-
3
-
-
84930012451
-
Ship Detectionwith Spectral Analysis of Synthetic Aperture Radar: A Comparison of New andWell-Known Algorithms
-
Marino, A.; Sanjuan-Ferrer, M.J.; Hajnsek, I.; Ouchi, K. Ship Detectionwith Spectral Analysis of Synthetic Aperture Radar: A Comparison of New andWell-Known Algorithms. Remote Sens. 2015, 7, 5416, doi:10.3390/rs70505416
-
(2015)
Remote Sens
, vol.7
, pp. 5416
-
-
Marino, A.1
Sanjuan-Ferrer, M.J.2
Hajnsek, I.3
Ouchi, K.4
-
4
-
-
84930630277
-
Deep learning
-
LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436-444, doi:10.1038/nature14539
-
(2015)
Nature
, vol.521
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
5
-
-
0028757234
-
Detection of Ship Tracks in AVHRR Cloud Imagery with Neural Network
-
Lure, F.Y.M.; Rau, Y.C. Detection of Ship Tracks in AVHRR Cloud Imagery with Neural Networks. In Proceedings of the 1994 IEEE International Geoscience and Remote Sensing Symposium (IGARSS '94), Pasadena, CA, USA, 8-12 August 1994; pp. 1401-1403, doi:10.1109/IGARSS.1994.399451
-
(1994)
In Proceedings of the 1994 IEEE International Geoscience and Remote Sensing Symposium (IGARSS '94), Pasadena, CA, USA, 8-12 August
, pp. 1401-1403
-
-
Lure, F.Y.M.1
Rau, Y.C.2
-
6
-
-
0030684478
-
Automatic detection of ship tracks in satellite imager
-
Weiss, J.; Luo, R.;Welch, R. Automatic detection of ship tracks in satellite imagery. In Proceedings of the IEEE International Geoscience and Remote Sensing (IGARSS '97), Remote Sensing-A Scientific Vision for Sustainable Development, Singapore, 3-8 August 1997; Volume 1, pp. 160-162, doi:10.1109/IGARSS. 1997.615827
-
(1997)
In Proceedings of the IEEE International Geoscience and Remote Sensing (IGARSS '97), Remote Sensing-A Scientific Vision for Sustainable Development, Singapore, 3-8 August
, vol.1
, pp. 160-162
-
-
Weiss, J.1
Luo, R.2
Welch, R.3
-
7
-
-
44649129231
-
Using SPOT-5 HRG Data in Panchromatic Mode for Operational Detection of Small Ships in Tropical Area
-
Corbane, C.; Marre, F.; Petit, M. Using SPOT-5 HRG Data in Panchromatic Mode for Operational Detection of Small Ships in Tropical Area. Sensors 2008, 8, 2959-2973, doi:10.3390/s8052959
-
(2008)
Sensors
, vol.8
, pp. 2959-2973
-
-
Corbane, C.1
Marre, F.2
Petit, M.3
-
8
-
-
78649902112
-
A Complete Processing Chain for Ship Detection Using Optical Satellite Imagery
-
Corbane, C.; Najman, L.; Pecoul, E.; Demagistri, L.; Petit, M. A Complete Processing Chain for Ship Detection Using Optical Satellite Imagery. Int. J. Remote Sens. 2010, 31, 5837-5854, doi:10.1080/01431161.2010.512310
-
(2010)
Int. J. Remote Sens
, vol.31
, pp. 5837-5854
-
-
Corbane, C.1
Najman, L.2
Pecoul, E.3
Demagistri, L.4
Petit, M.5
-
9
-
-
77956059560
-
A Novel Hierarchical Method of Ship Detection from Spaceborne Optical Image Based on Shape and Texture Features
-
Zhu, C.; Zhou, H.; Wang, R.; Guo, J. A Novel Hierarchical Method of Ship Detection from Spaceborne Optical Image Based on Shape and Texture Features. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3446-3456, doi:10.1109/TGRS.2010.2046330
-
(2010)
IEEE Trans. Geosci. Remote Sens
, vol.48
, pp. 3446-3456
-
-
Zhu, C.1
Zhou, H.2
Wang, R.3
Guo, J.4
-
10
-
-
80054839384
-
A hierarchical salient-region based algorithm for ship detection in remote sensing images
-
Bi, F.; Liu, F.; Gao, L. A hierarchical salient-region based algorithm for ship detection in remote sensing images. In Lecture Notes in Electrical Engineering; Springer: Berlin/Heidelberg, Germany, 2010; Volume 67, pp. 729-738, doi:10.1007/978-3-642-12990-2_85
-
(2010)
In Lecture Notes in Electrical Engineering; Springer: Berlin/Heidelberg, Germany
, vol.67
, pp. 729-738
-
-
Bi, F.1
Liu, F.2
Gao, L.3
-
11
-
-
84987939926
-
A Novel Sea-Land Segmentation Algorithm Based on Local Binary Patterns for Ship Detection
-
Xia, Y.;Wan, S.; Jin, P.; Yue, L. A Novel Sea-Land Segmentation Algorithm Based on Local Binary Patterns for Ship Detection. Int. J. Signal Process. Image Process. Pattern Recognit. 2014, 7, 237-246
-
(2014)
Int. J. Signal Process. Image Process. Pattern Recognit
, vol.7
, pp. 237-246
-
-
Xia, Y.1
Wan, S.2
Jin, P.3
Yue, L.4
-
12
-
-
84881418493
-
Ship Detection From Optical Satellite Images Based on Sea Surface Analysis
-
Yang, G.; Li, B.; Ji, S.; Gao, F.; Xu, Q. Ship Detection From Optical Satellite Images Based on Sea Surface Analysis. IEEE Geosci. Remote Sens. Lett. 2014, 11, 641-645, doi:10.1109/LGRS.2013.2273552
-
(2014)
IEEE Geosci. Remote Sens. Lett
, vol.11
, pp. 641-645
-
-
Yang, G.1
Li, B.2
Ji, S.3
Gao, F.4
Xu, Q.5
-
13
-
-
84909952686
-
An algorithm for the detection of vessels in aerial imag
-
Marques, J.S.; Bernardino, A.; Cruz, G.; Bento, M. An algorithm for the detection of vessels in aerial images. In Proceedings of the 2014 11th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), Seoul, Korea, 26-29 August 2014; pp. 295-300, doi:10.1109/AVSS.2014.6918684
-
(2014)
In Proceedings of the 2014 11th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), Seoul, Korea, 26-29 August
, pp. 295-300
-
-
Marques, J.S.1
Bernardino, A.2
Cruz, G.3
Bento, M.4
-
14
-
-
84962563086
-
Ship detection from optical satellite images based on visual search mechanis
-
Yang, F.; Xu, Q.; Gao, F.; Hu, L. Ship detection from optical satellite images based on visual search mechanism. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26-31 July 2015; pp. 3679-3682, doi:10.1109/IGARSS.2015.7326621
-
(2015)
In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26-31 July
, pp. 3679-3682
-
-
Yang, F.1
Xu, Q.2
Gao, F.3
Hu, L.4
-
15
-
-
84907463801
-
Compressed-Domain Ship Detection on Spaceborne Optical Image Using Deep Neural Network and Extreme Learning Machine
-
Tang, J.; Deng, C.; Huang, G.B.; Zhao, B. Compressed-Domain Ship Detection on Spaceborne Optical Image Using Deep Neural Network and Extreme Learning Machine. IEEE Trans. Geosci. Remote Sens. 2015, 53, 1174-1185, doi:10.1109/TGRS.2014.2335751
-
(2015)
IEEE Trans. Geosci. Remote Sens
, vol.53
, pp. 1174-1185
-
-
Tang, J.1
Deng, C.2
Huang, G.B.3
Zhao, B.4
-
16
-
-
85029744465
-
Ship detection in optical remote sensing images based on deep convolutional neural networks
-
Yao, Y.; Jiang, Z.; Zhang, H.; Zhao, D.; Cai, B. Ship detection in optical remote sensing images based on deep convolutional neural networks. J. Appl. Remote Sens. 2017, 11, doi:10.1117/1.JRS.11.042611
-
(2017)
J. Appl. Remote Sens
, vol.11
-
-
Yao, Y.1
Jiang, Z.2
Zhang, H.3
Zhao, D.4
Cai, B.5
-
17
-
-
85027929099
-
Unsupervised Feature Learning Via Spectral Clustering of Multidimensional Patches for Remotely Sensed Scene Classification
-
Hu, F.; Xia, G.S.; Wang, Z.; Huang, X.; Zhang, L.; Sun, H. Unsupervised Feature Learning Via Spectral Clustering of Multidimensional Patches for Remotely Sensed Scene Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2015-2030
-
(2015)
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens
, vol.8
, pp. 2015-2030
-
-
Hu, F.1
Xia, G.S.2
Wang, Z.3
Huang, X.4
Zhang, L.5
Sun, H.6
-
18
-
-
84975263405
-
Ship Detection in Spaceborne Optical Image With SVD Networks
-
Zou, Z.; Shi, Z. Ship Detection in Spaceborne Optical Image With SVD Networks. IEEE Trans. Geosci. Remote Sens. 2016, 54, 5832-5845, doi:10.1109/TGRS.2016.2572736
-
(2016)
IEEE Trans. Geosci. Remote Sens
, vol.54
, pp. 5832-5845
-
-
Zou, Z.1
Shi, Z.2
-
19
-
-
84979536750
-
S-CNN Ship Detection from High-Resolution Remote Sensing Images
-
Zhang, R.; Yao, J.; Zhang, K.; Feng, C.; Zhang, J. S-CNN Ship Detection from High-Resolution Remote Sensing Images. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 423-430, doi:10.5194/isprs-archives-XLI-B7-423-2016
-
(2016)
ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci
, pp. 423-430
-
-
Zhang, R.1
Yao, J.2
Zhang, K.3
Feng, C.4
Zhang, J.5
-
20
-
-
84961970561
-
A survey on object detection in optical remote sensing images
-
Cheng, G.; Han, J. A survey on object detection in optical remote sensing images. SPRS J. Photogramm. Remote Sens. 2016, 117, 11-28, doi:10.1016/j.isprsjprs.2016.03.014
-
(2016)
SPRS J. Photogramm. Remote Sens
, vol.117
, pp. 11-28
-
-
Cheng, G.1
Han, J.2
-
21
-
-
84879854889
-
Representation Learning: A Review and New Perspectives
-
Bengio, Y.; Courville, A.; Vincent, P. Representation Learning: A Review and New Perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1798-1828, doi:10.1109/TPAMI.2013.50
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.35
, pp. 1798-1828
-
-
Bengio, Y.1
Courville, A.2
Vincent, P.3
-
22
-
-
85028919327
-
Fully ConvolutionalNetworkWith Task Partitioning for Inshore Ship Detection in Optical Remote Sensing Images
-
Lin, H.; Shi, Z.; Zou, Z. Fully ConvolutionalNetworkWith Task Partitioning for Inshore Ship Detection in Optical Remote Sensing Images. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1665-1669, doi:10.1109/LGRS.2017.2727515
-
(2017)
IEEE Geosci. Remote Sens. Lett
, vol.14
, pp. 1665-1669
-
-
Lin, H.1
Shi, Z.2
Zou, Z.3
-
23
-
-
84865420049
-
SAR-Based Terrain Classification UsingWeakly Supervised Hierarchical Markov Aspect Models
-
Yang, W.; Dai, D.; Triggs, B.; Xia, G.S. SAR-Based Terrain Classification UsingWeakly Supervised Hierarchical Markov Aspect Models. IEEE Trans. Image Process. 2012, 21, 4232-4243, doi:10.1109/TIP.2012.2199127
-
(2012)
IEEE Trans. Image Process
, vol.21
, pp. 4232-4243
-
-
Yang, W.1
Dai, D.2
Triggs, B.3
Xia, G.S.4
-
24
-
-
77958488310
-
Deep Machine Learning-A New Frontier in Artificial Intelligence Research
-
Arel, I.; Rose, D.C.; Karnowski, T.P. Deep Machine Learning-A New Frontier in Artificial Intelligence Research. IEEE Comput. Intell. Mag. 2010, 5, 13-18, doi:10.1109/MCI.2010.938364
-
(2010)
IEEE Comput. Intell. Mag
, vol.5
, pp. 13-18
-
-
Arel, I.1
Rose, D.C.2
Karnowski, T.P.3
-
25
-
-
84910651844
-
Deep learning in neural networks: An overview
-
Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85-117, doi:10.1016/j.neunet.2014.09.003
-
(2015)
Neural Netw
, vol.61
, pp. 85-117
-
-
Schmidhuber, J.1
-
26
-
-
84876251010
-
Learning deep physiological models of affect
-
Martinez, H.P.; Bengio, Y.; Yannakakis, G.N. Learning deep physiological models of affect. IEEE Comput. Intell. Mag. 2013, 8, 20-33, doi:10.1109/MCI.2013.2247823
-
(2013)
IEEE Comput. Intell. Mag
, vol.8
, pp. 20-33
-
-
Martinez, H.P.1
Bengio, Y.2
Yannakakis, G.N.3
-
27
-
-
84904163933
-
Dropout: A Simple Way to Prevent Neural Networks from Overfitting
-
Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929-1958
-
(2014)
J. Mach. Learn. Res
, vol.15
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
28
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278-2323, doi:10.1109/5.726791
-
(1998)
Proc. IEEE
, vol.86
, pp. 2278-2323
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
29
-
-
0000359337
-
Backpropagation Applied to Handwritten Zip Code Recognition
-
LeCun, Y.; Boser, B.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.; Jackel, L.D. Backpropagation Applied to Handwritten Zip Code Recognition. Neural Comput. 1989, 1, 541-551, doi:10.1162/neco.1989.1.4.541
-
(1989)
Neural Comput
, vol.1
, pp. 541-551
-
-
LeCun, Y.1
Boser, B.2
Denker, J.S.3
Henderson, D.4
Howard, R.E.5
Hubbard, W.6
Jackel, L.D.7
-
30
-
-
84876231242
-
ImageNet Classification with Deep Convolutional Neural Networks
-
Stateline, NV, USA, 3-8 December
-
Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings of the The Twenty-sixth Annual Conference on Neural Information Processing Systems (NIPS), Stateline, NV, USA, 3-8 December 2012
-
(2012)
Proceedings of the The Twenty-sixth Annual Conference on Neural Information Processing Systems (NIPS)
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
31
-
-
84937522268
-
Going deeper with convolution
-
Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7-12 June 2015; pp. 1-9, doi:10.1109/CVPR.2015.7298594
-
(2015)
In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7-12 June
, pp. 1-9
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
32
-
-
84986274465
-
Deep Residual Learning for Image Recognition
-
Las Vegas, NV, USA, 27-30 June
-
He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27-30 June 2016
-
(2016)
Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
33
-
-
85040367775
-
Deep Learning in Remote Sensing: A Comprehensive Review and List of Resources
-
Zhu, X.X.; Tuia, D.; Mou, L.; Xia, G.S.; Zhang, L.; Xu, F.; Fraundorfer, F. Deep Learning in Remote Sensing: A Comprehensive Review and List of Resources. IEEE Geosci. Remote Sens. Mag. 2017, 5, 8-36, doi:10.1109/MGRS.2017.2762307
-
(2017)
IEEE Geosci. Remote Sens. Mag
, vol.5
, pp. 8-36
-
-
Zhu, X.X.1
Tuia, D.2
Mou, L.3
Xia, G.S.4
Zhang, L.5
Xu, F.6
Fraundorfer, F.7
-
34
-
-
84950141946
-
Transferring Deep Convolutional Neural Networks for the Scene Classification of High-Resolution Remote Sensing Imagery
-
Hu, F.; Xia, G.S.; Hu, J.; Zhang, L. Transferring Deep Convolutional Neural Networks for the Scene Classification of High-Resolution Remote Sensing Imagery. Remote Sens. 2015, 7, 14680-14707, doi:10.3390/rs71114680
-
(2015)
Remote Sens
, vol.7
, pp. 14680-14707
-
-
Hu, F.1
Xia, G.S.2
Hu, J.3
Zhang, L.4
-
35
-
-
84976384382
-
Deep Learning for Remote Sensing Data: A Technical Tutorial on the State of the Art
-
Zhang, L.; Zhang, L.; Du, B. Deep Learning for Remote Sensing Data: A Technical Tutorial on the State of the Art. IEEE Geosci. Remote Sens. Mag. 2016, 4, 22-40, doi:10.1109/MGRS.2016.2540798
-
(2016)
IEEE Geosci. Remote Sens. Mag
, vol.4
, pp. 22-40
-
-
Zhang, L.1
Zhang, L.2
Du, B.3
-
36
-
-
85032865390
-
Comprehensive survey of deep learning in remote sensing: Theories, tools, and challenges for the community
-
Ball, J.E.; Anderson, D.T.; Chan, C.S. Comprehensive survey of deep learning in remote sensing: Theories, tools, and challenges for the community. J. Appl. Remote Sens. 2017, 11, 042609, doi:10.1117/1.JRS.11.042609
-
(2017)
J. Appl. Remote Sens
, vol.11
-
-
Ball, J.E.1
Anderson, D.T.2
Chan, C.S.3
-
37
-
-
85083950242
-
On the number of inference regions of deep feed forward networks with piece-wise linear activations
-
Banff, AB, Canada, 14-16 April
-
Pascanu, R.; Montufar, G.; Bengio, Y. On the number of inference regions of deep feed forward networks with piece-wise linear activations. In Proceedings of the International Conference on Learning Representations, Banff, AB, Canada, 14-16 April 2014
-
(2014)
Proceedings of the International Conference on Learning Representations
-
-
Pascanu, R.1
Montufar, G.2
Bengio, Y.3
-
39
-
-
84990032289
-
-
Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.;Wojna, Z. Rethinking the Inception Architecture for Computer Vision. arXiv 2015, arXiv:abs/1512.00567
-
(2015)
Rethinking the Inception Architecture for Computer Vision
-
-
Szegedy, C.1
Vanhoucke, V.2
Ioffe, S.3
Shlens, J.4
Wojna, Z.5
-
41
-
-
84862294866
-
Deep Sparse Rectifier Neural Networks
-
Fort Lauderdale, FL, USA, 11-13 April
-
Glorot, X.; Bordes, A.; Bengio, Y. Deep Sparse Rectifier Neural Networks. In Proceedings of the 14th International Conference on Artificial Intelligence and Statistics (AISTATS), Fort Lauderdale, FL, USA, 11-13 April 2011; Volume 15, pp. 315-323
-
(2011)
Proceedings of the 14th International Conference on Artificial Intelligence and Statistics (AISTATS)
, vol.15
, pp. 315-323
-
-
Glorot, X.1
Bordes, A.2
Bengio, Y.3
-
43
-
-
84937508363
-
How transferable are features in deep neural networks?
-
Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q., Eds.; MIT Press Ltd.: Cambridge, MA, USA
-
Yosinski, J.; Clune, J.; Bengio, Y.; Lipson, H. How transferable are features in deep neural networks? In Advances in Neural Information Processing Systems (NIPS); Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q., Eds.; MIT Press Ltd.: Cambridge, MA, USA, 2014; pp. 3320-3328
-
(2014)
Advances in Neural Information Processing Systems (NIPS)
, pp. 3320-3328
-
-
Yosinski, J.1
Clune, J.2
Bengio, Y.3
Lipson, H.4
-
44
-
-
85198028989
-
ImageNet: A large-scale hierarchical image databas
-
Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. ImageNet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20-25 June 2009; pp. 248-255, doi:10.1109/CVPR.2009.5206848
-
(2009)
In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20-25 June
, pp. 248-255
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Li, L.J.4
Li, K.5
Fei-Fei, L.6
-
45
-
-
84904136037
-
Large-scale machine learning with stochastic gradient descent
-
Springer: Berlin, Germany
-
Bottou, L. Large-scale machine learning with stochastic gradient descent. In Proceedings of the 19th International Conference on Computational Statistics (COMPSTAT 2010), Paris, France, 22-27 August 2010; Springer: Berlin, Germany, 2010; pp. 177-186
-
(2010)
Proceedings of the 19th International Conference on Computational Statistics (COMPSTAT 2010), Paris, France, 22-27 August 2010
, pp. 177-186
-
-
Bottou, L.1
-
47
-
-
84908537903
-
CNN Features Off-the-Shelf: An Astounding Baseline for Recognition
-
Columbus, OH, USA, 23-28 June
-
Sharif Razavian, A.; Azizpour, H.; Sullivan, J.; Carlsson, S. CNN Features Off-the-Shelf: An Astounding Baseline for Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)Workshops, Columbus, OH, USA, 23-28 June 2014
-
(2014)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)Workshops
-
-
Sharif Razavian, A.1
Azizpour, H.2
Sullivan, J.3
Carlsson, S.4
-
48
-
-
84988454742
-
-
Zheng, L.; Zhao, Y.; Wang, S.; Wang, J.; Tian, Q. Good Practice in CNN Feature Transfer. arXiv 2016, arXiv:abs/1604.00133
-
(2016)
Good Practice in CNN Feature Transfer
-
-
Zheng, L.1
Zhao, Y.2
Wang, S.3
Wang, J.4
Tian, Q.5
-
49
-
-
84909977972
-
Multi-class geospatial object detection and geographic image classification based on collection of part detectors
-
Cheng, G.; Han, J.; Zhou, P.; Guo, L. Multi-class geospatial object detection and geographic image classification based on collection of part detectors. ISPRS J. Photogramm. Remote Sens. 2014, 98, 119-132, doi:10.1016/j.isprsjprs.2014.10.002
-
(2014)
ISPRS J. Photogramm. Remote Sens
, vol.98
, pp. 119-132
-
-
Cheng, G.1
Han, J.2
Zhou, P.3
Guo, L.4
-
50
-
-
85164392958
-
A Study ofCross-validation and Bootstrap forAccuracy Estimation andModel Selection
-
Montreal, QC, Canada, 20-25 August 1995;Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA
-
Kohavi, R. A Study ofCross-validation and Bootstrap forAccuracy Estimation andModel Selection. In Proceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI '95), Montreal, QC, Canada, 20-25 August 1995;Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 1995; Volume 2, pp. 1137-1143
-
(1995)
Proceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI '95)
, vol.2
, pp. 1137-1143
-
-
Kohavi, R.1
-
51
-
-
64249103578
-
DataMining: A Preprocessing Engine
-
Shalabi, L.A.; Shaaban, Z.; Kasasbeh, B. DataMining: A Preprocessing Engine. J. Comput. Sci. 2006, 2, 735-739
-
(2006)
J. Comput. Sci
, vol.2
, pp. 735-739
-
-
Shalabi, L.A.1
Shaaban, Z.2
Kasasbeh, B.3
-
52
-
-
85072028231
-
Return of the Devil in the Details: Delving Deep into Convolutional Net
-
Chatfield, K.; Simonyan, K.; Vedaldi, A.; Zisserman, A. Return of the Devil in the Details: Delving Deep into Convolutional Nets. In Proceedings of the British Machine Vision Conference, Nottingham, UK, 1-5 September 2014; pp. 1-11, doi:10.5244/C.28.6
-
(2014)
In Proceedings of the British Machine Vision Conference, Nottingham, UK, 1-5 September
, pp. 1-11
-
-
Chatfield, K.1
Simonyan, K.2
Vedaldi, A.3
Zisserman, A.4
-
53
-
-
84911395788
-
Convolutional Neural Networks for No-Reference Image Quality Assessmen
-
Kang, L.; Ye, P.; Li, Y.; Doermann, D. Convolutional Neural Networks for No-Reference Image Quality Assessment. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23-28 June 2014; pp. 1733-1740, doi:10.1109/CVPR.2014.224
-
(2014)
In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23-28 June
, pp. 1733-1740
-
-
Kang, L.1
Ye, P.2
Li, Y.3
Doermann, D.4
-
54
-
-
84979701671
-
Understanding how image quality affects deep neural network
-
Dodge, S.; Karam, L. Understanding how image quality affects deep neural networks. In Proceedings of the 2016 Eighth International Conference on Quality of Multimedia Experience (QoMEX), Lisbon, Portugal, 6-8 June 2016; pp. 1-6, doi:10.1109/QoMEX.2016.7498955
-
(2016)
In Proceedings of the 2016 Eighth International Conference on Quality of Multimedia Experience (QoMEX), Lisbon, Portugal, 6-8 June
, pp. 1-6
-
-
Dodge, S.1
Karam, L.2
-
55
-
-
29644438050
-
Statistical Comparisons of Classifiers over Multiple Data Sets
-
Demsar, J. Statistical Comparisons of Classifiers over Multiple Data Sets. J. Mach. Learn. Res. 2006, 7, 1-30
-
(2006)
J. Mach. Learn. Res
, vol.7
, pp. 1-30
-
-
Demsar, J.1
-
56
-
-
33645146449
-
Histograms of oriented gradients for human detectio
-
Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '05), San Diego, CA, USA, 20-25 June 2005; Volume 1, pp. 886-893, doi:10.1109/CVPR.2005.177
-
(2005)
In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '05), San Diego, CA, USA, 20-25 June
, vol.1
, pp. 886-893
-
-
Dalal, N.1
Triggs, B.2
-
57
-
-
84856627527
-
ORB: An Efficient Alternative to SIFT or SURF
-
IEEE Computer Society: Washington, DC, USA
-
Rublee, E.; Rabaud, V.; Konolige, K.; Bradski, G. ORB: An Efficient Alternative to SIFT or SURF. In Proceedings of the 2011 International Conference on Computer Vision (ICCV '11), Barcelona, Spain, 6-13 November 2011; IEEE Computer Society: Washington, DC, USA, 2011; pp. 2564-2571, doi:10.1109/ICCV.2011.6126544
-
(2011)
Proceedings of the 2011 International Conference on Computer Vision (ICCV '11), Barcelona, Spain, 6-13 November 2011
, pp. 2564-2571
-
-
Rublee, E.1
Rabaud, V.2
Konolige, K.3
Bradski, G.4
-
58
-
-
77951204518
-
Object Classification of Aerial ImagesWith Bag-of-VisualWords
-
Xu, S.; Fang, T.; Li, D.;Wang, S. Object Classification of Aerial ImagesWith Bag-of-VisualWords. IEEE Geosci. Remote Sens. Lett. 2010, 7, 366-370, doi:10.1109/LGRS.2009.2035644
-
(2010)
IEEE Geosci. Remote Sens. Lett
, vol.7
, pp. 366-370
-
-
Xu, S.1
Fang, T.2
Li, D.3
Wang, S.4
-
59
-
-
84655169282
-
Automatic Target Detection in High-Resolution Remote Sensing Images Using Spatial Sparse Coding Bag-of-Words Model
-
Sun, H.; Sun, X.; Wang, H.; Li, Y.; Li, X. Automatic Target Detection in High-Resolution Remote Sensing Images Using Spatial Sparse Coding Bag-of-Words Model. IEEE Geosci. Remote Sens. Lett. 2012, 9, 109-113, doi:10.1109/LGRS.2011.2161569
-
(2012)
IEEE Geosci. Remote Sens. Lett
, vol.9
, pp. 109-113
-
-
Sun, H.1
Sun, X.2
Wang, H.3
Li, Y.4
Li, X.5
-
60
-
-
84863411575
-
Ensemble of exemplar-SVMs for Object Detection and Beyond
-
IEEE Computer Society: Washington, DC, USA
-
Malisiewicz, T.; Gupta, A.; Efros, A.A. Ensemble of exemplar-SVMs for Object Detection and Beyond. In Proceedings of the 2011 International Conference on Computer Vision (ICCV '11), 6-13 November 2011; IEEE Computer Society: Washington, DC, USA, 2011; pp. 89-96, doi:10.1109/ICCV.2011.6126229
-
(2011)
Proceedings of the 2011 International Conference on Computer Vision (ICCV '11), 6-13 November 2011
, pp. 89-96
-
-
Malisiewicz, T.1
Gupta, A.2
Efros, A.A.3
-
61
-
-
84893418304
-
Efficient, simultaneous detection of multi-class geospatial targets based on visual saliency modeling and discriminative learning of sparse coding
-
Han, J.; Zhou, P.; Zhang, D.; Cheng, G.; Guo, L.; Liu, Z.; Bu, S.; Wu, J. Efficient, simultaneous detection of multi-class geospatial targets based on visual saliency modeling and discriminative learning of sparse coding. ISPRS J. Photogramm. Remote Sens. 2014, 89, 37-48, doi:10.1016/j.isprsjprs.2013.12.011
-
(2014)
ISPRS J. Photogramm. Remote Sens
, vol.89
, pp. 37-48
-
-
Han, J.1
Zhou, P.2
Zhang, D.3
Cheng, G.4
Guo, L.5
Liu, Z.6
Bu, S.7
Wu, J.8
-
62
-
-
85027931914
-
Learning High-level Features for Satellite Image Classification With Limited Labeled Samples
-
Yang, W.; Yin, X.; Xia, G.S. Learning High-level Features for Satellite Image Classification With Limited Labeled Samples. IEEE Trans. Geosci. Remote Sens. 2015, 53, 4472-4482, doi:10.1109/TGRS.2015.2400449
-
(2015)
IEEE Trans. Geosci. Remote Sens
, vol.53
, pp. 4472-4482
-
-
Yang, W.1
Yin, X.2
Xia, G.S.3
|