Remote Sens. 2016, 113, 155-165
    • (2016) ISPRS J. Photogramm. Remote Sens , vol.113 , pp. 155-165
    • Zhao, W.1    Du, S.2
  • 44
    • 85061019615 scopus 로고    scopus 로고
    • Very High Resolution Remote Sensing Image Classification with SEEDS-CNN and Scale Effect Analysis for Superpixel CNN Classification
    • Lv, X.; Ming, D.; Chen, Y.; Wang, M. Very High Resolution Remote Sensing Image Classification with SEEDS-CNN and Scale Effect Analysis for Superpixel CNN Classification. Int. J. Remote Sens. 2018
    • (2018) Int. J. Remote Sens
    • Lv, X.1    Ming, D.2    Chen, Y.3    Wang, M.4
  • 45
    • 0029725781 scopus 로고    scopus 로고
    • Multiresolution segmentation-based image coding with hierarchical data structures
    • Speech, and Signal, Atlanta, GA, USA, 9 May
    • Rabiee, H.R.; Kashyap, R.; Safavian, S.R. Multiresolution segmentation-based image coding with hierarchical data structures. In Proceedings of the 1996 IEEE International Conference on Acoustics, Speech, and Signal, Atlanta, GA, USA, 9 May 1996; pp. 1870-1873
    • (1996) Proceedings of the 1996 IEEE International Conference on Acoustics , pp. 1870-1873
    • Rabiee, H.R.1    Kashyap, R.2    Safavian, S.R.3
  • 46
    • 0036565814 scopus 로고    scopus 로고
    • Mean Shift: A Robust Approach Toward Feature Space Analysis
    • Comaniciu, D.; Meer, P. Mean Shift: A Robust Approach Toward Feature Space Analysis. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 603-619
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell , vol.24 , pp. 603-619
    • Comaniciu, D.1    Meer, P.2
  • 47
    • 85049299169 scopus 로고    scopus 로고
    • An object-based convolutional neural network (OCNN) for urban land use classification
    • Zhang, C.; Sargent, I.; Pan, X.; Li, H.; Gardiner, A.; Hare, J. An object-based convolutional neural network (OCNN) for urban land use classification. Remote Sens. Environ. 2018, 216, 57-70
    • (2018) Remote Sens. Environ , vol.216 , pp. 57-70
    • Zhang, C.1    Sargent, I.2    Pan, X.3    Li, H.4    Gardiner, A.5    Hare, J.6
  • 49
    • 0020091335 scopus 로고
    • Statistical method for selecting LANDSAT MSS ratios
    • Chavez, P.S. Statistical method for selecting LANDSAT MSS ratios. J. Appl. Photogr. Eng. 1982, 8, 23-30
    • (1982) J. Appl. Photogr. Eng , vol.8 , pp. 23-30
    • Chavez, P.S.1
  • 50
    • 84929448899 scopus 로고    scopus 로고
    • Scale parameter selection by spatial statistics for GeOBIA: Using mean-shift based multi-scale segmentation as an example
    • Ming, D.; Li, J.; Wang, J.; Zhang, M. Scale parameter selection by spatial statistics for GeOBIA: Using mean-shift based multi-scale segmentation as an example. ISPRS J. Photogramm. Remote Sens. 2015, 106, 28-41
    • (2015) ISPRS J. Photogramm. Remote Sens , vol.106 , pp. 28-41
    • Ming, D.1    Li, J.2    Wang, J.3    Zhang, M.4
  • 51
    • 79956072627 scopus 로고    scopus 로고
    • Modified ALV for selecting the optimal spatial resolution and its scale effect on image classification accuracy
    • Ming, D.; Yang, J.; Li, L.; Song, Z. Modified ALV for selecting the optimal spatial resolution and its scale effect on image classification accuracy. Math. Comput. Model. 2011, 54, 1061-1068
    • (2011) Math. Comput. Model , vol.54 , pp. 1061-1068
    • Ming, D.1    Yang, J.2    Li, L.3    Song, Z.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.