-
1
-
-
84866657764
-
Slic superpixels compared to state-of-the-art superpixel methods
-
[1] Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Susstrunk, S., Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34:11 (2012), 2274–2282.
-
(2012)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.34
, Issue.11
, pp. 2274-2282
-
-
Achanta, R.1
Shaji, A.2
Smith, K.3
Lucchi, A.4
Fua, P.5
Susstrunk, S.6
-
2
-
-
0345414167
-
Learning a classification model for segmentation
-
[2] X. Ren, J. Malik, Learning a classification model for segmentation, in: Computer Vision, 2003. Proceedings. in: Proceedings of the Ninth IEEE International Conference on, IEEE, 2003, pp. 10–17.
-
(2003)
Computer Vision, 2003. Proceedings. in: Proceedings of the Ninth IEEE International Conference on, IEEE
, pp. 10-17
-
-
Ren, X.1
Malik, J.2
-
3
-
-
0034244751
-
Normalized cuts and image segmentation
-
[3] Shi, J., Malik, J., Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22:8 (2000), 888–905.
-
(2000)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.22
, Issue.8
, pp. 888-905
-
-
Shi, J.1
Malik, J.2
-
4
-
-
84959237748
-
Superpixel segmentation using linear spectral clustering
-
[4] Z. Li, J. Chen, Superpixel segmentation using linear spectral clustering, in: Computer Vision and Pattern Recognition (CVPR), 2015 IEEE Conference on, IEEE, 2015, pp. 1356–1363.
-
(2015)
Computer Vision and Pattern Recognition (CVPR), 2015 IEEE Conference on, IEEE
, pp. 1356-1363
-
-
Li, Z.1
Chen, J.2
-
5
-
-
84891855714
-
Saliency-based superpixels
-
[5] Xu, L., Zeng, L., Wang, Z., Saliency-based superpixels. Signal, Image Video Process. 8:1 (2014), 181–190.
-
(2014)
Signal, Image Video Process.
, vol.8
, Issue.1
, pp. 181-190
-
-
Xu, L.1
Zeng, L.2
Wang, Z.3
-
6
-
-
84901024368
-
Regularity preserved superpixels and supervoxels
-
[6] Fu, H., Cao, X., Tang, D., Han, Y., Xu, D., Regularity preserved superpixels and supervoxels. IEEE Trans. Multimed. 16:4 (2014), 1165–1175.
-
(2014)
IEEE Trans. Multimed.
, vol.16
, Issue.4
, pp. 1165-1175
-
-
Fu, H.1
Cao, X.2
Tang, D.3
Han, Y.4
Xu, D.5
-
7
-
-
84897712479
-
Lazy random walks for superpixel segmentation
-
[7] Shen, J., Du, Y., Wang, W., Li, X., Lazy random walks for superpixel segmentation. IEEE Trans. Image Process. 23:4 (2014), 1451–1462.
-
(2014)
IEEE Trans. Image Process.
, vol.23
, Issue.4
, pp. 1451-1462
-
-
Shen, J.1
Du, Y.2
Wang, W.3
Li, X.4
-
8
-
-
84884940102
-
-
Contour-relaxed superpixels, in: Energy Minimization Methods in Computer Vision and Pattern Recognition, Springer
-
[8] C. Conrad, M. Mertz, R. Mester, Contour-relaxed superpixels, in: Energy Minimization Methods in Computer Vision and Pattern Recognition, Springer, 2013, pp. 280–293.
-
(2013)
, pp. 280-293
-
-
Conrad, C.1
Mertz, M.2
Mester, R.3
-
9
-
-
84876925381
-
Structure-sensitive superpixels via geodesic distance
-
[9] Wang, P., Zeng, G., Gan, R., Wang, J., Zha, H., Structure-sensitive superpixels via geodesic distance. Int. J. Comput. Vision. 103:1 (2013), 1–21.
-
(2013)
Int. J. Comput. Vision.
, vol.103
, Issue.1
, pp. 1-21
-
-
Wang, P.1
Zeng, G.2
Gan, R.3
Wang, J.4
Zha, H.5
-
10
-
-
70350618485
-
Turbopixels: fast superpixels using geometric flows
-
[10] Levinshtein, A., Stere, A., Kutulakos, K.N., Fleet, D.J., Dickinson, S.J., Siddiqi, K., Turbopixels: fast superpixels using geometric flows. IEEE Trans. Pattern Anal. Mach. Intell. 31:12 (2009), 2290–2297.
-
(2009)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.31
, Issue.12
, pp. 2290-2297
-
-
Levinshtein, A.1
Stere, A.2
Kutulakos, K.N.3
Fleet, D.J.4
Dickinson, S.J.5
Siddiqi, K.6
-
11
-
-
51949087595
-
-
Superpixel lattices, in: Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, IEEE
-
[11] A.P. Moore, J. Prince, J. Warrell, U. Mohammed, G. Jones, Superpixel lattices, in: Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, IEEE, 2008, pp. 1–8.
-
(2008)
, pp. 1-8
-
-
Moore, A.P.1
Prince, J.2
Warrell, J.3
Mohammed, U.4
Jones, G.5
-
12
-
-
78149315825
-
Superpixels and supervoxels in an energy optimization framework
-
[12] O. Veksler, Y. Boykov, P. Mehrani, Superpixels and supervoxels in an energy optimization framework, in: Computer Vision–ECCV 2010, Springer, 2010, pp. 211–224.
-
(2010)
Computer Vision–ECCV 2010, Springer
, pp. 211-224
-
-
Veksler, O.1
Boykov, Y.2
Mehrani, P.3
-
13
-
-
77956005208
-
lattice cut-constructing superpixels using layer constraints
-
[13] A.P. Moore, S.J. Prince, J. Warrell, lattice cut-constructing superpixels using layer constraints, in: Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, IEEE, 2010, pp. 2117–2124.
-
(2010)
Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, IEEE
, pp. 2117-2124
-
-
Moore, A.P.1
Prince, S.J.2
Warrell, J.3
-
14
-
-
84863072206
-
Superpixels via pseudo-boolean optimization
-
[14] Y. Zhang, R. Hartley, J. Mashford, S. Burn, Superpixels via pseudo-boolean optimization, in: Computer Vision (ICCV), 2011 IEEE International Conference on, IEEE, 2011, pp. 1387–1394.
-
(2011)
Computer Vision (ICCV), 2011 IEEE International Conference on, IEEE
, pp. 1387-1394
-
-
Zhang, Y.1
Hartley, R.2
Mashford, J.3
Burn, S.4
-
15
-
-
84863490014
-
-
Homogeneous superpixels from random walks., in: MVA
-
[15] F. Perbet, A. Maki, Homogeneous superpixels from random walks., in: MVA, 2011, pp. 26–30.
-
(2011)
, pp. 26-30
-
-
Perbet, F.1
Maki, A.2
-
16
-
-
84868128678
-
Topology preserved regular superpixel
-
[16] D. Tang, H. Fu, X. Cao, Topology preserved regular superpixel, in: Multimedia and Expo (ICME), 2012 IEEE International Conference on, IEEE, 2012, pp. 765–768.
-
(2012)
Multimedia and Expo (ICME), 2012 IEEE International Conference on, IEEE
, pp. 765-768
-
-
Tang, D.1
Fu, H.2
Cao, X.3
-
17
-
-
84867853872
-
-
Seeds: Superpixels extracted via energy-driven sampling, in: Computer Vision–ECCV 2012, Springer
-
[17] M. Van den Bergh, X. Boix, G. Roig, B. de Capitani, L. Van Gool, Seeds: Superpixels extracted via energy-driven sampling, in: Computer Vision–ECCV 2012, Springer, 2012, pp. 13–26.
-
(2012)
, pp. 13-26
-
-
Van den Bergh, M.1
Boix, X.2
Roig, G.3
de Capitani, B.4
Van Gool, L.5
-
18
-
-
84874563881
-
-
Depth-adaptive superpixels, in: Pattern Recognition (ICPR), 2012 Proceedings of the 21st International Conference on, IEEE
-
[18] D. Weikersdorfer, D. Gossow, M. Beetz, Depth-adaptive superpixels, in: Pattern Recognition (ICPR), 2012 Proceedings of the 21st International Conference on, IEEE, 2012, pp. 2087–2090.
-
(2012)
, pp. 2087-2090
-
-
Weikersdorfer, D.1
Gossow, D.2
Beetz, M.3
-
19
-
-
84860252273
-
Vcells: simple and efficient superpixels using edge-weighted centroidal voronoi tessellations
-
[19] Wang, J., Wang, X., Vcells: simple and efficient superpixels using edge-weighted centroidal voronoi tessellations. IEEE Trans. Pattern Anal. Mach. Intell. 34:6 (2012), 1241–1247.
-
(2012)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.34
, Issue.6
, pp. 1241-1247
-
-
Wang, J.1
Wang, X.2
-
20
-
-
84887394375
-
Voxel cloud connectivity segmentation-supervoxels for point clouds
-
[20] J. Papon, A. Abramov, M. Schoeler, F. Worgotter, Voxel cloud connectivity segmentation-supervoxels for point clouds, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2013, pp. 2027–2034.
-
(2013)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 2027-2034
-
-
Papon, J.1
Abramov, A.2
Schoeler, M.3
Worgotter, F.4
-
21
-
-
80052896536
-
Entropy rate superpixel segmentation
-
[21] M.-Y. Liu, O. Tuzel, S. Ramalingam, R. Chellappa, Entropy rate superpixel segmentation, in: Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, IEEE, 2011, pp. 2097–2104.
-
(2011)
Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, IEEE
, pp. 2097-2104
-
-
Liu, M.-Y.1
Tuzel, O.2
Ramalingam, S.3
Chellappa, R.4
-
22
-
-
84959194688
-
Superpixel-based video object segmentation using perceptual organization and location prior
-
[22] D. Giordano, F. Murabito, S. Palazzo, C. Spampinato, Superpixel-based video object segmentation using perceptual organization and location prior, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 4814–4822.
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 4814-4822
-
-
Giordano, D.1
Murabito, F.2
Palazzo, S.3
Spampinato, C.4
-
23
-
-
79953048649
-
Contour detection and hierarchical image segmentation
-
[23] Arbelaez, P., Maire, M., Fowlkes, C., Malik, J., Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33:5 (2011), 898–916.
-
(2011)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.33
, Issue.5
, pp. 898-916
-
-
Arbelaez, P.1
Maire, M.2
Fowlkes, C.3
Malik, J.4
-
24
-
-
84896128090
-
Robust superpixel tracking
-
[24] Yang, F., Lu, H., Yang, M.-H., Robust superpixel tracking. IEEE Trans. Image Process. 23:4 (2014), 1639–1651.
-
(2014)
IEEE Trans. Image Process.
, vol.23
, Issue.4
, pp. 1639-1651
-
-
Yang, F.1
Lu, H.2
Yang, M.-H.3
-
25
-
-
84892957345
-
Video object segmentation with shape cue based on spatiotemporal superpixel neighbourhood
-
[25] Tian, Z., Zheng, N., Xue, J., Lan, X., Li, C., Zhou, G., Video object segmentation with shape cue based on spatiotemporal superpixel neighbourhood. IET Comput. Vision. 8:1 (2014), 16–25.
-
(2014)
IET Comput. Vision.
, vol.8
, Issue.1
, pp. 16-25
-
-
Tian, Z.1
Zheng, N.2
Xue, J.3
Lan, X.4
Li, C.5
Zhou, G.6
-
26
-
-
84875907931
-
Video segmentation with superpixels
-
[26] F. Galasso, R. Cipolla, B. Schiele, Video segmentation with superpixels, in: Computer Vision–ACCV 2012, Springer, 2012, pp. 760–774.
-
(2012)
Computer Vision–ACCV 2012, Springer
, pp. 760-774
-
-
Galasso, F.1
Cipolla, R.2
Schiele, B.3
-
27
-
-
84870824894
-
Superpixel classification for initialization in model based optic disc segmentation
-
[27] J. Cheng, J. Liu, Y. Xu, F. Yin, D.W.K. Wong, B.-H. Lee, C. Cheung, T. Aung, T.Y. Wong, Superpixel classification for initialization in model based optic disc segmentation, in: Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE, IEEE, 2012, pp. 1450–1453.
-
(2012)
Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE, IEEE
, pp. 1450-1453
-
-
Cheng, J.1
Liu, J.2
Xu, Y.3
Yin, F.4
Wong, D.W.K.5
Lee, B.-H.6
Cheung, C.7
Aung, T.8
Wong, T.Y.9
-
28
-
-
84878557120
-
Superpixel classification based optic disc and optic cup segmentation for glaucoma screening
-
[28] Cheng, J., Liu, J., Xu, Y., Yin, F., Wong, D.W.K., Tan, N.-M., Tao, D., Cheng, C.-Y., Aung, T., Wong, T.Y., Superpixel classification based optic disc and optic cup segmentation for glaucoma screening. IEEE Trans. Med. Imaging 32:6 (2013), 1019–1032.
-
(2013)
IEEE Trans. Med. Imaging
, vol.32
, Issue.6
, pp. 1019-1032
-
-
Cheng, J.1
Liu, J.2
Xu, Y.3
Yin, F.4
Wong, D.W.K.5
Tan, N.-M.6
Tao, D.7
Cheng, C.-Y.8
Aung, T.9
Wong, T.Y.10
-
30
-
-
84866688605
-
Evaluation of super-voxel methods for early video processing
-
[30] C. Xu, J.J. Corso, Evaluation of super-voxel methods for early video processing, in: Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, IEEE, 2012, pp. 1202–1209.
-
(2012)
Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, IEEE
, pp. 1202-1209
-
-
Xu, C.1
Corso, J.J.2
-
31
-
-
84964522758
-
Libsvx: a supervoxel library and benchmark for early video processing
-
[31] Xu, C., Corso, J.J., Libsvx: a supervoxel library and benchmark for early video processing. Int. J. Comput. Vision. 119:3 (2016), 272–290.
-
(2016)
Int. J. Comput. Vision.
, vol.119
, Issue.3
, pp. 272-290
-
-
Xu, C.1
Corso, J.J.2
-
32
-
-
84952361745
-
Superpixel segmentation: An evaluation
-
[32] D. Stutz, Superpixel segmentation: An evaluation, in: Pattern Recognition, Springer, 2015, pp. 555–562.
-
(2015)
Pattern Recognition, Springer
, pp. 555-562
-
-
Stutz, D.1
-
33
-
-
9644254228
-
Efficient graph-based image segmentation
-
[33] Felzenszwalb, P.F., Huttenlocher, D.P., Efficient graph-based image segmentation. Int. J. Comput. Vision. 59:2 (2004), 167–181.
-
(2004)
Int. J. Comput. Vision.
, vol.59
, Issue.2
, pp. 167-181
-
-
Felzenszwalb, P.F.1
Huttenlocher, D.P.2
-
34
-
-
85018257107
-
-
Graph clustering by flow simulation.
-
[34] S.M. Van Dongen, Graph clustering by flow simulation.
-
-
-
VanDongen, S.M.1
-
35
-
-
77953208296
-
Minimizing energy functions on 4-connected lattices using elimination
-
[35] P. Carr, R. Hartley, Minimizing energy functions on 4-connected lattices using elimination, in: 2009 IEEE Proceedings of the 12th International Conference on Computer Vision, IEEE, 2009, pp. 2042–2049.
-
(2009)
2009 IEEE Proceedings of the 12th International Conference on Computer Vision, IEEE
, pp. 2042-2049
-
-
Carr, P.1
Hartley, R.2
-
36
-
-
0026172104
-
Watersheds in digital spaces: an efficient algorithm based on immersion simulations
-
[36] Vincent, L., Soille, P., Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans. Pattern Anal. Mach. Intell. 6 (1991), 583–598.
-
(1991)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.6
, pp. 583-598
-
-
Vincent, L.1
Soille, P.2
-
37
-
-
0036565814
-
Mean shift: a robust approach toward feature space analysis
-
[37] Comaniciu, D., Meer, P., Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24:5 (2002), 603–619.
-
(2002)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.24
, Issue.5
, pp. 603-619
-
-
Comaniciu, D.1
Meer, P.2
-
38
-
-
56749131266
-
Quick shift and kernel methods for mode seeking
-
[38] A. Vedaldi, S. Soatto, Quick shift and kernel methods for mode seeking, in: Computer vision–ECCV 2008, Springer, 2008, pp. 705–718.
-
(2008)
Computer vision–ECCV 2008, Springer
, pp. 705-718
-
-
Vedaldi, A.1
Soatto, S.2
-
39
-
-
84986309395
-
Manifold slic: A fast method to compute content-sensitive superpixels
-
[39] Y.-J. Liu, C.-C. Yu, M.-J. Yu, Y. He, Manifold slic: A fast method to compute content-sensitive superpixels, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 651–659.
-
(2016)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 651-659
-
-
Liu, Y.-J.1
Yu, C.-C.2
Yu, M.-J.3
He, Y.4
-
40
-
-
77953204528
-
Scene shape priors for superpixel segmentation
-
[40] A.P. Moore, S.J. Prince, J. Warrell, U. Mohammed, G. Jones, Scene shape priors for superpixel segmentation, in: Computer Vision, 2009 IEEE Proceedings of the 12th International Conference on, IEEE, 2009, pp. 771–778.
-
(2009)
Computer Vision, 2009 IEEE Proceedings of the 12th International Conference on, IEEE
, pp. 771-778
-
-
Moore, A.P.1
Prince, S.J.2
Warrell, J.3
Mohammed, U.4
Jones, G.5
-
41
-
-
84897107105
-
Automated co-superpixel generation via graph matching
-
[41] Xie, Y., Xu, L., Wang, Z., Automated co-superpixel generation via graph matching. Signal, Image Video Process. 8:4 (2014), 753–763.
-
(2014)
Signal, Image Video Process.
, vol.8
, Issue.4
, pp. 753-763
-
-
Xie, Y.1
Xu, L.2
Wang, Z.3
-
42
-
-
84919904909
-
-
Compact watershed and preemptive slic: On improving trade-offs of superpixel segmentation algorithms., in: ICPR
-
[42] P. Neubert, P. Protzel, Compact watershed and preemptive slic: On improving trade-offs of superpixel segmentation algorithms., in: ICPR, 2014, pp. 996–1001.
-
(2014)
, pp. 996-1001
-
-
Neubert, P.1
Protzel, P.2
-
43
-
-
68149098829
-
An edge-weighted centroidal voronoi tessellation model for image segmentation
-
[43] Wang, J., Ju, L., Wang, X., An edge-weighted centroidal voronoi tessellation model for image segmentation. IEEE Trans. Image Process. 18:8 (2009), 1844–1858.
-
(2009)
IEEE Trans. Image Process.
, vol.18
, Issue.8
, pp. 1844-1858
-
-
Wang, J.1
Ju, L.2
Wang, X.3
-
44
-
-
80051876886
-
Blue-noise point sampling using kernel density model
-
ACM Transactions on Graphics (TOG), Vol. 30, ACM
-
[44] R. Fattal, Blue-noise point sampling using kernel density model, in: ACM Transactions on Graphics (TOG), Vol. 30, ACM, 2011, p. 48.
-
(2011)
, pp. 48
-
-
Fattal, R.1
-
45
-
-
33746427122
-
Graph cuts and efficient nd image segmentation
-
[45] Boykov, Y., Funka-Lea, G., Graph cuts and efficient nd image segmentation. Int. J. Comput. Vision. 70:2 (2006), 109–131.
-
(2006)
Int. J. Comput. Vision.
, vol.70
, Issue.2
, pp. 109-131
-
-
Boykov, Y.1
Funka-Lea, G.2
-
46
-
-
85111089218
-
Fast point feature histograms (fpfh) for 3d registration
-
[46] R.B. Rusu, N. Blodow, M. Beetz, Fast point feature histograms (fpfh) for 3d registration, in: Robotics and Automation, 2009. ICRA’09. IEEE International Conference on, IEEE, 2009, pp. 3212–3217.
-
(2009)
Robotics and Automation, 2009. ICRA’09. IEEE International Conference on, IEEE
, pp. 3212-3217
-
-
Rusu, R.B.1
Blodow, N.2
Beetz, M.3
-
47
-
-
0023606704
-
Solving minimum-cost flow problems by successive approximation
-
[47] A. Goldberg, R. Tarjan, Solving minimum-cost flow problems by successive approximation, in: Proceedings of the nineteenth annual ACM symposium on Theory of computing, ACM, 1987, pp. 7–18.
-
(1987)
Proceedings of the nineteenth annual ACM symposium on Theory of computing, ACM
, pp. 7-18
-
-
Goldberg, A.1
Tarjan, R.2
-
48
-
-
0034844730
-
Interactive graph cuts for optimal boundary & region segmentation of objects in nd images
-
[48] Y.Y. Boykov, M.-P. Jolly, Interactive graph cuts for optimal boundary & region segmentation of objects in nd images, in: Computer Vision, 2001. ICCV 2001. Proceedings. in: Proceedings of the Eighth IEEE International Conference on, vol. 1, IEEE, 2001, pp. 105–112.
-
(2001)
Computer Vision, 2001. ICCV 2001. Proceedings. in: Proceedings of the Eighth IEEE International Conference on, vol. 1, IEEE
, pp. 105-112
-
-
Boykov, Y.Y.1
Jolly, M.-P.2
-
49
-
-
84877632511
-
Grabcut: Interactive foreground extraction using iterated graph cuts
-
[49] C. Rother, V. Kolmogorov, A. Blake, Grabcut: Interactive foreground extraction using iterated graph cuts, in: ACM transactions on graphics (TOG), vol. 23, ACM, 2004, pp. 309–314.
-
(2004)
ACM transactions on graphics (TOG), vol. 23, ACM
, pp. 309-314
-
-
Rother, C.1
Kolmogorov, V.2
Blake, A.3
-
50
-
-
3042525106
-
Learning to detect natural image boundaries using local brightness, color, and texture cues
-
[50] Martin, D.R., Fowlkes, C.C., Malik, J., Learning to detect natural image boundaries using local brightness, color, and texture cues. IEEE Trans. Pattern Anal. Mach. Intell. 26:5 (2004), 530–549.
-
(2004)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.26
, Issue.5
, pp. 530-549
-
-
Martin, D.R.1
Fowlkes, C.C.2
Malik, J.3
-
52
-
-
84950632109
-
Objective criteria for the evaluation of clustering methods
-
[52] Rand, W.M., Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66:336 (1971), 846–850.
-
(1971)
J. Am. Stat. Assoc.
, vol.66
, Issue.336
, pp. 846-850
-
-
Rand, W.M.1
-
53
-
-
84866688216
-
Measuring the objectness of image windows
-
[53] Alexe, B., Deselaers, T., Ferrari, V., Measuring the objectness of image windows. IEEE Trans. Pattern Anal. Mach. Intell. 34:11 (2012), 2189–2202.
-
(2012)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.34
, Issue.11
, pp. 2189-2202
-
-
Alexe, B.1
Deselaers, T.2
Ferrari, V.3
-
54
-
-
85018283525
-
-
gslic: a real-time implementation of slic superpixel segmentation, University of Oxford, Department of Engineering, Technical Report.
-
[54] C.Y. Ren, I. Reid, gslic: a real-time implementation of slic superpixel segmentation, University of Oxford, Department of Engineering, Technical Report.
-
-
-
Ren, C.Y.1
Reid, I.2
|