-
2
-
-
85059547513
-
Vegetation species mapping in a coastal-dune ecosystem using high resolution satellite imagery
-
Machín, A.M.; Marcello, J.; Cordero, A.I.H.; Eugenio, F. Vegetation species mapping in a coastal-dune ecosystem using high resolution satellite imagery. GISci. Remote Sens. 2018
-
(2018)
GISci. Remote Sens
-
-
Machín, A.M.1
Marcello, J.2
Cordero, A.I.H.3
Eugenio, F.4
-
3
-
-
84962504506
-
Precise classification of coastal benthic habitats using high resolution Worldview-2 imagery
-
Milan, Italy, 26-31 July
-
Marcello, J.; Eugenio, F.; Marques, F.; Martín, J. Precise classification of coastal benthic habitats using high resolution Worldview-2 imagery. In Proceedings of the Geoscience and Remote Sensing Symposium, Milan, Italy, 26-31 July 2015; pp. 2307-2310
-
(2015)
Proceedings of the Geoscience and Remote Sensing Symposium
, pp. 2307-2310
-
-
Marcello, J.1
Eugenio, F.2
Marques, F.3
Martín, J.4
-
4
-
-
84953340965
-
A study of a Gaussian mixture model for urban land-cover mapping based on VHR remote sensing imagery
-
Tao, J.; Shu, N.; Wang, Y.; Hu, Q.; Zhang, Y. A study of a Gaussian mixture model for urban land-cover mapping based on VHR remote sensing imagery. Int. J. Remote Sens. 2016, 37, 1-13
-
(2016)
Int. J. Remote Sens
, vol.37
, pp. 1-13
-
-
Tao, J.1
Shu, N.2
Wang, Y.3
Hu, Q.4
Zhang, Y.5
-
5
-
-
73249139477
-
Object based image analysis for remote sensing
-
Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 2010, 65, 2-16
-
(2010)
ISPRS J. Photogramm. Remote Sens
, vol.65
, pp. 2-16
-
-
Blaschke, T.1
-
6
-
-
84890209110
-
Geographic Object-Based Image Analysis-Towards a new paradigm
-
Blaschke, T.; Hay, G.J.; Kelly, M.; Lang, S.; Hofmann, P.; Addink, E.; Feitosa, R.Q.; Van der Meer, F.; Van der Werff, H.; Van Coillie, F.; et al. Geographic Object-Based Image Analysis-Towards a new paradigm. ISPRS J. Photogramm. Remote Sens. 2014, 87, 180-191
-
(2014)
ISPRS J. Photogramm. Remote Sens
, vol.87
, pp. 180-191
-
-
Blaschke, T.1
Hay, G.J.2
Kelly, M.3
Lang, S.4
Hofmann, P.5
Addink, E.6
Feitosa, R.Q.7
Van der Meer, F.8
Van der Werff, H.9
Van Coillie, F.10
-
7
-
-
84884974860
-
Bayesian framework for mapping and classifying shallow landslides exploiting remote sensing and topographic data
-
Mondini, A.C.; Marchesini, I.; Rossi, M.; Chang, K.T.; Pasquariello, G.; Guzzetti, F. Bayesian framework for mapping and classifying shallow landslides exploiting remote sensing and topographic data. Geomorphology 2013, 201, 135-147
-
(2013)
Geomorphology
, vol.201
, pp. 135-147
-
-
Mondini, A.C.1
Marchesini, I.2
Rossi, M.3
Chang, K.T.4
Pasquariello, G.5
Guzzetti, F.6
-
8
-
-
33751564661
-
Bayesian Multi-net Classifier for classification of remote sensing data
-
Ouyang, Y.; Ma, J.; Dai, Q. Bayesian Multi-net Classifier for classification of remote sensing data. Int. J. Remote Sens. 2006, 27, 4943-4961
-
(2006)
Int. J. Remote Sens
, vol.27
, pp. 4943-4961
-
-
Ouyang, Y.1
Ma, J.2
Dai, Q.3
-
9
-
-
85042546366
-
Hierarchical Terrain Classification Based on Multilayer Bayesian Network and Conditional Random Field
-
He, C.; Liu, X.; Feng, D.; Shi, B.; Luo, B.; Liao, M. Hierarchical Terrain Classification Based on Multilayer Bayesian Network and Conditional Random Field. Remote Sens. 2017, 9, 96
-
(2017)
Remote Sens
, vol.9
, pp. 96
-
-
He, C.1
Liu, X.2
Feng, D.3
Shi, B.4
Luo, B.5
Liao, M.6
-
10
-
-
0030148684
-
Bayesian Image Classification Using Markov Random Fields
-
Berthod, M.; Kato, Z.; Yu, S.; Zerubia, J. Bayesian Image Classification Using Markov Random Fields. Image Vis. Comput. 1996, 14, 285-295
-
(1996)
Image Vis. Comput
, vol.14
, pp. 285-295
-
-
Berthod, M.1
Kato, Z.2
Yu, S.3
Zerubia, J.4
-
11
-
-
1642392413
-
A New Covariance Estimate for Bayesian Classifiers in Biometric Recognition
-
Thomaz, C.E.; Gillies, D.F.; Feitosa, R.Q. A New Covariance Estimate for Bayesian Classifiers in Biometric Recognition. IEEE Trans. Circuit Syst. Video Technol. 2004, 14, 214-223
-
(2004)
IEEE Trans. Circuit Syst. Video Technol
, vol.14
, pp. 214-223
-
-
Thomaz, C.E.1
Gillies, D.F.2
Feitosa, R.Q.3
-
12
-
-
84860909030
-
Local SVM approaches for fast and accurate classification of remote-sensing images
-
Segata, N.; Pasolli, E.; Melgani, F.; Blanzieri, E. Local SVM approaches for fast and accurate classification of remote-sensing images. Int. J. Remote Sens. 2012, 33, 6186-6201
-
(2012)
Int. J. Remote Sens
, vol.33
, pp. 6186-6201
-
-
Segata, N.1
Pasolli, E.2
Melgani, F.3
Blanzieri, E.4
-
13
-
-
84978419156
-
SVM-based soft classification of urban tree species using very high-spatial resolution remote-sensing imagery
-
Zhou, J.; Qin, J.; Gao, K.; Leng, H. SVM-based soft classification of urban tree species using very high-spatial resolution remote-sensing imagery. Int. J. Remote Sens. 2016, 37, 2541-2559
-
(2016)
Int. J. Remote Sens
, vol.37
, pp. 2541-2559
-
-
Zhou, J.1
Qin, J.2
Gao, K.3
Leng, H.4
-
14
-
-
84890734733
-
An innovative support vector machine based method for contextual image classification
-
Negri, R.G.; Dutra, L.V.; Sant'Anna, S.J.S. An innovative support vector machine based method for contextual image classification. ISPRS J. Photogramm. Remote Sens. 2014, 87, 241-248
-
(2014)
ISPRS J. Photogramm. Remote Sens
, vol.87
, pp. 241-248
-
-
Negri, R.G.1
Dutra, L.V.2
Sant'Anna, S.J.S.3
-
15
-
-
84894229698
-
A new contextual version of Support Vector Machine based on hyperplane translation
-
Melbourne, VIC, Australia, 21-26 July
-
Negri, R.G.; Sant'Anna, S.J.S.; Dutra, L.V. A new contextual version of Support Vector Machine based on hyperplane translation. In Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium, Melbourne, VIC, Australia, 21-26 July 2013; pp. 3116-3119
-
(2013)
Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium
, pp. 3116-3119
-
-
Negri, R.G.1
Sant'Anna, S.J.S.2
Dutra, L.V.3
-
16
-
-
85049083388
-
Stratified Object-Oriented Image Classification Based on Remote Sensing Image Scene Division
-
Zhou, W.; Ming, D.; Xu, L.; Bao, H.; Wang, M. Stratified Object-Oriented Image Classification Based on Remote Sensing Image Scene Division. J. Spectrosc. 2018
-
(2018)
J. Spectrosc
-
-
Zhou, W.1
Ming, D.2
Xu, L.3
Bao, H.4
Wang, M.5
-
17
-
-
84983648146
-
Exploring the Capability of ALOS PALSAR L-Band Fully Polarimetric Data for Land Cover Classification in Tropical Environments
-
Negri, R.G.; Dutra, L.V.; Freitas, C.D.C.; Lu, D. Exploring the Capability of ALOS PALSAR L-Band Fully Polarimetric Data for Land Cover Classification in Tropical Environments. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 5369-5384
-
(2016)
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens
, vol.9
, pp. 5369-5384
-
-
Negri, R.G.1
Dutra, L.V.2
Freitas, C.D.C.3
Lu, D.4
-
18
-
-
85047397877
-
Inducing Contextual ClassificationsWith Kernel Functions Into Support Vector Machines
-
Negri, R.G.; Silva, E.A.D.; Casaca,W. Inducing Contextual ClassificationsWith Kernel Functions Into Support Vector Machines. IEEE Geosci. Remote Sens. Lett. 2018, 15, 962-966
-
(2018)
IEEE Geosci. Remote Sens. Lett
, vol.15
, pp. 962-966
-
-
Negri, R.G.1
Silva, E.A.D.2
Casaca, W.3
-
19
-
-
65449189515
-
Using Geometrical, Textural, and Contextual Information of Land Parcels for Classification of Detailed Urban Land Use
-
Wu, S.-S.; Qiu, X.; Usery, E.L.;Wang, L. Using Geometrical, Textural, and Contextual Information of Land Parcels for Classification of Detailed Urban Land Use. Ann. Assoc. Am. Geogr. 2009, 99, 76-98
-
(2009)
Ann. Assoc. Am. Geogr
, vol.99
, pp. 76-98
-
-
Wu, S.-S.1
Qiu, X.2
Usery, E.L.3
Wang, L.4
-
20
-
-
84937137588
-
On combining multiscale deep learning features for the classification of hyperspectral remote sensing imagery
-
Zhao, W.; Guo, Z.; Yue, J.; Luo, L.; Luo, L. On combining multiscale deep learning features for the classification of hyperspectral remote sensing imagery. Int. J. Remote Sens. 2015, 36, 3368-3379
-
(2015)
Int. J. Remote Sens
, vol.36
, pp. 3368-3379
-
-
Zhao, W.1
Guo, Z.2
Yue, J.3
Luo, L.4
Luo, L.5
-
21
-
-
84930630277
-
Deep learning
-
Lecun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436
-
(2015)
Nature
, vol.521
, pp. 436
-
-
Lecun, Y.1
Bengio, Y.2
Hinton, G.3
-
22
-
-
84947868906
-
Multiview Deep Learning for Land-Use Classification
-
Luus, F.P.S.; Salmon, B.P.; Bergh, F.V.D.; Maharaj, B.T.J. Multiview Deep Learning for Land-Use Classification. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2448-2452
-
(2015)
IEEE Geosci. Remote Sens. Lett
, vol.12
, pp. 2448-2452
-
-
Luus, F.P.S.1
Salmon, B.P.2
Bergh, F.V.D.3
Maharaj, B.T.J.4
-
23
-
-
85014892308
-
Automatic Road Detection and Centerline Extraction via Cascaded End-to-End Convolutional Neural Network
-
Cheng, G.;Wang, Y.; Xu, S.;Wang, H.; Xiang, S.; Pan, C. Automatic Road Detection and Centerline Extraction via Cascaded End-to-End Convolutional Neural Network. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3322-3337
-
(2017)
IEEE Trans. Geosci. Remote Sens
, vol.55
, pp. 3322-3337
-
-
Cheng, G.1
Wang, Y.2
Xu, S.3
Wang, H.4
Xiang, S.5
Pan, C.6
-
24
-
-
84950141946
-
Transferring Deep Convolutional Neural Networks for the Scene Classification of High-Resolution Remote Sensing Imagery
-
Hu, F.; Xia, G.S.; Hu, J.; Zhang, L. Transferring Deep Convolutional Neural Networks for the Scene Classification of High-Resolution Remote Sensing Imagery. Remote Sens. 2015, 7, 14680-14707
-
(2015)
Remote Sens
, vol.7
, pp. 14680-14707
-
-
Hu, F.1
Xia, G.S.2
Hu, J.3
Zhang, L.4
-
25
-
-
84978388572
-
Using convolutional features and a sparse autoencoder for land-use scene classification
-
Othman, E.; Bazi, Y.; Alajlan, N.; Alhichri, H.; Melgani, F. Using convolutional features and a sparse autoencoder for land-use scene classification. Int. J. Remote Sens. 2016, 37, 2149-2167
-
(2016)
Int. J. Remote Sens
, vol.37
, pp. 2149-2167
-
-
Othman, E.1
Bazi, Y.2
Alajlan, N.3
Alhichri, H.4
Melgani, F.5
-
26
-
-
84919881278
-
Vehicle Type Classification Using Unsupervised Convolutional Neural Network
-
Stockholm, Sweden, 6 March
-
Dong, Z.; Pei, M.; He, Y.; Liu, T.; Dong, Y.; Jia, Y. Vehicle Type Classification Using Unsupervised Convolutional Neural Network. In Proceedings of the International Conference on Pattern Recognition, Stockholm, Sweden, 6 March 2015; pp. 172-177
-
(2015)
Proceedings of the International Conference on Pattern Recognition
, pp. 172-177
-
-
Dong, Z.1
Pei, M.2
He, Y.3
Liu, T.4
Dong, Y.5
Jia, Y.6
-
27
-
-
85045970125
-
Automatic Ship Classification from Optical Aerial Images with Convolutional Neural Networks
-
Gallego, A.J.; Pertusa, A.; Gil, P. Automatic Ship Classification from Optical Aerial Images with Convolutional Neural Networks. Remote Sens. 2018, 10, 511
-
(2018)
Remote Sens
, vol.10
, pp. 511
-
-
Gallego, A.J.1
Pertusa, A.2
Gil, P.3
-
28
-
-
84978805819
-
Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks
-
Chen, Y.; Jiang, H.; Li, C.; Jia, X.; Ghamisi, P. Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6232-6251
-
(2016)
IEEE Trans. Geosci. Remote Sens
, vol.54
, pp. 6232-6251
-
-
Chen, Y.1
Jiang, H.2
Li, C.3
Jia, X.4
Ghamisi, P.5
-
29
-
-
85048953794
-
Concentric Circle Pooling in Deep Convolutional Networks for Remote Sensing Scene Classification
-
Qi, K.; Guan, Q.; Yang, C.; Peng, F.; Shen, S.; Wu, H. Concentric Circle Pooling in Deep Convolutional Networks for Remote Sensing Scene Classification. Remote Sens. 2018, 10, 934
-
(2018)
Remote Sens
, vol.10
, pp. 934
-
-
Qi, K.1
Guan, Q.2
Yang, C.3
Peng, F.4
Shen, S.5
Wu, H.6
-
30
-
-
85048956941
-
Region-Wise Deep Feature Representation for Remote Sensing Images
-
Li, P.; Ren, P.; Zhang, X.; Wang, Q.; Zhu, X.; Wang, L. Region-Wise Deep Feature Representation for Remote Sensing Images. Remote Sens. 2018, 10, 871
-
(2018)
Remote Sens
, vol.10
, pp. 871
-
-
Li, P.1
Ren, P.2
Zhang, X.3
Wang, Q.4
Zhu, X.5
Wang, L.6
-
31
-
-
84992121956
-
Convolutional Neural Networks for Large-Scale Remote-Sensing Image Classification
-
Maggiori, E.; Tarabalka, Y.; Charpiat, G.; Alliez, P. Convolutional Neural Networks for Large-Scale Remote-Sensing Image Classification. IEEE Trans. Geosci. Remote Sens. 2016, 55, 645-657
-
(2016)
IEEE Trans. Geosci. Remote Sens
, vol.55
, pp. 645-657
-
-
Maggiori, E.1
Tarabalka, Y.2
Charpiat, G.3
Alliez, P.4
-
32
-
-
84988933890
-
Land cover classification using random forest with genetic algorithm-based parameter optimization
-
Ming, D.; Zhou, T.; Wang, M.; Tan, T. Land cover classification using random forest with genetic algorithm-based parameter optimization. J. Appl. Remote Sens. 2016, 10, 035021
-
(2016)
J. Appl. Remote Sens
, vol.10
-
-
Ming, D.1
Zhou, T.2
Wang, M.3
Tan, T.4
-
33
-
-
85045743328
-
VPRS-Based Regional Decision Fusion of CNN and MRF Classifications for Very Fine Resolution Remotely Sensed Images
-
Zhang, C.; Sargent, I.; Pan, X.; Gardiner, A.; Hare, J.; Atkinson, P.M. VPRS-Based Regional Decision Fusion of CNN and MRF Classifications for Very Fine Resolution Remotely Sensed Images. IEEE Trans. Geosci. Remote Sens. 2018, 56, 4507-4521
-
(2018)
IEEE Trans. Geosci. Remote Sens
, vol.56
, pp. 4507-4521
-
-
Zhang, C.1
Sargent, I.2
Pan, X.3
Gardiner, A.4
Hare, J.5
Atkinson, P.M.6
-
34
-
-
85026643598
-
A hybrid MLP-CNN classifier for very fine resolution remotely sensed image classification
-
Zhang, C.; Pan, X.; Li, H.; Gardiner, A.; Sargent, I.; Hare, J.; Atkinson, P.M. A hybrid MLP-CNN classifier for very fine resolution remotely sensed image classification. ISPRS J. Photogramm. Remote Sens. 2017, 140, 133-144
-
(2017)
ISPRS J. Photogramm. Remote Sens
, vol.140
, pp. 133-144
-
-
Zhang, C.1
Pan, X.2
Li, H.3
Gardiner, A.4
Sargent, I.5
Hare, J.6
Atkinson, P.M.7
-
35
-
-
85018640168
-
Superpixel-Based Multiple Local CNN for Panchromatic and Multispectral Image Classification
-
Zhao, W.; Jiao, L.; Ma, W.; Zhao, J.; Zhao, J.; Liu, H.; Cao, X.; Yang, S. Superpixel-Based Multiple Local CNN for Panchromatic and Multispectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4141-4156
-
(2017)
IEEE Trans. Geosci. Remote Sens
, vol.55
, pp. 4141-4156
-
-
Zhao, W.1
Jiao, L.2
Ma, W.3
Zhao, J.4
Zhao, J.5
Liu, H.6
Cao, X.7
Yang, S.8
-
36
-
-
85041077226
-
Deep learning for superpixel-based classification of remote sensing images
-
Enschede, The Netherlands, 14-16 September
-
Gonzalo-Martin, C.; Garcia-Pedrero, A.; Lillo-Saavedra, M.; Menasalvas, E. Deep learning for superpixel-based classification of remote sensing images. In Proceedings of the GEOBIA 2016: Solutions and Synergies, Enschede, The Netherlands, 14-16 September 2016
-
(2016)
Proceedings of the GEOBIA 2016: Solutions and Synergies
-
-
Gonzalo-Martin, C.1
Garcia-Pedrero, A.2
Lillo-Saavedra, M.3
Menasalvas, E.4
-
37
-
-
85007427844
-
Deep Convolutional networks with superpixel segmentation for hyperspectral image classification
-
Beijing, China, 10-15 July
-
Cao, J.; Chen, Z.;Wang, B. Deep Convolutional networks with superpixel segmentation for hyperspectral image classification. In Proceedings of the Geoscience and Remote Sensing Symposium, Beijing, China, 10-15 July 2016; pp. 3310-3313
-
(2016)
Proceedings of the Geoscience and Remote Sensing Symposium
, pp. 3310-3313
-
-
Cao, J.1
Chen, Z.2
Wang, B.3
-
38
-
-
84863041148
-
Superpixel tracking
-
Barcelona, Spain, 6-13 November
-
Wang, S.; Lu, H.; Yang, F.; Yang, M.H. Superpixel tracking. In Proceedings of the International Conference on Computer Vision, Barcelona, Spain, 6-13 November 2011; pp. 1323-1330
-
(2011)
Proceedings of the International Conference on Computer Vision
, pp. 1323-1330
-
-
Wang, S.1
Lu, H.2
Yang, F.3
Yang, M.H.4
-
39
-
-
80052896536
-
Entropy rate superpixel segmentation
-
Colorado Springs, CO, USA, 20-25 June
-
Liu, M.Y.; Tuzel, O.; Ramalingam, S.; Chellappa, R. Entropy rate superpixel segmentation. In Proceedings of the Computer Vision and Pattern Recognition, Colorado Springs, CO, USA, 20-25 June 2011; pp. 2097-2104
-
(2011)
Proceedings of the Computer Vision and Pattern Recognition
, pp. 2097-2104
-
-
Liu, M.Y.1
Tuzel, O.2
Ramalingam, S.3
Chellappa, R.4
-
40
-
-
85017657736
-
Fast Segmentation and Classification of Very High Resolution Remote Sensing Data Using SLIC Superpixels
-
Csillik, O. Fast Segmentation and Classification of Very High Resolution Remote Sensing Data Using SLIC Superpixels. Remote Sens. 2017, 9, 243
-
(2017)
Remote Sens
, vol.9
, pp. 243
-
-
Csillik, O.1
-
41
-
-
84981744907
-
A Cloud Computing Strategy for Region-Growing Segmentation
-
Happ, P.N.; Bentes, C.; Feitosa, R.Q.; Ferreira, R.D.S.; Farias, R. A Cloud Computing Strategy for Region-Growing Segmentation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 5294-5303
-
(2016)
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens
, vol.9
, pp. 5294-5303
-
-
Happ, P.N.1
Bentes, C.2
Feitosa, R.Q.3
Ferreira, R.D.S.4
Farias, R.5
-
42
-
-
84956620231
-
Learning multiscale and deep representations for classifying remotely sensed imagery
-
Zhao, W.; Du, S. Learning multiscale and deep representations for classifying remotely sensed imagery. ISPRS J. Photogramm. Remote Sens. 2016, 113, 155-165
-
(2016)
ISPRS J. Photogramm. Remote Sens
, vol.113
, pp. 155-165
-
-
Zhao, W.1
Du, S.2
-
43
-
-
85018251516
-
Superpixel segmentation: A benchmark
-
Wang, M.; Liu, X.; Gao, Y.; Ma, X.; Soomro, N.Q. Superpixel segmentation: A benchmark. Signal Process. Image Commun. 2017, 56, 28-39
-
(2017)
Signal Process. Image Commun
, vol.56
, pp. 28-39
-
-
Wang, M.1
Liu, X.2
Gao, Y.3
Ma, X.4
Soomro, N.Q.5
-
44
-
-
85061019615
-
Very High Resolution Remote Sensing Image Classification with SEEDS-CNN and Scale Effect Analysis for Superpixel CNN Classification
-
Lv, X.; Ming, D.; Chen, Y.; Wang, M. Very High Resolution Remote Sensing Image Classification with SEEDS-CNN and Scale Effect Analysis for Superpixel CNN Classification. Int. J. Remote Sens. 2018
-
(2018)
Int. J. Remote Sens
-
-
Lv, X.1
Ming, D.2
Chen, Y.3
Wang, M.4
-
45
-
-
0029725781
-
Multiresolution segmentation-based image coding with hierarchical data structures
-
Speech, and Signal, Atlanta, GA, USA, 9 May
-
Rabiee, H.R.; Kashyap, R.; Safavian, S.R. Multiresolution segmentation-based image coding with hierarchical data structures. In Proceedings of the 1996 IEEE International Conference on Acoustics, Speech, and Signal, Atlanta, GA, USA, 9 May 1996; pp. 1870-1873
-
(1996)
Proceedings of the 1996 IEEE International Conference on Acoustics
, pp. 1870-1873
-
-
Rabiee, H.R.1
Kashyap, R.2
Safavian, S.R.3
-
46
-
-
0036565814
-
Mean Shift: A Robust Approach Toward Feature Space Analysis
-
Comaniciu, D.; Meer, P. Mean Shift: A Robust Approach Toward Feature Space Analysis. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 603-619
-
(2002)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.24
, pp. 603-619
-
-
Comaniciu, D.1
Meer, P.2
-
47
-
-
85049299169
-
An object-based convolutional neural network (OCNN) for urban land use classification
-
Zhang, C.; Sargent, I.; Pan, X.; Li, H.; Gardiner, A.; Hare, J. An object-based convolutional neural network (OCNN) for urban land use classification. Remote Sens. Environ. 2018, 216, 57-70
-
(2018)
Remote Sens. Environ
, vol.216
, pp. 57-70
-
-
Zhang, C.1
Sargent, I.2
Pan, X.3
Li, H.4
Gardiner, A.5
Hare, J.6
-
48
-
-
84876231242
-
ImageNet classification with deep convolutional neural networks
-
New York, NY, USA, 3-8 December
-
Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. In Proceedings of the International Conference on Neural Information Processing Systems, New York, NY, USA, 3-8 December 2012; pp. 1097-1105
-
(2012)
Proceedings of the International Conference on Neural Information Processing Systems
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
49
-
-
0020091335
-
Statistical method for selecting LANDSAT MSS ratios
-
Chavez, P.S. Statistical method for selecting LANDSAT MSS ratios. J. Appl. Photogr. Eng. 1982, 8, 23-30
-
(1982)
J. Appl. Photogr. Eng
, vol.8
, pp. 23-30
-
-
Chavez, P.S.1
-
50
-
-
84929448899
-
Scale parameter selection by spatial statistics for GeOBIA: Using mean-shift based multi-scale segmentation as an example
-
Ming, D.; Li, J.; Wang, J.; Zhang, M. Scale parameter selection by spatial statistics for GeOBIA: Using mean-shift based multi-scale segmentation as an example. ISPRS J. Photogramm. Remote Sens. 2015, 106, 28-41
-
(2015)
ISPRS J. Photogramm. Remote Sens
, vol.106
, pp. 28-41
-
-
Ming, D.1
Li, J.2
Wang, J.3
Zhang, M.4
-
51
-
-
79956072627
-
Modified ALV for selecting the optimal spatial resolution and its scale effect on image classification accuracy
-
Ming, D.; Yang, J.; Li, L.; Song, Z. Modified ALV for selecting the optimal spatial resolution and its scale effect on image classification accuracy. Math. Comput. Model. 2011, 54, 1061-1068
-
(2011)
Math. Comput. Model
, vol.54
, pp. 1061-1068
-
-
Ming, D.1
Yang, J.2
Li, L.3
Song, Z.4
|