메뉴 건너뛰기




Volumn 10, Issue 3, 2016, Pages

Land cover classification using random forest with genetic algorithm-based parameter optimization

Author keywords

genetic algorithm; land cover classification; parameter optimization; Random forest

Indexed keywords

DECISION TREES; GENETIC ALGORITHMS; PARAMETER ESTIMATION; REMOTE SENSING; SUPPORT VECTOR MACHINES;

EID: 84988933890     PISSN: None     EISSN: 19313195     Source Type: Journal    
DOI: 10.1117/1.JRS.10.035021     Document Type: Article
Times cited : (59)

References (43)
  • 1
    • 84904599862 scopus 로고    scopus 로고
    • Comparing three global parametric and local non-parametric models to simulate land use change in diverse areas of the world
    • A. Tayyebi et al., "Comparing three global parametric and local non-parametric models to simulate land use change in diverse areas of the world," Environ. Model. Software 59, 202-221 (2014).
    • (2014) Environ. Model. Software , vol.59 , pp. 202-221
    • Tayyebi, A.1
  • 2
    • 84897442036 scopus 로고    scopus 로고
    • Modeling multiple land use changes using ANN, CART and MARS: Comparing tradeoffs in goodness of fit and explanatory power of data mining tools
    • A. Tayyebi and B. C. Pijanowski, "Modeling multiple land use changes using ANN, CART and MARS: comparing tradeoffs in goodness of fit and explanatory power of data mining tools," Int. J. Appl. Earth Obs. Geoinf. 28, 102-116 (2014).
    • (2014) Int. J. Appl. Earth Obs. Geoinf. , vol.28 , pp. 102-116
    • Tayyebi, A.1    Pijanowski, B.C.2
  • 3
    • 0034476942 scopus 로고    scopus 로고
    • Multiple criteria for evaluating machine learning algorithms for land cover classification from satellite data
    • R. S. DeFries and J. C. W. Chan, "Multiple criteria for evaluating machine learning algorithms for land cover classification from satellite data," Remote Sens. Environ. 74, 503-515 (2000).
    • (2000) Remote Sens. Environ. , vol.74 , pp. 503-515
    • DeFries, R.S.1    Chan, J.C.W.2
  • 4
    • 84855970934 scopus 로고    scopus 로고
    • An assessment of the effectiveness of a random forest classifier for land-cover classification
    • V. F. Rodriguez-Galiano et al., "An assessment of the effectiveness of a random forest classifier for land-cover classification," ISPRS J. Photogramm. Remote Sens. 67, 93-104 (2012).
    • (2012) ISPRS J. Photogramm. Remote Sens. , vol.67 , pp. 93-104
    • Rodriguez-Galiano, V.F.1
  • 6
    • 84897879307 scopus 로고    scopus 로고
    • Object-oriented mapping of urban trees using Random Forest classifiers
    • A. Puissant, S. Rougier, and A. Stumpf, "Object-oriented mapping of urban trees using Random Forest classifiers," Int. J. Appl. Earth Obs. Geoinf. 26, 235-245 (2014).
    • (2014) Int. J. Appl. Earth Obs. Geoinf. , vol.26 , pp. 235-245
    • Puissant, A.1    Rougier, S.2    Stumpf, A.3
  • 7
    • 31344453556 scopus 로고    scopus 로고
    • Mapping invasive plants using hyperspectral imagery and breiman cutler classifications (random forest)
    • R. L. Lawrence, S. D. Wood, and R. L. Sheley, "Mapping invasive plants using hyperspectral imagery and breiman cutler classifications (random forest)," Remote Sens. Environ. 100, 356-362 (2006).
    • (2006) Remote Sens. Environ. , vol.100 , pp. 356-362
    • Lawrence, R.L.1    Wood, S.D.2    Sheley, R.L.3
  • 8
    • 41249090031 scopus 로고    scopus 로고
    • Integrating Landsat TM and SRTM-DEM derived variables with decision trees for habitat classification and change detection in complex neotropical environments
    • S. Sesnie et al., "Integrating Landsat TM and SRTM-DEM derived variables with decision trees for habitat classification and change detection in complex neotropical environments," Remote Sens. Environ. 112, 2145-2159 (2008).
    • (2008) Remote Sens. Environ. , vol.112 , pp. 2145-2159
    • Sesnie, S.1
  • 9
    • 43949125818 scopus 로고    scopus 로고
    • Evaluation of random forest and adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery
    • J. C. W. Chan and D. Paelinckx, "Evaluation of random forest and adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery," Remote Sens. Environ. 112, 2999-3011 (2008).
    • (2008) Remote Sens. Environ. , vol.112 , pp. 2999-3011
    • Chan, J.C.W.1    Paelinckx, D.2
  • 10
    • 79955448374 scopus 로고    scopus 로고
    • Contextual land-cover classification: Incorporating spatial dependence in land-cover classification models using random forests and the Getis statistic
    • B. Ghimire, J. Rogan, and J. Miller, "Contextual land-cover classification: incorporating spatial dependence in land-cover classification models using random forests and the Getis statistic," Remote Sens. Lett. 1, 45-54 (2010).
    • (2010) Remote Sens. Lett. , vol.1 , pp. 45-54
    • Ghimire, B.1    Rogan, J.2    Miller, J.3
  • 11
    • 84920663550 scopus 로고    scopus 로고
    • Temporal optimisation of image acquisition for land cover classification with Random Forest and MODIS time-series
    • I. Nitze, B. Barrett, and F. Cawkwell, "Temporal optimisation of image acquisition for land cover classification with Random Forest and MODIS time-series," Int. J. Appl. Earth Obs. Geoinf. 34, 136-146 (2015).
    • (2015) Int. J. Appl. Earth Obs. Geoinf. , vol.34 , pp. 136-146
    • Nitze, I.1    Barrett, B.2    Cawkwell, F.3
  • 12
    • 84920948074 scopus 로고    scopus 로고
    • Spectral-spatial classification for hyperspectral data using rotation forests with local feature extraction and Markov random fields
    • J. Xia et al., "Spectral-spatial classification for hyperspectral data using rotation forests with local feature extraction and Markov random fields," IEEE Trans. Geosci. Remote Sens. 53, 2532-2546 (2015).
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , pp. 2532-2546
    • Xia, J.1
  • 13
    • 84943631716 scopus 로고    scopus 로고
    • Spatial application of random forest models for fine-scale coastal vegetation classification using object based analysis of aerial orthophoto and DEM data
    • A. Juel et al., "Spatial application of random forest models for fine-scale coastal vegetation classification using object based analysis of aerial orthophoto and DEM data," Int. J. Appl. Earth Obs. Geoinf. 42, 106-114 (2015).
    • (2015) Int. J. Appl. Earth Obs. Geoinf. , vol.42 , pp. 106-114
    • Juel, A.1
  • 14
    • 84942511299 scopus 로고    scopus 로고
    • Flood mapping based on multiple endmember spectral mixture analysis and random forest classifier-the case of Yuyao, China
    • Q. Feng et al., "Flood mapping based on multiple endmember spectral mixture analysis and random forest classifier-the case of Yuyao, China," Remote Sens. 7, 12539-12562 (2015).
    • (2015) Remote Sens. , vol.7 , pp. 12539-12562
    • Feng, Q.1
  • 15
    • 70350033997 scopus 로고    scopus 로고
    • Mapping snags and understory shrubs for a LiDAR-based assessment of wildlife habitat suitability
    • S. Martinuzzi et al., "Mapping snags and understory shrubs for a LiDAR-based assessment of wildlife habitat suitability," Remote Sens. Environ. 113, 2533-2546 (2009).
    • (2009) Remote Sens. Environ. , vol.113 , pp. 2533-2546
    • Martinuzzi, S.1
  • 16
    • 78650731656 scopus 로고    scopus 로고
    • Relevance of airborne lidar and multispectral image data for urban scene classification using Random Forests
    • L. Guo et al., "Relevance of airborne lidar and multispectral image data for urban scene classification using Random Forests," ISPRS J. Photogramm. Remote Sens. 66, 56-66 (2011).
    • (2011) ISPRS J. Photogramm. Remote Sens. , vol.66 , pp. 56-66
    • Guo, L.1
  • 17
    • 84867069504 scopus 로고    scopus 로고
    • Impact of reducing polarimetric SAR input on the uncertainty of crop classifications based on the random forests algorithm
    • L. Loosvelt et al., "Impact of reducing polarimetric SAR input on the uncertainty of crop classifications based on the random forests algorithm," IEEE Trans. Geosci. Remote Sens. 50, 4185-4200 (2012).
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , pp. 4185-4200
    • Loosvelt, L.1
  • 18
    • 84878129639 scopus 로고    scopus 로고
    • Automatic grain type classification of snow micro penetrometer signals with random forests
    • S. Havens et al., "Automatic grain type classification of snow micro penetrometer signals with random forests," IEEE Trans. Geosci. Remote Sens. 51, 3328-3335 (2012).
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.51 , pp. 3328-3335
    • Havens, S.1
  • 19
    • 84876300410 scopus 로고    scopus 로고
    • Integration of orthoimagery and lidar data for object-based urban thematic mapping using random forests
    • H. Guan et al., "Integration of orthoimagery and lidar data for object-based urban thematic mapping using random forests," Int. J. Remote Sens. 34, 5166-5186 (2013).
    • (2013) Int. J. Remote Sens. , vol.34 , pp. 5166-5186
    • Guan, H.1
  • 20
    • 84926215991 scopus 로고    scopus 로고
    • Predictive lithological mapping of Canada's North using Random Forest classification applied to geophysical and geochemical data
    • J. R. Harris and E. C. Grunsky, "Predictive lithological mapping of Canada's North using Random Forest classification applied to geophysical and geochemical data," Comput. Geosci. 80, 9-25 (2015).
    • (2015) Comput. Geosci. , vol.80 , pp. 9-25
    • Harris, J.R.1    Grunsky, E.C.2
  • 21
    • 84910068767 scopus 로고    scopus 로고
    • Random forest predictive modeling of mineral prospectivity with small number of prospects and data with missing values in Abra (Philippines)
    • E. J. M. Carranza and A. G. Laborte, "Random forest predictive modeling of mineral prospectivity with small number of prospects and data with missing values in Abra (Philippines)," Comput. Geosci. 74, 60-70 (2015).
    • (2015) Comput. Geosci. , vol.74 , pp. 60-70
    • Carranza, E.J.M.1    Laborte, A.G.2
  • 23
    • 84945564600 scopus 로고    scopus 로고
    • Monotonic random forest with an ensemble pruning mechanism based on the degree of monotonicity
    • S. Gonz'alez, F. Herrera, and S. Garc'ia, "Monotonic random forest with an ensemble pruning mechanism based on the degree of monotonicity," New Gener. Comput. 33, 367-388 (2015).
    • (2015) New Gener. Comput. , vol.33 , pp. 367-388
    • Gonz'Alez, S.1    Herrera, F.2    Garc'Ia, S.3
  • 24
    • 84949501321 scopus 로고    scopus 로고
    • Random forest for ordinal responses: Prediction and variable selection
    • S. Janitza, G. Tutz, and A.-L. Boulesteixa, "Random forest for ordinal responses: prediction and variable selection," Comput. Stat. Data Anal. 96, 57-73 (2016).
    • (2016) Comput. Stat. Data Anal. , vol.96 , pp. 57-73
    • Janitza, S.1    Tutz, G.2    Boulesteixa, A.-L.3
  • 25
    • 80053932755 scopus 로고    scopus 로고
    • Improving the classification accuracy of the classic RF method by intelligent feature selection and weighted voting of trees with application to medical image segmentation
    • M. Yaqub et al., "Improving the classification accuracy of the classic RF method by intelligent feature selection and weighted voting of trees with application to medical image segmentation," in Proc. of the Second Int. Conf. on Machine learning in medical imaging (MLMI 2011), pp. 184-192 (2011).
    • (2011) Proc. of the Second Int. Conf. on Machine Learning in Medical Imaging (MLMI 2011 , pp. 184-192
    • Yaqub, M.1
  • 26
    • 84988921686 scopus 로고    scopus 로고
    • Tree selection model for improved random forest
    • (in Chinese
    • Q. Wang et al., "Tree selection model for improved random forest," Bull. Adv. Technol. Res. 6, 51-55 (2012) (in Chinese).
    • (2012) Bull. Adv. Technol. Res. , vol.6 , pp. 51-55
    • Wang, Q.1
  • 27
    • 84988455086 scopus 로고    scopus 로고
    • Improving classification accuracy based on random forest model with uncorrelated high performing trees
    • S. Bharathidason and C. J. Venkataeswaran, "Improving classification accuracy based on random forest model with uncorrelated high performing trees," Int. J. Comput. Appl. 101, 26-30 (2014).
    • (2014) Int. J. Comput. Appl. , vol.101 , pp. 26-30
    • Bharathidason, S.1    Venkataeswaran, C.J.2
  • 28
    • 0036567392 scopus 로고    scopus 로고
    • Ensembling neural networks: Many could be better than all
    • Z. H. Zhou, J. Wu, and W. Tang, "Ensembling neural networks: many could be better than all," Artif. Intell. 137, 239-263 (2002).
    • (2002) Artif. Intell. , vol.137 , pp. 239-263
    • Zhou, Z.H.1    Wu, J.2    Tang, W.3
  • 29
    • 33745794076 scopus 로고    scopus 로고
    • Ensemble pruning via semi-definite programming
    • Y. Zhang, S. Burer, and W. N. Street, "Ensemble pruning via semi-definite programming," J. Mach. Learn. Res. 7, 1315-1338 (2006).
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1315-1338
    • Zhang, Y.1    Burer, S.2    Street, W.N.3
  • 30
    • 77956456333 scopus 로고    scopus 로고
    • Sparse ensembles using weighted combination methods based on linear programming
    • L. Zhang and W. D. Zhou, "Sparse ensembles using weighted combination methods based on linear programming," Pattern Recognit. 44, 97-106 (2011).
    • (2011) Pattern Recognit. , vol.44 , pp. 97-106
    • Zhang, L.1    Zhou, W.D.2
  • 32
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman, "Random forests," Mach. Learn. 45, 5-32 (2001).
    • (2001) Mach. Learn. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 33
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman, "Bagging predictors," Mach. Learn. 24, 123-140 (1996).
    • (1996) Mach. Learn. , vol.24 , pp. 123-140
    • Breiman, L.1
  • 34
    • 84872783379 scopus 로고    scopus 로고
    • Design and implementation of an algorithm for automatic 3D reconstruction of building models using genetic algorithm
    • M. Kabolizade, H. Ebadi, and A. Mohammadzadeh, "Design and implementation of an algorithm for automatic 3D reconstruction of building models using genetic algorithm," Int. J. Appl. Earth Obs. Geoinf. 19, 104-114 (2012).
    • (2012) Int. J. Appl. Earth Obs. Geoinf. , vol.19 , pp. 104-114
    • Kabolizade, M.1    Ebadi, H.2    Mohammadzadeh, A.3
  • 35
    • 36348996568 scopus 로고    scopus 로고
    • Rational function optimization using genetic algorithms
    • M. J Valadan Zoej et al., "Rational function optimization using genetic algorithms," Int. J. Appl. Earth Obs. Geoinf. 9, 403-413 (2007).
    • (2007) Int. J. Appl. Earth Obs. Geoinf. , vol.9 , pp. 403-413
    • Valadan Zoej, M.J.1
  • 36
    • 84943647909 scopus 로고    scopus 로고
    • Monitoring grass nutrients and biomass as indicators of rangeland quality and quantity using random forest modelling and WorldView-2 data
    • A. Ramoelo et al., "Monitoring grass nutrients and biomass as indicators of rangeland quality and quantity using random forest modelling and WorldView-2 data," Int. J. Appl. Earth Obs. Geoinf. 43, 43-54 (2015).
    • (2015) Int. J. Appl. Earth Obs. Geoinf. , vol.43 , pp. 43-54
    • Ramoelo, A.1
  • 37
    • 79955639907 scopus 로고    scopus 로고
    • Water body mapping method with HJ-1A/B satellite imagery
    • S. L. Lu et al., "Water body mapping method with HJ-1A/B satellite imagery," Int. J. Appl. Earth Obs. Geoinf. 13, 428-434 (2011).
    • (2011) Int. J. Appl. Earth Obs. Geoinf. , vol.13 , pp. 428-434
    • Lu, S.L.1
  • 38
    • 41249103454 scopus 로고    scopus 로고
    • Mapping land-cover modifications over large areas: A comparison of machine learning algorithms
    • J. Rogan et al., "Mapping land-cover modifications over large areas: a comparison of machine learning algorithms," Remote Sens. Environ. 112, 2272-2283 (2008).
    • (2008) Remote Sens. Environ. , vol.112 , pp. 2272-2283
    • Rogan, J.1
  • 39
    • 84899120986 scopus 로고    scopus 로고
    • Distribution information extraction of rubber woods using remote sensing images with high resolution
    • (in Chinese
    • H. W. Yang and X. H. Tong, "Distribution information extraction of rubber woods using remote sensing images with high resolution," Geom. Inf. Sci. Wuhan Univ. 39, 411-421 (2014) (in Chinese).
    • (2014) Geom. Inf. Sci. Wuhan Univ. , vol.39 , pp. 411-421
    • Yang, H.W.1    Tong, X.H.2
  • 40
    • 0030136491 scopus 로고    scopus 로고
    • The use of the normalized difference water index (NDWI) in the delineation of open water features
    • S. K. McFeeters, "The use of the normalized difference water index (NDWI) in the delineation of open water features," Int. J. Remote Sens. 17, 1425-1432 (1996).
    • (1996) Int. J. Remote Sens. , vol.17 , pp. 1425-1432
    • McFeeters, S.K.1
  • 41
    • 77958074350 scopus 로고    scopus 로고
    • A study on environmental change analysis in Sand Hill of Nebraska using remote sensing
    • (in Chinese
    • Y. S. Zhao, "A study on environmental change analysis in Sand Hill of Nebraska using remote sensing," Geograp. Res. 20, 213-219 (2001) (in Chinese).
    • (2001) Geograp. Res. , vol.20 , pp. 213-219
    • Zhao, Y.S.1
  • 43
    • 84897442036 scopus 로고    scopus 로고
    • Modeling multiple land use changes using ANN, CART and MARS: Comparing tradeoffs in goodness of fit and explanatory power of data mining tools
    • A. Tayyebi and B. C. Pijanowski, "Modeling multiple land use changes using ANN, CART and MARS: comparing tradeoffs in goodness of fit and explanatory power of data mining tools," Int. J. Appl. Earth Obs. Geoinf. 28, 102-116 (2014).
    • (2014) Int. J. Appl. Earth Obs. Geoinf. , vol.28 , pp. 102-116
    • Tayyebi, A.1    Pijanowski, B.C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.