메뉴 건너뛰기




Volumn 10, Issue 4, 2018, Pages

Automatic ship classification from optical aerial images with convolutional neural networks

Author keywords

Aerial image classification; Convolutional neural networks; Deep learning; Maritime surveillance; Optical remote sensing; Ships classification

Indexed keywords

AERIAL PHOTOGRAPHY; ANTENNAS; CONVOLUTION; DEEP LEARNING; NEAREST NEIGHBOR SEARCH; NETWORK ARCHITECTURE; NEURAL NETWORKS; OPTICAL DATA PROCESSING; REMOTE SENSING; SHIPS;

EID: 85045970125     PISSN: None     EISSN: 20724292     Source Type: Journal    
DOI: 10.3390/rs10040511     Document Type: Article
Times cited : (137)

References (62)
  • 3
    • 84930012451 scopus 로고    scopus 로고
    • Ship Detectionwith Spectral Analysis of Synthetic Aperture Radar: A Comparison of New andWell-Known Algorithms
    • Marino, A.; Sanjuan-Ferrer, M.J.; Hajnsek, I.; Ouchi, K. Ship Detectionwith Spectral Analysis of Synthetic Aperture Radar: A Comparison of New andWell-Known Algorithms. Remote Sens. 2015, 7, 5416, doi:10.3390/rs70505416
    • (2015) Remote Sens , vol.7 , pp. 5416
    • Marino, A.1    Sanjuan-Ferrer, M.J.2    Hajnsek, I.3    Ouchi, K.4
  • 4
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436-444, doi:10.1038/nature14539
    • (2015) Nature , vol.521 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 7
    • 44649129231 scopus 로고    scopus 로고
    • Using SPOT-5 HRG Data in Panchromatic Mode for Operational Detection of Small Ships in Tropical Area
    • Corbane, C.; Marre, F.; Petit, M. Using SPOT-5 HRG Data in Panchromatic Mode for Operational Detection of Small Ships in Tropical Area. Sensors 2008, 8, 2959-2973, doi:10.3390/s8052959
    • (2008) Sensors , vol.8 , pp. 2959-2973
    • Corbane, C.1    Marre, F.2    Petit, M.3
  • 8
    • 78649902112 scopus 로고    scopus 로고
    • A Complete Processing Chain for Ship Detection Using Optical Satellite Imagery
    • Corbane, C.; Najman, L.; Pecoul, E.; Demagistri, L.; Petit, M. A Complete Processing Chain for Ship Detection Using Optical Satellite Imagery. Int. J. Remote Sens. 2010, 31, 5837-5854, doi:10.1080/01431161.2010.512310
    • (2010) Int. J. Remote Sens , vol.31 , pp. 5837-5854
    • Corbane, C.1    Najman, L.2    Pecoul, E.3    Demagistri, L.4    Petit, M.5
  • 9
    • 77956059560 scopus 로고    scopus 로고
    • A Novel Hierarchical Method of Ship Detection from Spaceborne Optical Image Based on Shape and Texture Features
    • Zhu, C.; Zhou, H.; Wang, R.; Guo, J. A Novel Hierarchical Method of Ship Detection from Spaceborne Optical Image Based on Shape and Texture Features. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3446-3456, doi:10.1109/TGRS.2010.2046330
    • (2010) IEEE Trans. Geosci. Remote Sens , vol.48 , pp. 3446-3456
    • Zhu, C.1    Zhou, H.2    Wang, R.3    Guo, J.4
  • 11
  • 12
    • 84881418493 scopus 로고    scopus 로고
    • Ship Detection From Optical Satellite Images Based on Sea Surface Analysis
    • Yang, G.; Li, B.; Ji, S.; Gao, F.; Xu, Q. Ship Detection From Optical Satellite Images Based on Sea Surface Analysis. IEEE Geosci. Remote Sens. Lett. 2014, 11, 641-645, doi:10.1109/LGRS.2013.2273552
    • (2014) IEEE Geosci. Remote Sens. Lett , vol.11 , pp. 641-645
    • Yang, G.1    Li, B.2    Ji, S.3    Gao, F.4    Xu, Q.5
  • 15
    • 84907463801 scopus 로고    scopus 로고
    • Compressed-Domain Ship Detection on Spaceborne Optical Image Using Deep Neural Network and Extreme Learning Machine
    • Tang, J.; Deng, C.; Huang, G.B.; Zhao, B. Compressed-Domain Ship Detection on Spaceborne Optical Image Using Deep Neural Network and Extreme Learning Machine. IEEE Trans. Geosci. Remote Sens. 2015, 53, 1174-1185, doi:10.1109/TGRS.2014.2335751
    • (2015) IEEE Trans. Geosci. Remote Sens , vol.53 , pp. 1174-1185
    • Tang, J.1    Deng, C.2    Huang, G.B.3    Zhao, B.4
  • 16
    • 85029744465 scopus 로고    scopus 로고
    • Ship detection in optical remote sensing images based on deep convolutional neural networks
    • Yao, Y.; Jiang, Z.; Zhang, H.; Zhao, D.; Cai, B. Ship detection in optical remote sensing images based on deep convolutional neural networks. J. Appl. Remote Sens. 2017, 11, doi:10.1117/1.JRS.11.042611
    • (2017) J. Appl. Remote Sens , vol.11
    • Yao, Y.1    Jiang, Z.2    Zhang, H.3    Zhao, D.4    Cai, B.5
  • 17
    • 85027929099 scopus 로고    scopus 로고
    • Unsupervised Feature Learning Via Spectral Clustering of Multidimensional Patches for Remotely Sensed Scene Classification
    • Hu, F.; Xia, G.S.; Wang, Z.; Huang, X.; Zhang, L.; Sun, H. Unsupervised Feature Learning Via Spectral Clustering of Multidimensional Patches for Remotely Sensed Scene Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2015-2030
    • (2015) IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens , vol.8 , pp. 2015-2030
    • Hu, F.1    Xia, G.S.2    Wang, Z.3    Huang, X.4    Zhang, L.5    Sun, H.6
  • 18
    • 84975263405 scopus 로고    scopus 로고
    • Ship Detection in Spaceborne Optical Image With SVD Networks
    • Zou, Z.; Shi, Z. Ship Detection in Spaceborne Optical Image With SVD Networks. IEEE Trans. Geosci. Remote Sens. 2016, 54, 5832-5845, doi:10.1109/TGRS.2016.2572736
    • (2016) IEEE Trans. Geosci. Remote Sens , vol.54 , pp. 5832-5845
    • Zou, Z.1    Shi, Z.2
  • 20
    • 84961970561 scopus 로고    scopus 로고
    • A survey on object detection in optical remote sensing images
    • Cheng, G.; Han, J. A survey on object detection in optical remote sensing images. SPRS J. Photogramm. Remote Sens. 2016, 117, 11-28, doi:10.1016/j.isprsjprs.2016.03.014
    • (2016) SPRS J. Photogramm. Remote Sens , vol.117 , pp. 11-28
    • Cheng, G.1    Han, J.2
  • 22
    • 85028919327 scopus 로고    scopus 로고
    • Fully ConvolutionalNetworkWith Task Partitioning for Inshore Ship Detection in Optical Remote Sensing Images
    • Lin, H.; Shi, Z.; Zou, Z. Fully ConvolutionalNetworkWith Task Partitioning for Inshore Ship Detection in Optical Remote Sensing Images. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1665-1669, doi:10.1109/LGRS.2017.2727515
    • (2017) IEEE Geosci. Remote Sens. Lett , vol.14 , pp. 1665-1669
    • Lin, H.1    Shi, Z.2    Zou, Z.3
  • 23
    • 84865420049 scopus 로고    scopus 로고
    • SAR-Based Terrain Classification UsingWeakly Supervised Hierarchical Markov Aspect Models
    • Yang, W.; Dai, D.; Triggs, B.; Xia, G.S. SAR-Based Terrain Classification UsingWeakly Supervised Hierarchical Markov Aspect Models. IEEE Trans. Image Process. 2012, 21, 4232-4243, doi:10.1109/TIP.2012.2199127
    • (2012) IEEE Trans. Image Process , vol.21 , pp. 4232-4243
    • Yang, W.1    Dai, D.2    Triggs, B.3    Xia, G.S.4
  • 24
    • 77958488310 scopus 로고    scopus 로고
    • Deep Machine Learning-A New Frontier in Artificial Intelligence Research
    • Arel, I.; Rose, D.C.; Karnowski, T.P. Deep Machine Learning-A New Frontier in Artificial Intelligence Research. IEEE Comput. Intell. Mag. 2010, 5, 13-18, doi:10.1109/MCI.2010.938364
    • (2010) IEEE Comput. Intell. Mag , vol.5 , pp. 13-18
    • Arel, I.1    Rose, D.C.2    Karnowski, T.P.3
  • 25
    • 84910651844 scopus 로고    scopus 로고
    • Deep learning in neural networks: An overview
    • Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85-117, doi:10.1016/j.neunet.2014.09.003
    • (2015) Neural Netw , vol.61 , pp. 85-117
    • Schmidhuber, J.1
  • 28
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278-2323, doi:10.1109/5.726791
    • (1998) Proc. IEEE , vol.86 , pp. 2278-2323
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 34
    • 84950141946 scopus 로고    scopus 로고
    • Transferring Deep Convolutional Neural Networks for the Scene Classification of High-Resolution Remote Sensing Imagery
    • Hu, F.; Xia, G.S.; Hu, J.; Zhang, L. Transferring Deep Convolutional Neural Networks for the Scene Classification of High-Resolution Remote Sensing Imagery. Remote Sens. 2015, 7, 14680-14707, doi:10.3390/rs71114680
    • (2015) Remote Sens , vol.7 , pp. 14680-14707
    • Hu, F.1    Xia, G.S.2    Hu, J.3    Zhang, L.4
  • 35
    • 84976384382 scopus 로고    scopus 로고
    • Deep Learning for Remote Sensing Data: A Technical Tutorial on the State of the Art
    • Zhang, L.; Zhang, L.; Du, B. Deep Learning for Remote Sensing Data: A Technical Tutorial on the State of the Art. IEEE Geosci. Remote Sens. Mag. 2016, 4, 22-40, doi:10.1109/MGRS.2016.2540798
    • (2016) IEEE Geosci. Remote Sens. Mag , vol.4 , pp. 22-40
    • Zhang, L.1    Zhang, L.2    Du, B.3
  • 36
    • 85032865390 scopus 로고    scopus 로고
    • Comprehensive survey of deep learning in remote sensing: Theories, tools, and challenges for the community
    • Ball, J.E.; Anderson, D.T.; Chan, C.S. Comprehensive survey of deep learning in remote sensing: Theories, tools, and challenges for the community. J. Appl. Remote Sens. 2017, 11, 042609, doi:10.1117/1.JRS.11.042609
    • (2017) J. Appl. Remote Sens , vol.11
    • Ball, J.E.1    Anderson, D.T.2    Chan, C.S.3
  • 43
    • 84937508363 scopus 로고    scopus 로고
    • How transferable are features in deep neural networks?
    • Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q., Eds.; MIT Press Ltd.: Cambridge, MA, USA
    • Yosinski, J.; Clune, J.; Bengio, Y.; Lipson, H. How transferable are features in deep neural networks? In Advances in Neural Information Processing Systems (NIPS); Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q., Eds.; MIT Press Ltd.: Cambridge, MA, USA, 2014; pp. 3320-3328
    • (2014) Advances in Neural Information Processing Systems (NIPS) , pp. 3320-3328
    • Yosinski, J.1    Clune, J.2    Bengio, Y.3    Lipson, H.4
  • 49
    • 84909977972 scopus 로고    scopus 로고
    • Multi-class geospatial object detection and geographic image classification based on collection of part detectors
    • Cheng, G.; Han, J.; Zhou, P.; Guo, L. Multi-class geospatial object detection and geographic image classification based on collection of part detectors. ISPRS J. Photogramm. Remote Sens. 2014, 98, 119-132, doi:10.1016/j.isprsjprs.2014.10.002
    • (2014) ISPRS J. Photogramm. Remote Sens , vol.98 , pp. 119-132
    • Cheng, G.1    Han, J.2    Zhou, P.3    Guo, L.4
  • 50
    • 85164392958 scopus 로고
    • A Study ofCross-validation and Bootstrap forAccuracy Estimation andModel Selection
    • Montreal, QC, Canada, 20-25 August 1995;Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA
    • Kohavi, R. A Study ofCross-validation and Bootstrap forAccuracy Estimation andModel Selection. In Proceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI '95), Montreal, QC, Canada, 20-25 August 1995;Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 1995; Volume 2, pp. 1137-1143
    • (1995) Proceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI '95) , vol.2 , pp. 1137-1143
    • Kohavi, R.1
  • 55
    • 29644438050 scopus 로고    scopus 로고
    • Statistical Comparisons of Classifiers over Multiple Data Sets
    • Demsar, J. Statistical Comparisons of Classifiers over Multiple Data Sets. J. Mach. Learn. Res. 2006, 7, 1-30
    • (2006) J. Mach. Learn. Res , vol.7 , pp. 1-30
    • Demsar, J.1
  • 58
    • 77951204518 scopus 로고    scopus 로고
    • Object Classification of Aerial ImagesWith Bag-of-VisualWords
    • Xu, S.; Fang, T.; Li, D.;Wang, S. Object Classification of Aerial ImagesWith Bag-of-VisualWords. IEEE Geosci. Remote Sens. Lett. 2010, 7, 366-370, doi:10.1109/LGRS.2009.2035644
    • (2010) IEEE Geosci. Remote Sens. Lett , vol.7 , pp. 366-370
    • Xu, S.1    Fang, T.2    Li, D.3    Wang, S.4
  • 59
    • 84655169282 scopus 로고    scopus 로고
    • Automatic Target Detection in High-Resolution Remote Sensing Images Using Spatial Sparse Coding Bag-of-Words Model
    • Sun, H.; Sun, X.; Wang, H.; Li, Y.; Li, X. Automatic Target Detection in High-Resolution Remote Sensing Images Using Spatial Sparse Coding Bag-of-Words Model. IEEE Geosci. Remote Sens. Lett. 2012, 9, 109-113, doi:10.1109/LGRS.2011.2161569
    • (2012) IEEE Geosci. Remote Sens. Lett , vol.9 , pp. 109-113
    • Sun, H.1    Sun, X.2    Wang, H.3    Li, Y.4    Li, X.5
  • 61
    • 84893418304 scopus 로고    scopus 로고
    • Efficient, simultaneous detection of multi-class geospatial targets based on visual saliency modeling and discriminative learning of sparse coding
    • Han, J.; Zhou, P.; Zhang, D.; Cheng, G.; Guo, L.; Liu, Z.; Bu, S.; Wu, J. Efficient, simultaneous detection of multi-class geospatial targets based on visual saliency modeling and discriminative learning of sparse coding. ISPRS J. Photogramm. Remote Sens. 2014, 89, 37-48, doi:10.1016/j.isprsjprs.2013.12.011
    • (2014) ISPRS J. Photogramm. Remote Sens , vol.89 , pp. 37-48
    • Han, J.1    Zhou, P.2    Zhang, D.3    Cheng, G.4    Guo, L.5    Liu, Z.6    Bu, S.7    Wu, J.8
  • 62
    • 85027931914 scopus 로고    scopus 로고
    • Learning High-level Features for Satellite Image Classification With Limited Labeled Samples
    • Yang, W.; Yin, X.; Xia, G.S. Learning High-level Features for Satellite Image Classification With Limited Labeled Samples. IEEE Trans. Geosci. Remote Sens. 2015, 53, 4472-4482, doi:10.1109/TGRS.2015.2400449
    • (2015) IEEE Trans. Geosci. Remote Sens , vol.53 , pp. 4472-4482
    • Yang, W.1    Yin, X.2    Xia, G.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.