메뉴 건너뛰기




Volumn 55, Issue 7, 2017, Pages 4141-4156

Superpixel-based multiple local CNN for panchromatic and multispectral image classification

Author keywords

Convolution neural network (CNN); Image classification; Multiple local regions joint representation; Panchromatic and multispectral (MS) images; Superpixel based

Indexed keywords

CLUSTERING ALGORITHMS; IMAGE CLASSIFICATION; IMAGE RECONSTRUCTION; ITERATIVE METHODS; PIXELS; REMOTE SENSING; SEMANTICS;

EID: 85018640168     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2017.2689018     Document Type: Article
Times cited : (125)

References (50)
  • 1
    • 0027334035 scopus 로고
    • Resolution enhancement of multispectral image data to improve classification accuracy
    • C. K. Munechika, J. S. Warnick, C. Salvaggio, and J. R. Schott, "Resolution enhancement of multispectral image data to improve classification accuracy," Photogramm. Eng. Remote Sens., vol. 59, no. 1, pp. 67-72, 1993.
    • (1993) Photogramm. Eng. Remote Sens. , vol.59 , Issue.1 , pp. 67-72
    • Munechika, C.K.1    Warnick, J.S.2    Salvaggio, C.3    Schott, J.R.4
  • 2
    • 0142009649 scopus 로고    scopus 로고
    • A hierarchical fuzzy classification approach for high-resolution multispectral data over urban areas
    • Sep
    • A. K. Shackelford and C. H. Davis, "A hierarchical fuzzy classification approach for high-resolution multispectral data over urban areas," IEEE Trans. Geosci. Remote Sens., vol. 41, no. 9, pp. 1920-1932, Sep. 2003.
    • (2003) IEEE Trans. Geosci. Remote Sens. , vol.41 , Issue.9 , pp. 1920-1932
    • Shackelford, A.K.1    Davis, C.H.2
  • 3
    • 84890571635 scopus 로고    scopus 로고
    • Quality assessment of panchromatic and multispectral image fusion for the ZY-3 satellite: From an information extraction perspective
    • Apr
    • X. Huang, D. Wen, J. Xie, and L. Zhang, "Quality assessment of panchromatic and multispectral image fusion for the ZY-3 satellite: From an information extraction perspective," IEEE Geosci. Remote Sens. Lett., vol. 11, no. 4, pp. 753-757, Apr. 2014.
    • (2014) IEEE Geosci. Remote Sens. Lett. , vol.11 , Issue.4 , pp. 753-757
    • Huang, X.1    Wen, D.2    Xie, J.3    Zhang, L.4
  • 4
    • 84906985232 scopus 로고    scopus 로고
    • Fusion classification of multispectral and panchromatic image using improved decision tree algorithm
    • Jul
    • P. P. Shingare, P. M. Hemane, and D. S. Dandekar, "Fusion classification of multispectral and panchromatic image using improved decision tree algorithm," in Proc. Int. Conf. Signal Propag. Comput. Technol., Jul. 2014, pp. 598-603.
    • (2014) Proc. Int. Conf. Signal Propag. Comput. Technol , pp. 598-603
    • Shingare, P.P.1    Hemane, P.M.2    Dandekar, D.S.3
  • 6
    • 85027922029 scopus 로고    scopus 로고
    • Pointwise graph-based local texture characterization for very high resolution multispectral image classification
    • May
    • M. T. Pham, G. Mercier, and J. Michel, "Pointwise graph-based local texture characterization for very high resolution multispectral image classification," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 8, no. 5, pp. 1962-1973, May 2015.
    • (2015) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.8 , Issue.5 , pp. 1962-1973
    • Pham, M.T.1    Mercier, G.2    Michel, J.3
  • 7
    • 46249127021 scopus 로고    scopus 로고
    • Textural and local spatial statistics for the objectoriented classification of urban areas using high resolution imagery
    • S. Wei et al., "Textural and local spatial statistics for the objectoriented classification of urban areas using high resolution imagery," Int. J. Remote Sens., vol. 29, no. 11, pp. 3105-3117, 2008.
    • (2008) Int. J. Remote Sens. , vol.29 , Issue.11 , pp. 3105-3117
    • Wei, S.1
  • 8
    • 84975475015 scopus 로고    scopus 로고
    • Remote sensing image fusion with convolutional neural network
    • Dec
    • J. Zhong, B. Yang, G. Huang, F. Zhong, and Z. Chen, "Remote sensing image fusion with convolutional neural network," Sens. Imag., vol. 17, no. 1, pp. 1-16, Dec. 2016.
    • (2016) Sens. Imag. , vol.17 , Issue.1 , pp. 1-16
    • Zhong, J.1    Yang, B.2    Huang, G.3    Zhong, F.4    Chen, Z.5
  • 9
    • 84993982662 scopus 로고    scopus 로고
    • Pansharpening by convolutional neural networks
    • G. Masi, D. Cozzolino, L. Verdoliva, and G. Scarpa, "Pansharpening by convolutional neural networks," Remote Sens., vol. 8, no. 7, p. 594, 2016.
    • (2016) Remote Sens. , vol.8 , Issue.7 , pp. 594
    • Masi, G.1    Cozzolino, D.2    Verdoliva, L.3    Scarpa, G.4
  • 10
    • 84992292121 scopus 로고    scopus 로고
    • A generalized metaphor of Chinese restaurant franchise to fusing both panchromatic and multispectral images for unsupervised classification
    • Aug
    • T. Mao, H. Tang, J. Wu, W. Jiang, S. He, and Y. Shu, "A generalized metaphor of Chinese restaurant franchise to fusing both panchromatic and multispectral images for unsupervised classification," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 8, pp. 4594-4604, Aug. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.8 , pp. 4594-4604
    • Mao, T.1    Tang, H.2    Wu, J.3    Jiang, W.4    He, S.5    Shu, Y.6
  • 11
    • 80053149706 scopus 로고    scopus 로고
    • Joint classification of panchromatic and multispectral images by multiresolution fusion through Markov random fields and graph cuts
    • Jul
    • G. Moser and S. B. Serpico, "Joint classification of panchromatic and multispectral images by multiresolution fusion through Markov random fields and graph cuts," in Proc. Int. Conf. Digit. Signal Process., Jul. 2011, pp. 1-8.
    • (2011) Proc. Int. Conf. Digit. Signal Process , pp. 1-8
    • Moser, G.1    Serpico, S.B.2
  • 12
    • 84961773520 scopus 로고    scopus 로고
    • Semantic classification of high-resolution remote-sensing images based on mid-level features
    • Jun.
    • J. Zhang, T. Li, X. Lu, and Z. Cheng, "Semantic classification of high-resolution remote-sensing images based on mid-level features," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 9, no. 6, pp. 2343-2353, Jun. 2016.
    • (2016) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.9 , Issue.6 , pp. 2343-2353
    • Zhang, J.1    Li, T.2    Lu, X.3    Cheng, Z.4
  • 13
    • 84973542324 scopus 로고    scopus 로고
    • Multiresolution supervised classification of panchromatic and multispectral images by Markov random fields and graph cuts
    • Sep
    • G. Moser, A. De Giorgi, and S. B. Serpico, "Multiresolution supervised classification of panchromatic and multispectral images by Markov random fields and graph cuts," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 9, pp. 5054-5070, Sep. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.9 , pp. 5054-5070
    • Moser, G.1    De Giorgi, A.2    Serpico, S.B.3
  • 15
    • 0032030026 scopus 로고    scopus 로고
    • Multisensor image fusion in remote sensing: Concepts, methods and applications
    • C. Polh and J. L. Van Genderen, "Multisensor image fusion in remote sensing: Concepts, methods and applications," Int. J. Remote Sens., vol. 19, no. 5, pp. 823-854, 1998.
    • (1998) Int. J. Remote Sens. , vol.19 , Issue.5 , pp. 823-854
    • Polh, C.1    Van Genderen, J.L.2
  • 16
    • 0025919780 scopus 로고
    • Comparison of three different methods to merge multiresolution and multispectral data: Landsat TM and SPOT panchromatic
    • P. S. Chavez, Jr., S. C. Sides, and J. A. Anderson, "Comparison of three different methods to merge multiresolution and multispectral data: Landsat TM and SPOT panchromatic," Photogramm. Eng. Remote Sens., vol. 57, no. 3, pp. 295-303, 1991.
    • (1991) Photogramm. Eng. Remote Sens. , vol.57 , Issue.3 , pp. 295-303
    • Chavez, P.S.1    Sides, S.C.2    Anderson, J.A.3
  • 17
    • 0026610525 scopus 로고
    • A generalized component substitution technique for spatial enhancement of multispectral images using a higher resolution data set
    • V. K. Shettigara, "A generalized component substitution technique for spatial enhancement of multispectral images using a higher resolution data set," Photogramm. Eng. Remote Sens., vol. 58, no. 5, pp. 561-567, 1992.
    • (1992) Photogramm. Eng. Remote Sens. , vol.58 , Issue.5 , pp. 561-567
    • Shettigara, V.K.1
  • 18
    • 37549061793 scopus 로고    scopus 로고
    • Comparison and improvement of wavelet-based image fusion
    • G. Hong and Y. Zhang, "Comparison and improvement of wavelet-based image fusion," Int. J. Remote Sens., vol. 29, no. 3, pp. 673-691, 2008.
    • (2008) Int. J. Remote Sens. , vol.29 , Issue.3 , pp. 673-691
    • Hong, G.1    Zhang, Y.2
  • 19
    • 34548348313 scopus 로고    scopus 로고
    • Multispectral images fusion by a joint multidirectional and multiresolution representation
    • M. Lillo-Saavedra and C. Gonzalo, "Multispectral images fusion by a joint multidirectional and multiresolution representation," Int. J. Remote Sens., vol. 28, no. 18, pp. 4065-4079, 2007.
    • (2007) Int. J. Remote Sens. , vol.28 , Issue.18 , pp. 4065-4079
    • Lillo-Saavedra, M.1    Gonzalo, C.2
  • 20
    • 0033962344 scopus 로고    scopus 로고
    • Multispectral imagery advanced band sharpening study
    • J. Vrabel, "Multispectral imagery advanced band sharpening study," Photogramm. Eng. Remote Sens., vol. 66, no. 1, pp. 73-80, 2000.
    • (2000) Photogramm. Eng. Remote Sens. , vol.66 , Issue.1 , pp. 73-80
    • Vrabel, J.1
  • 21
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • May
    • Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, vol. 521, pp. 436-444, May 2015.
    • (2015) Nature , vol.521 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 22
    • 84976384382 scopus 로고    scopus 로고
    • Deep learning for remote sensing data: A technical tutorial on the state of the art
    • Jun.
    • L. Zhang, L. Zhang, and B. Du, "Deep learning for remote sensing data: A technical tutorial on the state of the art," IEEE Geosci. Remote Sens. Mag., vol. 4, no. 2, pp. 22-40, Jun. 2016.
    • (2016) IEEE Geosci. Remote Sens. Mag. , vol.4 , Issue.2 , pp. 22-40
    • Zhang, L.1    Zhang, L.2    Du, B.3
  • 23
    • 84877728447 scopus 로고    scopus 로고
    • Image denoising and inpainting with deep neural networks
    • J. Xie, L. Xu, and E. Chen, "Image denoising and inpainting with deep neural networks," in Proc. Adv. Neural Inf. Process. Syst., vol. 1. 2012, pp. 341-349.
    • (2012) Proc. Adv. Neural Inf. Process. Syst. , vol.1 , pp. 341-349
    • Xie, J.1    Xu, L.2    Chen, E.3
  • 24
    • 85027937409 scopus 로고    scopus 로고
    • A new pan-sharpening method with deep neural networks
    • May
    • W. Huang, L. Xiao, Z. Wei, H. Liu, and S. Tang, "A new pan-sharpening method with deep neural networks," IEEE Geosci. Remote Sens. Lett., vol. 12, no. 5, pp. 1037-1041, May 2015.
    • (2015) IEEE Geosci. Remote Sens. Lett. , vol.12 , Issue.5 , pp. 1037-1041
    • Huang, W.1    Xiao, L.2    Wei, Z.3    Liu, H.4    Tang, S.5
  • 25
    • 84973517679 scopus 로고    scopus 로고
    • Discriminant deep belief network for high-resolution sar image classification
    • Jan
    • Z. Zhao, L. Jiao, J. Zhao, J. Gu, and J. Zhao, "Discriminant deep belief network for high-resolution sar image classification," Pattern Recognit., vol. 16, pp. 686-701, Jan. 2017.
    • (2017) Pattern Recognit. , vol.16 , pp. 686-701
    • Zhao, Z.1    Jiao, L.2    Zhao, J.3    Gu, J.4    Zhao, J.5
  • 26
    • 84976448366 scopus 로고    scopus 로고
    • Wishart deep stacking network for fast POLSAR image classification
    • Jul
    • L. Jiao and F. Liu, "Wishart deep stacking network for fast POLSAR image classification," IEEE Trans. Image Process., vol. 25, no. 7, pp. 3273-3286, Jul. 2016.
    • (2016) IEEE Trans. Image Process. , vol.25 , Issue.7 , pp. 3273-3286
    • Jiao, L.1    Liu, F.2
  • 27
    • 84961381149 scopus 로고    scopus 로고
    • POL-SAR image classification based on wishart DBN and local spatial information
    • Jun.
    • F. Liu, L. Jiao, B. Hou, and S. Yang, "POL-SAR image classification based on wishart DBN and local spatial information," IEEE Trans. Geosci. Remote Sens., vol 54, no. 6, pp. 3292-3308, Jun. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.6 , pp. 3292-3308
    • Liu, F.1    Jiao, L.2    Hou, B.3    Yang, S.4
  • 28
    • 85027942618 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral data based on deep belief network
    • Jun.
    • Y. Chen, X. Zhao, and X. Jia, "Spectral-spatial classification of hyperspectral data based on deep belief network," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 8, no. 6, pp. 2381-2392, Jun. 2015.
    • (2015) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.8 , Issue.6 , pp. 2381-2392
    • Chen, Y.1    Zhao, X.2    Jia, X.3
  • 29
    • 84939141053 scopus 로고    scopus 로고
    • Deep convolutional neural networks for hyperspectral image classification
    • Art. no. 258619
    • W. Hu, Y. Huang, L. Wei, F. Zhang, and H. Li, "Deep convolutional neural networks for hyperspectral image classification," J. Sens., vol. 2015, no. 2, 2015, Art. no. 258619.
    • (2015) J. Sens. , vol.2015 , Issue.2
    • Hu, W.1    Huang, Y.2    Wei, L.3    Zhang, F.4    Li, H.5
  • 30
    • 84983164503 scopus 로고    scopus 로고
    • Classification of hyperspectral image based on deep belief networks
    • Oct
    • T. Li, J. Zhang, and Y. Zhang, "Classification of hyperspectral image based on deep belief networks," in Proc. IEEE Int. Conf. Image Process., Oct. 2015, pp. 5132-5136.
    • (2015) Proc. IEEE Int. Conf. Image Process , pp. 5132-5136
    • Li, T.1    Zhang, J.2    Zhang, Y.3
  • 32
    • 84937137588 scopus 로고    scopus 로고
    • On combining multiscale deep learning features for the classification of hyperspectral remote sensing imagery
    • W. Zhao, Z. Guo, J. Yue, X. Zhang, and L. Luo, "On combining multiscale deep learning features for the classification of hyperspectral remote sensing imagery," Int. J. Remote Sens., vol. 36, no. 13, pp. 3368-3379, 2015.
    • (2015) Int. J. Remote Sens. , vol.36 , Issue.13 , pp. 3368-3379
    • Zhao, W.1    Guo, Z.2    Yue, J.3    Zhang, X.4    Luo, L.5
  • 33
    • 84901322878 scopus 로고    scopus 로고
    • Vehicle detection in satellite images by hybrid deep convolutional neural networks
    • Oct
    • X. Chen, S. Xiang, C.-L. Liu, and C.-H. Pan, "Vehicle detection in satellite images by hybrid deep convolutional neural networks," IEEE Geosci. Remote Sens. Lett., vol. 11, no. 10, pp. 1797-1801, Oct. 2014.
    • (2014) IEEE Geosci. Remote Sens. Lett. , vol.11 , Issue.10 , pp. 1797-1801
    • Chen, X.1    Xiang, S.2    Liu, C.-L.3    Pan, C.-H.4
  • 35
    • 84940765289 scopus 로고    scopus 로고
    • A hierarchical oil tank detector with deep surrounding features for high-resolution optical satellite imagery
    • Oct
    • L. Zhang, Z. Shi, and J. Wu, "A hierarchical oil tank detector with deep surrounding features for high-resolution optical satellite imagery," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 8, no. 10, pp. 4895-4909, Oct. 2015.
    • (2015) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.8 , Issue.10 , pp. 4895-4909
    • Zhang, L.1    Shi, Z.2    Wu, J.3
  • 36
    • 84907463801 scopus 로고    scopus 로고
    • Compressed-domain ship detection on spaceborne optical image using deep neural network and extreme learning machine
    • Mar.
    • J. Tang, C. Deng, G.-B. Huang, and B. Zhao, "Compressed-domain ship detection on spaceborne optical image using deep neural network and extreme learning machine," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 3, pp. 1174-1185, Mar. 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.3 , pp. 1174-1185
    • Tang, J.1    Deng, C.2    Huang, G.-B.3    Zhao, B.4
  • 37
    • 84940765932 scopus 로고    scopus 로고
    • Object recognition in remote sensing images using sparse deep belief networks
    • W. Diao, X. Sun, F. Dou, M. Yan, H. Wang, and K. Fu, "Object recognition in remote sensing images using sparse deep belief networks," Remote Sens. Lett., vol. 6, no. 10, pp. 745-754, 2015.
    • (2015) Remote Sens. Lett. , vol.6 , Issue.10 , pp. 745-754
    • Diao, W.1    Sun, X.2    Dou, F.3    Yan, M.4    Wang, H.5    Fu, K.6
  • 38
    • 84945898896 scopus 로고    scopus 로고
    • Scene classification via a gradient boosting random convolutional network framework
    • Mar.
    • F. Zhang, B. Du, and L. Zhang, "Scene classification via a gradient boosting random convolutional network framework," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 3, pp. 1793-1802, Mar. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.3 , pp. 1793-1802
    • Zhang, F.1    Du, B.2    Zhang, L.3
  • 39
    • 84947127828 scopus 로고    scopus 로고
    • Deep learning based feature selection for remote sensing scene classification
    • Nov
    • Q. Zou, L. Ni, T. Zhang, and Q. Wang, "Deep learning based feature selection for remote sensing scene classification," IEEE Geosci. Remote Sens. Lett., vol. 12, no. 11, pp. 2321-2325, Nov. 2015.
    • (2015) IEEE Geosci. Remote Sens. Lett. , vol.12 , Issue.11 , pp. 2321-2325
    • Zou, Q.1    Ni, L.2    Zhang, T.3    Wang, Q.4
  • 41
    • 84973864191 scopus 로고    scopus 로고
    • Object detection via a multi-region and semantic segmentation-Aware CNN model
    • Dec
    • S. Gidaris and N. Komodakis, "Object detection via a multi-region and semantic segmentation-Aware CNN model," in Proc. IEEE Int. Conf. Comput. Vis., Dec. 2015, pp. 1134-1142.
    • (2015) Proc. IEEE Int. Conf. Comput. Vis , pp. 1134-1142
    • Gidaris, S.1    Komodakis, N.2
  • 42
    • 84959233955 scopus 로고    scopus 로고
    • SegDeepM: Exploiting segmentation and context in deep neural networks for object detection
    • Jun.
    • Y. Zhu, R. Urtasun, R. Salakhutdinov, and S. Fidler, "segDeepM: Exploiting segmentation and context in deep neural networks for object detection," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., vol. 84. Jun. 2015, pp. 4703-4711
    • (2015) Proc. IEEE Conf. Comput. Vis. Pattern Recognit. , vol.84 , pp. 4703-4711
    • Zhu, Y.1    Urtasun, R.2    Salakhutdinov, R.3    Fidler, S.4
  • 43
    • 77956509090 scopus 로고    scopus 로고
    • Rectified linear units improve restricted boltzmann machines
    • V. Nair and G. E. Hinton, "Rectified linear units improve restricted boltzmann machines," in Proc. Int. Conf. Mach. Learn., 2010, pp. 21-24.
    • (2010) Proc. Int. Conf. Mach. Learn , pp. 21-24
    • Nair, V.1    Hinton, G.E.2
  • 44
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet classification with deep convolutional neural networks," Adv. Neural Inf. Process. Syst., vol. 25, no. 2, p. 2012, 2012.
    • (2012) Adv. Neural Inf. Process. Syst. , vol.25 , Issue.2 , pp. 2012
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 45
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • Y. Bengio, "Learning deep architectures for AI," Found. Trends Mach. Learn., vol. 2, no. 1, pp. 1-127, 2009.
    • (2009) Found. Trends Mach. Learn. , vol.2 , Issue.1 , pp. 1-127
    • Bengio, Y.1
  • 46
    • 84913580146 scopus 로고    scopus 로고
    • Caffe: Convolutional architecture for fast feature embedding
    • Y. Jia et al., "Caffe: Convolutional architecture for fast feature embedding," in Proc. ACM Int. Conf. Multimedia, 2014, pp. 675-678.
    • (2014) Proc. ACM Int. Conf. Multimedia , pp. 675-678
    • Jia, Y.1
  • 47
    • 85017874614 scopus 로고    scopus 로고
    • [Online]. Available
    • -(2016). IEEE GRSS Data Fusion Contest. [Online]. Available: Http://www.grss-ieee.org/community/technical-committees/data-fusion
    • (2016) IEEE GRSS Data Fusion Contest
  • 48
    • 85010054420 scopus 로고    scopus 로고
    • Improving neural networks by preventing coadaptation of feature detectors
    • G. E. Hinton et al., "Improving neural networks by preventing coadaptation of feature detectors," Comput. Sci., vol. 3, no. 4, pp. 212-223, 2012.
    • (2012) Comput. Sci. , vol.3 , Issue.4 , pp. 212-223
    • Hinton, G.E.1
  • 49
    • 84862277874 scopus 로고    scopus 로고
    • Understanding the difficulty of training deep feedforward neural networks
    • X. Glorot and Y. Bengio, "Understanding the difficulty of training deep feedforward neural networks," J. Mach. Learn. Res., vol. 9, pp. 249-256, 2010.
    • (2010) J. Mach. Learn. Res. , vol.9 , pp. 249-256
    • Glorot, X.1    Bengio, Y.2
  • 50
    • 0018306059 scopus 로고
    • A threshold selection method from gray-level histograms
    • Jan
    • N. Otsu, "A threshold selection method from gray-level histograms," IEEE Trans. Syst., Man, Cybern., vol. 9, no. 1, pp. 62-66, Jan. 1979.
    • (1979) IEEE Trans. Syst., Man, Cybern. , vol.9 , Issue.1 , pp. 62-66
    • Otsu, N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.