메뉴 건너뛰기




Volumn 37, Issue 1, 2016, Pages 1-13

A study of a Gaussian mixture model for urban land-cover mapping based on VHR remote sensing imagery

Author keywords

[No Author keywords available]

Indexed keywords

GAUSSIAN DISTRIBUTION; IMAGE ENHANCEMENT; PHOTOMAPPING; SPACE OPTICS; SUPPORT VECTOR MACHINES;

EID: 84953340965     PISSN: 01431161     EISSN: 13665901     Source Type: Journal    
DOI: 10.1080/2150704X.2015.1101502     Document Type: Article
Times cited : (14)

References (25)
  • 1
    • 0016355478 scopus 로고
    • A New Look at the Statistical Model Identification
    • H.Akaike, 1974. “A New Look at the Statistical Model Identification.” IEEE Transactions on Automatic Control 19 (6): 716–723. doi:10.1109/TAC.1974.1100705.
    • (1974) IEEE Transactions on Automatic Control , vol.19 , Issue.6 , pp. 716-723
    • Akaike, H.1
  • 2
    • 33645887246 scopus 로고    scopus 로고
    • Support Vector Machines Using GMM Supervectors for Speaker Verification
    • W.M.Campbell,, D.E.Sturim, and D.A.Reynolds. 2006. “Support Vector Machines Using GMM Supervectors for Speaker Verification.” IEEE Signal Processing Letters 13 (5): 308–311. doi:10.1109/LSP.2006.870086.
    • (2006) IEEE Signal Processing Letters , vol.13 , Issue.5 , pp. 308-311
    • Campbell, W.M.1    Sturim, D.E.2    Reynolds, D.A.3
  • 4
    • 0032337237 scopus 로고    scopus 로고
    • Detecting Features in Spatial Point Processes with Clutter via Model-Based Clustering
    • A.Dasgupta,, and A.E.Raftery. 1998. “Detecting Features in Spatial Point Processes with Clutter via Model-Based Clustering.” Journal of the American Statistical Association 93 (441): 294–302. doi:10.1080/01621459.1998.10474110.
    • (1998) Journal of the American Statistical Association , vol.93 , Issue.441 , pp. 294-302
    • Dasgupta, A.1    Raftery, A.E.2
  • 5
    • 35248867076 scopus 로고    scopus 로고
    • Gaussian Mixture Models for Supervised Classification of Remote Sensing Multispectral Images
    • Sanfeliu A., Ruiz-Shulcloper J., (eds)
    • A.C.O.de Melo,, R.M.de Moraes, and L.D.S.Machado. 2003. “Gaussian Mixture Models for Supervised Classification of Remote Sensing Multispectral Images.” In Progress in Pattern Recognition, Speech and Image Analysis, edited by A.Sanfeliu and J.Ruiz-Shulcloper, 440–447. Berlin: Springer.
    • (2003) Progress in Pattern Recognition, Speech and Image Analysis , pp. 440-447
    • de Melo, A.C.O.1    de Moraes, R.M.2    Machado, L.D.S.3
  • 6
    • 0036991339 scopus 로고    scopus 로고
    • A Model-Based Mixture-Supervised Classification Approach in Hyperspectral Data Analysis
    • M.Dundar,, and D.Landgrebe. 2002. “A Model-Based Mixture-Supervised Classification Approach in Hyperspectral Data Analysis.” IEEE Transactions on Geoscience and Remote Sensing 40 (12): 2692–2699. doi:10.1109/TGRS.2002.807010.
    • (2002) IEEE Transactions on Geoscience and Remote Sensing , vol.40 , Issue.12 , pp. 2692-2699
    • Dundar, M.1    Landgrebe, D.2
  • 8
    • 3042661357 scopus 로고    scopus 로고
    • Thematic Map Comparison: Evaluating the Statistical Significance of Differences in Classification Accuracy
    • G.M.Foody, 2004. “Thematic Map Comparison: Evaluating the Statistical Significance of Differences in Classification Accuracy.” Photogrammetric Engineering & Remote Sensing 70 (5): 627–633. doi:10.14358/PERS.70.5.627.
    • (2004) Photogrammetric Engineering & Remote Sensing , vol.70 , Issue.5 , pp. 627-633
    • Foody, G.M.1
  • 9
    • 84953306836 scopus 로고    scopus 로고
    • The Classification of Multi-spectral QuickBird Image Data of Buildings based on Gaussian Mixture Model
    • M.X.Gao,, and Z.Y.Mao. 2009. “The Classification of Multi-spectral QuickBird Image Data of Buildings based on Gaussian Mixture Model.” Remote Sensing for Land & Resources 2 (80): 19–23.
    • (2009) Remote Sensing for Land & Resources , vol.2 , Issue.80 , pp. 19-23
    • Gao, M.X.1    Mao, Z.Y.2
  • 10
    • 0018466704 scopus 로고
    • Statistical and Structural Approaches to Texture
    • R.M.Haralick, 1979. “Statistical and Structural Approaches to Texture.” Proceedings of the IEEE 67 (5): 786–804. doi:10.1109/PROC.1979.11328.
    • (1979) Proceedings of the IEEE , vol.67 , Issue.5 , pp. 786-804
    • Haralick, R.M.1
  • 12
    • 52649118668 scopus 로고    scopus 로고
    • A Multiscale Feature Fusion Approach for Classification of Very High Resolution Satellite Imagery Based on Wavelet Transform
    • X.Huang,, L.Zhang, and P.Li. 2008. “A Multiscale Feature Fusion Approach for Classification of Very High Resolution Satellite Imagery Based on Wavelet Transform.” International Journal of Remote Sensing 29 (20): 5923–5941. doi:10.1080/01431160802139922.
    • (2008) International Journal of Remote Sensing , vol.29 , Issue.20 , pp. 5923-5941
    • Huang, X.1    Zhang, L.2    Li, P.3
  • 13
    • 20244366518 scopus 로고    scopus 로고
    • Gaussian Mixture Discriminant Analysis and Sub-Pixel Land Cover Characterization in Remote Sensing
    • J.Ju,, E.D.Kolaczyk, and S.Gopal. 2003. “Gaussian Mixture Discriminant Analysis and Sub-Pixel Land Cover Characterization in Remote Sensing.” Remote Sensing of Environment 84 (4): 550–560. doi:10.1016/S0034-4257(02)00172-4.
    • (2003) Remote Sensing of Environment , vol.84 , Issue.4 , pp. 550-560
    • Ju, J.1    Kolaczyk, E.D.2    Gopal, S.3
  • 14
    • 33845395148 scopus 로고    scopus 로고
    • Texture Classification and Segmentation Using Wavelet Packet Frame and Gaussian Mixture Model
    • S.C.Kim,, and T.J.Kang. 2007. “Texture Classification and Segmentation Using Wavelet Packet Frame and Gaussian Mixture Model.” Pattern Recognition 40 (4): 1207–1221. doi:10.1016/j.patcog.2006.09.012.
    • (2007) Pattern Recognition , vol.40 , Issue.4 , pp. 1207-1221
    • Kim, S.C.1    Kang, T.J.2
  • 15
    • 58349105008 scopus 로고    scopus 로고
    • Comparative Evaluation of Maximum a Posteriori Vector Quantization and Gaussian Mixture Models in Speaker Verification
    • T.Kinnunen,, J.Saastamoinen, V.Hautamäki, M.Vinni, and P.Fränti. 2009. “Comparative Evaluation of Maximum a Posteriori Vector Quantization and Gaussian Mixture Models in Speaker Verification.” Pattern Recognition Letters 30 (4): 341–347. doi:10.1016/j.patrec.2008.11.007.
    • (2009) Pattern Recognition Letters , vol.30 , Issue.4 , pp. 341-347
    • Kinnunen, T.1    Saastamoinen, J.2    Hautamäki, V.3    Vinni, M.4    Fränti, P.5
  • 16
    • 33749857198 scopus 로고    scopus 로고
    • Geomorphologic Mapping from Hyperspectral Data, Using Gaussian Mixtures and Lower Confidence Bounds
    • A.Koltunov,, O.Crouvi, and E.Ben-Dor. 2006. “Geomorphologic Mapping from Hyperspectral Data, Using Gaussian Mixtures and Lower Confidence Bounds.” International Journal of Remote Sensing 27 (20): 4545–4566. doi:10.1080/01431160600784242.
    • (2006) International Journal of Remote Sensing , vol.27 , Issue.20 , pp. 4545-4566
    • Koltunov, A.1    Crouvi, O.2    Ben-Dor, E.3
  • 17
    • 65649107707 scopus 로고    scopus 로고
    • Decomposition of Mixed Pixels Based on Bayesian Self-Organizing Map and Gaussian Mixture Model
    • L.Liu,, B.Wang, and L.Zhang. 2009. “Decomposition of Mixed Pixels Based on Bayesian Self-Organizing Map and Gaussian Mixture Model.” Pattern Recognition Letters 30 (9): 820–826. doi:10.1016/j.patrec.2008.05.026.
    • (2009) Pattern Recognition Letters , vol.30 , Issue.9 , pp. 820-826
    • Liu, L.1    Wang, B.2    Zhang, L.3
  • 18
    • 64549105242 scopus 로고    scopus 로고
    • A Neural Network Approach Using Multi-Scale Textural Metrics from Very High-Resolution Panchromatic Imagery for Urban Land-Use Classification
    • F.Pacifici,, M.Chini, and W.J.Emery. 2009. “A Neural Network Approach Using Multi-Scale Textural Metrics from Very High-Resolution Panchromatic Imagery for Urban Land-Use Classification.” Remote Sensing of Environment 113 (6): 1276–1292. doi:10.1016/j.rse.2009.02.014.
    • (2009) Remote Sensing of Environment , vol.113 , Issue.6 , pp. 1276-1292
    • Pacifici, F.1    Chini, M.2    Emery, W.J.3
  • 19
    • 32044457458 scopus 로고    scopus 로고
    • A Study of Gaussian Mixture Models of Color and Texture Features for Image Classification and Segmentation
    • H.Permuter,, J.Francos, and I.Jermyn. 2006. “A Study of Gaussian Mixture Models of Color and Texture Features for Image Classification and Segmentation.” Pattern Recognition 39 (4): 695–706. doi:10.1016/j.patcog.2005.10.028.
    • (2006) Pattern Recognition , vol.39 , Issue.4 , pp. 695-706
    • Permuter, H.1    Francos, J.2    Jermyn, I.3
  • 20
    • 0000120766 scopus 로고
    • Estimating the Dimension of a Model
    • G.Schwarz, 1978. “Estimating the Dimension of a Model.” The Annals of Statistics 6 (2): 461–464. doi:10.1214/aos/1176344136.
    • (1978) The Annals of Statistics , vol.6 , Issue.2 , pp. 461-464
    • Schwarz, G.1
  • 22
    • 8344256555 scopus 로고    scopus 로고
    • Estimation for the Number of Components in a Mixture Model Using Stepwise Split-and-Merge EM Algorithm
    • H.X.Wang,, B.Luo, Q.B.Zhang, and S.Wei. 2004. “Estimation for the Number of Components in a Mixture Model Using Stepwise Split-and-Merge EM Algorithm.” Pattern Recognition Letters 25 (16): 1799–1809. doi:10.1016/j.patrec.2004.07.007.
    • (2004) Pattern Recognition Letters , vol.25 , Issue.16 , pp. 1799-1809
    • Wang, H.X.1    Luo, B.2    Zhang, Q.B.3    Wei, S.4
  • 23
    • 84950442225 scopus 로고
    • Information Ratios for Validating Mixture Analyses
    • M.P.Windham,, and A.Cutler. 1992. “Information Ratios for Validating Mixture Analyses.” Journal of the American Statistical Association 87 (420): 1188–1192. doi:10.1080/01621459.1992.10476277.
    • (1992) Journal of the American Statistical Association , vol.87 , Issue.420 , pp. 1188-1192
    • Windham, M.P.1    Cutler, A.2
  • 24
    • 84867563029 scopus 로고    scopus 로고
    • Semi-Supervised Classification Based on Gaussian Mixture Model for Remote Imagery
    • B.Xiong,, X.J.Zhang, and W.S.Jiang. 2010. “Semi-Supervised Classification Based on Gaussian Mixture Model for Remote Imagery.” Science China Technological Sciences 53 (Suppl I): 85–90. doi:10.1007/s11431-010-3211-5.
    • (2010) Science China Technological Sciences , vol.53 , pp. 85-90
    • Xiong, B.1    Zhang, X.J.2    Jiang, W.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.