메뉴 건너뛰기




Volumn 56, Issue , 2017, Pages 28-39

Superpixel segmentation: A benchmark

Author keywords

Benchmark; Evaluation; Superpixel

Indexed keywords

BENCHMARKING; GRAPHIC METHODS; PIXELS;

EID: 85018251516     PISSN: 09235965     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.image.2017.04.007     Document Type: Article
Times cited : (157)

References (54)
  • 6
    • 84901024368 scopus 로고    scopus 로고
    • Regularity preserved superpixels and supervoxels
    • [6] Fu, H., Cao, X., Tang, D., Han, Y., Xu, D., Regularity preserved superpixels and supervoxels. IEEE Trans. Multimed. 16:4 (2014), 1165–1175.
    • (2014) IEEE Trans. Multimed. , vol.16 , Issue.4 , pp. 1165-1175
    • Fu, H.1    Cao, X.2    Tang, D.3    Han, Y.4    Xu, D.5
  • 7
    • 84897712479 scopus 로고    scopus 로고
    • Lazy random walks for superpixel segmentation
    • [7] Shen, J., Du, Y., Wang, W., Li, X., Lazy random walks for superpixel segmentation. IEEE Trans. Image Process. 23:4 (2014), 1451–1462.
    • (2014) IEEE Trans. Image Process. , vol.23 , Issue.4 , pp. 1451-1462
    • Shen, J.1    Du, Y.2    Wang, W.3    Li, X.4
  • 8
    • 84884940102 scopus 로고    scopus 로고
    • Contour-relaxed superpixels, in: Energy Minimization Methods in Computer Vision and Pattern Recognition, Springer
    • [8] C. Conrad, M. Mertz, R. Mester, Contour-relaxed superpixels, in: Energy Minimization Methods in Computer Vision and Pattern Recognition, Springer, 2013, pp. 280–293.
    • (2013) , pp. 280-293
    • Conrad, C.1    Mertz, M.2    Mester, R.3
  • 9
    • 84876925381 scopus 로고    scopus 로고
    • Structure-sensitive superpixels via geodesic distance
    • [9] Wang, P., Zeng, G., Gan, R., Wang, J., Zha, H., Structure-sensitive superpixels via geodesic distance. Int. J. Comput. Vision. 103:1 (2013), 1–21.
    • (2013) Int. J. Comput. Vision. , vol.103 , Issue.1 , pp. 1-21
    • Wang, P.1    Zeng, G.2    Gan, R.3    Wang, J.4    Zha, H.5
  • 11
    • 51949087595 scopus 로고    scopus 로고
    • Superpixel lattices, in: Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, IEEE
    • [11] A.P. Moore, J. Prince, J. Warrell, U. Mohammed, G. Jones, Superpixel lattices, in: Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, IEEE, 2008, pp. 1–8.
    • (2008) , pp. 1-8
    • Moore, A.P.1    Prince, J.2    Warrell, J.3    Mohammed, U.4    Jones, G.5
  • 15
    • 84863490014 scopus 로고    scopus 로고
    • Homogeneous superpixels from random walks., in: MVA
    • [15] F. Perbet, A. Maki, Homogeneous superpixels from random walks., in: MVA, 2011, pp. 26–30.
    • (2011) , pp. 26-30
    • Perbet, F.1    Maki, A.2
  • 17
    • 84867853872 scopus 로고    scopus 로고
    • Seeds: Superpixels extracted via energy-driven sampling, in: Computer Vision–ECCV 2012, Springer
    • [17] M. Van den Bergh, X. Boix, G. Roig, B. de Capitani, L. Van Gool, Seeds: Superpixels extracted via energy-driven sampling, in: Computer Vision–ECCV 2012, Springer, 2012, pp. 13–26.
    • (2012) , pp. 13-26
    • Van den Bergh, M.1    Boix, X.2    Roig, G.3    de Capitani, B.4    Van Gool, L.5
  • 18
    • 84874563881 scopus 로고    scopus 로고
    • Depth-adaptive superpixels, in: Pattern Recognition (ICPR), 2012 Proceedings of the 21st International Conference on, IEEE
    • [18] D. Weikersdorfer, D. Gossow, M. Beetz, Depth-adaptive superpixels, in: Pattern Recognition (ICPR), 2012 Proceedings of the 21st International Conference on, IEEE, 2012, pp. 2087–2090.
    • (2012) , pp. 2087-2090
    • Weikersdorfer, D.1    Gossow, D.2    Beetz, M.3
  • 19
    • 84860252273 scopus 로고    scopus 로고
    • Vcells: simple and efficient superpixels using edge-weighted centroidal voronoi tessellations
    • [19] Wang, J., Wang, X., Vcells: simple and efficient superpixels using edge-weighted centroidal voronoi tessellations. IEEE Trans. Pattern Anal. Mach. Intell. 34:6 (2012), 1241–1247.
    • (2012) IEEE Trans. Pattern Anal. Mach. Intell. , vol.34 , Issue.6 , pp. 1241-1247
    • Wang, J.1    Wang, X.2
  • 25
    • 84892957345 scopus 로고    scopus 로고
    • Video object segmentation with shape cue based on spatiotemporal superpixel neighbourhood
    • [25] Tian, Z., Zheng, N., Xue, J., Lan, X., Li, C., Zhou, G., Video object segmentation with shape cue based on spatiotemporal superpixel neighbourhood. IET Comput. Vision. 8:1 (2014), 16–25.
    • (2014) IET Comput. Vision. , vol.8 , Issue.1 , pp. 16-25
    • Tian, Z.1    Zheng, N.2    Xue, J.3    Lan, X.4    Li, C.5    Zhou, G.6
  • 31
    • 84964522758 scopus 로고    scopus 로고
    • Libsvx: a supervoxel library and benchmark for early video processing
    • [31] Xu, C., Corso, J.J., Libsvx: a supervoxel library and benchmark for early video processing. Int. J. Comput. Vision. 119:3 (2016), 272–290.
    • (2016) Int. J. Comput. Vision. , vol.119 , Issue.3 , pp. 272-290
    • Xu, C.1    Corso, J.J.2
  • 32
    • 84952361745 scopus 로고    scopus 로고
    • Superpixel segmentation: An evaluation
    • [32] D. Stutz, Superpixel segmentation: An evaluation, in: Pattern Recognition, Springer, 2015, pp. 555–562.
    • (2015) Pattern Recognition, Springer , pp. 555-562
    • Stutz, D.1
  • 34
    • 85018257107 scopus 로고    scopus 로고
    • Graph clustering by flow simulation.
    • [34] S.M. Van Dongen, Graph clustering by flow simulation.
    • VanDongen, S.M.1
  • 36
    • 0026172104 scopus 로고
    • Watersheds in digital spaces: an efficient algorithm based on immersion simulations
    • [36] Vincent, L., Soille, P., Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans. Pattern Anal. Mach. Intell. 6 (1991), 583–598.
    • (1991) IEEE Trans. Pattern Anal. Mach. Intell. , vol.6 , pp. 583-598
    • Vincent, L.1    Soille, P.2
  • 37
    • 0036565814 scopus 로고    scopus 로고
    • Mean shift: a robust approach toward feature space analysis
    • [37] Comaniciu, D., Meer, P., Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24:5 (2002), 603–619.
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell. , vol.24 , Issue.5 , pp. 603-619
    • Comaniciu, D.1    Meer, P.2
  • 41
    • 84897107105 scopus 로고    scopus 로고
    • Automated co-superpixel generation via graph matching
    • [41] Xie, Y., Xu, L., Wang, Z., Automated co-superpixel generation via graph matching. Signal, Image Video Process. 8:4 (2014), 753–763.
    • (2014) Signal, Image Video Process. , vol.8 , Issue.4 , pp. 753-763
    • Xie, Y.1    Xu, L.2    Wang, Z.3
  • 42
    • 84919904909 scopus 로고    scopus 로고
    • Compact watershed and preemptive slic: On improving trade-offs of superpixel segmentation algorithms., in: ICPR
    • [42] P. Neubert, P. Protzel, Compact watershed and preemptive slic: On improving trade-offs of superpixel segmentation algorithms., in: ICPR, 2014, pp. 996–1001.
    • (2014) , pp. 996-1001
    • Neubert, P.1    Protzel, P.2
  • 43
    • 68149098829 scopus 로고    scopus 로고
    • An edge-weighted centroidal voronoi tessellation model for image segmentation
    • [43] Wang, J., Ju, L., Wang, X., An edge-weighted centroidal voronoi tessellation model for image segmentation. IEEE Trans. Image Process. 18:8 (2009), 1844–1858.
    • (2009) IEEE Trans. Image Process. , vol.18 , Issue.8 , pp. 1844-1858
    • Wang, J.1    Ju, L.2    Wang, X.3
  • 44
    • 80051876886 scopus 로고    scopus 로고
    • Blue-noise point sampling using kernel density model
    • ACM Transactions on Graphics (TOG), Vol. 30, ACM
    • [44] R. Fattal, Blue-noise point sampling using kernel density model, in: ACM Transactions on Graphics (TOG), Vol. 30, ACM, 2011, p. 48.
    • (2011) , pp. 48
    • Fattal, R.1
  • 45
    • 33746427122 scopus 로고    scopus 로고
    • Graph cuts and efficient nd image segmentation
    • [45] Boykov, Y., Funka-Lea, G., Graph cuts and efficient nd image segmentation. Int. J. Comput. Vision. 70:2 (2006), 109–131.
    • (2006) Int. J. Comput. Vision. , vol.70 , Issue.2 , pp. 109-131
    • Boykov, Y.1    Funka-Lea, G.2
  • 50
    • 3042525106 scopus 로고    scopus 로고
    • Learning to detect natural image boundaries using local brightness, color, and texture cues
    • [50] Martin, D.R., Fowlkes, C.C., Malik, J., Learning to detect natural image boundaries using local brightness, color, and texture cues. IEEE Trans. Pattern Anal. Mach. Intell. 26:5 (2004), 530–549.
    • (2004) IEEE Trans. Pattern Anal. Mach. Intell. , vol.26 , Issue.5 , pp. 530-549
    • Martin, D.R.1    Fowlkes, C.C.2    Malik, J.3
  • 52
    • 84950632109 scopus 로고
    • Objective criteria for the evaluation of clustering methods
    • [52] Rand, W.M., Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66:336 (1971), 846–850.
    • (1971) J. Am. Stat. Assoc. , vol.66 , Issue.336 , pp. 846-850
    • Rand, W.M.1
  • 54
    • 85018283525 scopus 로고    scopus 로고
    • gslic: a real-time implementation of slic superpixel segmentation, University of Oxford, Department of Engineering, Technical Report.
    • [54] C.Y. Ren, I. Reid, gslic: a real-time implementation of slic superpixel segmentation, University of Oxford, Department of Engineering, Technical Report.
    • Ren, C.Y.1    Reid, I.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.