-
1
-
-
0027334035
-
Resolution enhancement of multispectral image data to improve classification accuracy
-
C. K. Munechika, J. S. Warnick, C. Salvaggio, and J. R. Schott, "Resolution enhancement of multispectral image data to improve classification accuracy," Photogramm. Eng. Remote Sens., vol. 59, no. 1, pp. 67-72, 1993.
-
(1993)
Photogramm. Eng. Remote Sens.
, vol.59
, Issue.1
, pp. 67-72
-
-
Munechika, C.K.1
Warnick, J.S.2
Salvaggio, C.3
Schott, J.R.4
-
2
-
-
0142009649
-
A hierarchical fuzzy classification approach for high-resolution multispectral data over urban areas
-
Sep
-
A. K. Shackelford and C. H. Davis, "A hierarchical fuzzy classification approach for high-resolution multispectral data over urban areas," IEEE Trans. Geosci. Remote Sens., vol. 41, no. 9, pp. 1920-1932, Sep. 2003.
-
(2003)
IEEE Trans. Geosci. Remote Sens.
, vol.41
, Issue.9
, pp. 1920-1932
-
-
Shackelford, A.K.1
Davis, C.H.2
-
3
-
-
84890571635
-
Quality assessment of panchromatic and multispectral image fusion for the ZY-3 satellite: From an information extraction perspective
-
Apr
-
X. Huang, D. Wen, J. Xie, and L. Zhang, "Quality assessment of panchromatic and multispectral image fusion for the ZY-3 satellite: From an information extraction perspective," IEEE Geosci. Remote Sens. Lett., vol. 11, no. 4, pp. 753-757, Apr. 2014.
-
(2014)
IEEE Geosci. Remote Sens. Lett.
, vol.11
, Issue.4
, pp. 753-757
-
-
Huang, X.1
Wen, D.2
Xie, J.3
Zhang, L.4
-
4
-
-
84906985232
-
Fusion classification of multispectral and panchromatic image using improved decision tree algorithm
-
Jul
-
P. P. Shingare, P. M. Hemane, and D. S. Dandekar, "Fusion classification of multispectral and panchromatic image using improved decision tree algorithm," in Proc. Int. Conf. Signal Propag. Comput. Technol., Jul. 2014, pp. 598-603.
-
(2014)
Proc. Int. Conf. Signal Propag. Comput. Technol
, pp. 598-603
-
-
Shingare, P.P.1
Hemane, P.M.2
Dandekar, D.S.3
-
5
-
-
67651183638
-
Active learning methods for remote sensing image classification
-
Jul
-
D. Tuia, F. Ratle, F. Pacifici, M. F. Kanevski, and W. J. Emery, "Active learning methods for remote sensing image classification," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 7, pp. 2218-2232, Jul. 2009.
-
(2009)
IEEE Trans. Geosci. Remote Sens.
, vol.47
, Issue.7
, pp. 2218-2232
-
-
Tuia, D.1
Ratle, F.2
Pacifici, F.3
Kanevski, M.F.4
Emery, W.J.5
-
6
-
-
85027922029
-
Pointwise graph-based local texture characterization for very high resolution multispectral image classification
-
May
-
M. T. Pham, G. Mercier, and J. Michel, "Pointwise graph-based local texture characterization for very high resolution multispectral image classification," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 8, no. 5, pp. 1962-1973, May 2015.
-
(2015)
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
, vol.8
, Issue.5
, pp. 1962-1973
-
-
Pham, M.T.1
Mercier, G.2
Michel, J.3
-
7
-
-
46249127021
-
Textural and local spatial statistics for the objectoriented classification of urban areas using high resolution imagery
-
S. Wei et al., "Textural and local spatial statistics for the objectoriented classification of urban areas using high resolution imagery," Int. J. Remote Sens., vol. 29, no. 11, pp. 3105-3117, 2008.
-
(2008)
Int. J. Remote Sens.
, vol.29
, Issue.11
, pp. 3105-3117
-
-
Wei, S.1
-
8
-
-
84975475015
-
Remote sensing image fusion with convolutional neural network
-
Dec
-
J. Zhong, B. Yang, G. Huang, F. Zhong, and Z. Chen, "Remote sensing image fusion with convolutional neural network," Sens. Imag., vol. 17, no. 1, pp. 1-16, Dec. 2016.
-
(2016)
Sens. Imag.
, vol.17
, Issue.1
, pp. 1-16
-
-
Zhong, J.1
Yang, B.2
Huang, G.3
Zhong, F.4
Chen, Z.5
-
9
-
-
84993982662
-
Pansharpening by convolutional neural networks
-
G. Masi, D. Cozzolino, L. Verdoliva, and G. Scarpa, "Pansharpening by convolutional neural networks," Remote Sens., vol. 8, no. 7, p. 594, 2016.
-
(2016)
Remote Sens.
, vol.8
, Issue.7
, pp. 594
-
-
Masi, G.1
Cozzolino, D.2
Verdoliva, L.3
Scarpa, G.4
-
10
-
-
84992292121
-
A generalized metaphor of Chinese restaurant franchise to fusing both panchromatic and multispectral images for unsupervised classification
-
Aug
-
T. Mao, H. Tang, J. Wu, W. Jiang, S. He, and Y. Shu, "A generalized metaphor of Chinese restaurant franchise to fusing both panchromatic and multispectral images for unsupervised classification," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 8, pp. 4594-4604, Aug. 2016.
-
(2016)
IEEE Trans. Geosci. Remote Sens.
, vol.54
, Issue.8
, pp. 4594-4604
-
-
Mao, T.1
Tang, H.2
Wu, J.3
Jiang, W.4
He, S.5
Shu, Y.6
-
11
-
-
80053149706
-
Joint classification of panchromatic and multispectral images by multiresolution fusion through Markov random fields and graph cuts
-
Jul
-
G. Moser and S. B. Serpico, "Joint classification of panchromatic and multispectral images by multiresolution fusion through Markov random fields and graph cuts," in Proc. Int. Conf. Digit. Signal Process., Jul. 2011, pp. 1-8.
-
(2011)
Proc. Int. Conf. Digit. Signal Process
, pp. 1-8
-
-
Moser, G.1
Serpico, S.B.2
-
12
-
-
84961773520
-
Semantic classification of high-resolution remote-sensing images based on mid-level features
-
Jun.
-
J. Zhang, T. Li, X. Lu, and Z. Cheng, "Semantic classification of high-resolution remote-sensing images based on mid-level features," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 9, no. 6, pp. 2343-2353, Jun. 2016.
-
(2016)
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
, vol.9
, Issue.6
, pp. 2343-2353
-
-
Zhang, J.1
Li, T.2
Lu, X.3
Cheng, Z.4
-
13
-
-
84973542324
-
Multiresolution supervised classification of panchromatic and multispectral images by Markov random fields and graph cuts
-
Sep
-
G. Moser, A. De Giorgi, and S. B. Serpico, "Multiresolution supervised classification of panchromatic and multispectral images by Markov random fields and graph cuts," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 9, pp. 5054-5070, Sep. 2016.
-
(2016)
IEEE Trans. Geosci. Remote Sens.
, vol.54
, Issue.9
, pp. 5054-5070
-
-
Moser, G.1
De Giorgi, A.2
Serpico, S.B.3
-
15
-
-
0032030026
-
Multisensor image fusion in remote sensing: Concepts, methods and applications
-
C. Polh and J. L. Van Genderen, "Multisensor image fusion in remote sensing: Concepts, methods and applications," Int. J. Remote Sens., vol. 19, no. 5, pp. 823-854, 1998.
-
(1998)
Int. J. Remote Sens.
, vol.19
, Issue.5
, pp. 823-854
-
-
Polh, C.1
Van Genderen, J.L.2
-
16
-
-
0025919780
-
Comparison of three different methods to merge multiresolution and multispectral data: Landsat TM and SPOT panchromatic
-
P. S. Chavez, Jr., S. C. Sides, and J. A. Anderson, "Comparison of three different methods to merge multiresolution and multispectral data: Landsat TM and SPOT panchromatic," Photogramm. Eng. Remote Sens., vol. 57, no. 3, pp. 295-303, 1991.
-
(1991)
Photogramm. Eng. Remote Sens.
, vol.57
, Issue.3
, pp. 295-303
-
-
Chavez, P.S.1
Sides, S.C.2
Anderson, J.A.3
-
17
-
-
0026610525
-
A generalized component substitution technique for spatial enhancement of multispectral images using a higher resolution data set
-
V. K. Shettigara, "A generalized component substitution technique for spatial enhancement of multispectral images using a higher resolution data set," Photogramm. Eng. Remote Sens., vol. 58, no. 5, pp. 561-567, 1992.
-
(1992)
Photogramm. Eng. Remote Sens.
, vol.58
, Issue.5
, pp. 561-567
-
-
Shettigara, V.K.1
-
18
-
-
37549061793
-
Comparison and improvement of wavelet-based image fusion
-
G. Hong and Y. Zhang, "Comparison and improvement of wavelet-based image fusion," Int. J. Remote Sens., vol. 29, no. 3, pp. 673-691, 2008.
-
(2008)
Int. J. Remote Sens.
, vol.29
, Issue.3
, pp. 673-691
-
-
Hong, G.1
Zhang, Y.2
-
19
-
-
34548348313
-
Multispectral images fusion by a joint multidirectional and multiresolution representation
-
M. Lillo-Saavedra and C. Gonzalo, "Multispectral images fusion by a joint multidirectional and multiresolution representation," Int. J. Remote Sens., vol. 28, no. 18, pp. 4065-4079, 2007.
-
(2007)
Int. J. Remote Sens.
, vol.28
, Issue.18
, pp. 4065-4079
-
-
Lillo-Saavedra, M.1
Gonzalo, C.2
-
20
-
-
0033962344
-
Multispectral imagery advanced band sharpening study
-
J. Vrabel, "Multispectral imagery advanced band sharpening study," Photogramm. Eng. Remote Sens., vol. 66, no. 1, pp. 73-80, 2000.
-
(2000)
Photogramm. Eng. Remote Sens.
, vol.66
, Issue.1
, pp. 73-80
-
-
Vrabel, J.1
-
21
-
-
84930630277
-
Deep learning
-
May
-
Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, vol. 521, pp. 436-444, May 2015.
-
(2015)
Nature
, vol.521
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
22
-
-
84976384382
-
Deep learning for remote sensing data: A technical tutorial on the state of the art
-
Jun.
-
L. Zhang, L. Zhang, and B. Du, "Deep learning for remote sensing data: A technical tutorial on the state of the art," IEEE Geosci. Remote Sens. Mag., vol. 4, no. 2, pp. 22-40, Jun. 2016.
-
(2016)
IEEE Geosci. Remote Sens. Mag.
, vol.4
, Issue.2
, pp. 22-40
-
-
Zhang, L.1
Zhang, L.2
Du, B.3
-
23
-
-
84877728447
-
Image denoising and inpainting with deep neural networks
-
J. Xie, L. Xu, and E. Chen, "Image denoising and inpainting with deep neural networks," in Proc. Adv. Neural Inf. Process. Syst., vol. 1. 2012, pp. 341-349.
-
(2012)
Proc. Adv. Neural Inf. Process. Syst.
, vol.1
, pp. 341-349
-
-
Xie, J.1
Xu, L.2
Chen, E.3
-
24
-
-
85027937409
-
A new pan-sharpening method with deep neural networks
-
May
-
W. Huang, L. Xiao, Z. Wei, H. Liu, and S. Tang, "A new pan-sharpening method with deep neural networks," IEEE Geosci. Remote Sens. Lett., vol. 12, no. 5, pp. 1037-1041, May 2015.
-
(2015)
IEEE Geosci. Remote Sens. Lett.
, vol.12
, Issue.5
, pp. 1037-1041
-
-
Huang, W.1
Xiao, L.2
Wei, Z.3
Liu, H.4
Tang, S.5
-
25
-
-
84973517679
-
Discriminant deep belief network for high-resolution sar image classification
-
Jan
-
Z. Zhao, L. Jiao, J. Zhao, J. Gu, and J. Zhao, "Discriminant deep belief network for high-resolution sar image classification," Pattern Recognit., vol. 16, pp. 686-701, Jan. 2017.
-
(2017)
Pattern Recognit.
, vol.16
, pp. 686-701
-
-
Zhao, Z.1
Jiao, L.2
Zhao, J.3
Gu, J.4
Zhao, J.5
-
26
-
-
84976448366
-
Wishart deep stacking network for fast POLSAR image classification
-
Jul
-
L. Jiao and F. Liu, "Wishart deep stacking network for fast POLSAR image classification," IEEE Trans. Image Process., vol. 25, no. 7, pp. 3273-3286, Jul. 2016.
-
(2016)
IEEE Trans. Image Process.
, vol.25
, Issue.7
, pp. 3273-3286
-
-
Jiao, L.1
Liu, F.2
-
27
-
-
84961381149
-
POL-SAR image classification based on wishart DBN and local spatial information
-
Jun.
-
F. Liu, L. Jiao, B. Hou, and S. Yang, "POL-SAR image classification based on wishart DBN and local spatial information," IEEE Trans. Geosci. Remote Sens., vol 54, no. 6, pp. 3292-3308, Jun. 2016.
-
(2016)
IEEE Trans. Geosci. Remote Sens.
, vol.54
, Issue.6
, pp. 3292-3308
-
-
Liu, F.1
Jiao, L.2
Hou, B.3
Yang, S.4
-
28
-
-
85027942618
-
Spectral-spatial classification of hyperspectral data based on deep belief network
-
Jun.
-
Y. Chen, X. Zhao, and X. Jia, "Spectral-spatial classification of hyperspectral data based on deep belief network," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 8, no. 6, pp. 2381-2392, Jun. 2015.
-
(2015)
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
, vol.8
, Issue.6
, pp. 2381-2392
-
-
Chen, Y.1
Zhao, X.2
Jia, X.3
-
29
-
-
84939141053
-
Deep convolutional neural networks for hyperspectral image classification
-
Art. no. 258619
-
W. Hu, Y. Huang, L. Wei, F. Zhang, and H. Li, "Deep convolutional neural networks for hyperspectral image classification," J. Sens., vol. 2015, no. 2, 2015, Art. no. 258619.
-
(2015)
J. Sens.
, vol.2015
, Issue.2
-
-
Hu, W.1
Huang, Y.2
Wei, L.3
Zhang, F.4
Li, H.5
-
30
-
-
84983164503
-
Classification of hyperspectral image based on deep belief networks
-
Oct
-
T. Li, J. Zhang, and Y. Zhang, "Classification of hyperspectral image based on deep belief networks," in Proc. IEEE Int. Conf. Image Process., Oct. 2015, pp. 5132-5136.
-
(2015)
Proc. IEEE Int. Conf. Image Process
, pp. 5132-5136
-
-
Li, T.1
Zhang, J.2
Zhang, Y.3
-
31
-
-
84905925092
-
Deep learning-based classification of hyperspectral data
-
Jun.
-
Y. Chen, Z. Lin, X. Zhao, G. Wang, and Y. Gu, "Deep learning-based classification of hyperspectral data," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 6, pp. 2094-2107, Jun. 2014.
-
(2014)
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
, vol.7
, Issue.6
, pp. 2094-2107
-
-
Chen, Y.1
Lin, Z.2
Zhao, X.3
Wang, G.4
Gu, Y.5
-
32
-
-
84937137588
-
On combining multiscale deep learning features for the classification of hyperspectral remote sensing imagery
-
W. Zhao, Z. Guo, J. Yue, X. Zhang, and L. Luo, "On combining multiscale deep learning features for the classification of hyperspectral remote sensing imagery," Int. J. Remote Sens., vol. 36, no. 13, pp. 3368-3379, 2015.
-
(2015)
Int. J. Remote Sens.
, vol.36
, Issue.13
, pp. 3368-3379
-
-
Zhao, W.1
Guo, Z.2
Yue, J.3
Zhang, X.4
Luo, L.5
-
33
-
-
84901322878
-
Vehicle detection in satellite images by hybrid deep convolutional neural networks
-
Oct
-
X. Chen, S. Xiang, C.-L. Liu, and C.-H. Pan, "Vehicle detection in satellite images by hybrid deep convolutional neural networks," IEEE Geosci. Remote Sens. Lett., vol. 11, no. 10, pp. 1797-1801, Oct. 2014.
-
(2014)
IEEE Geosci. Remote Sens. Lett.
, vol.11
, Issue.10
, pp. 1797-1801
-
-
Chen, X.1
Xiang, S.2
Liu, C.-L.3
Pan, C.-H.4
-
34
-
-
84962523390
-
Building detection in very high resolution multispectral data with deep learning features
-
Jul
-
M. Vakalopoulou, K. Karantzalos, N. Komodakis, and N. Paragios, "Building detection in very high resolution multispectral data with deep learning features," in Proc. IEEE Int. Geosci. Remote Sens. Symp., Jul. 2015, pp. 122-123.
-
(2015)
Proc. IEEE Int. Geosci. Remote Sens. Symp
, pp. 122-123
-
-
Vakalopoulou, M.1
Karantzalos, K.2
Komodakis, N.3
Paragios, N.4
-
35
-
-
84940765289
-
A hierarchical oil tank detector with deep surrounding features for high-resolution optical satellite imagery
-
Oct
-
L. Zhang, Z. Shi, and J. Wu, "A hierarchical oil tank detector with deep surrounding features for high-resolution optical satellite imagery," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 8, no. 10, pp. 4895-4909, Oct. 2015.
-
(2015)
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
, vol.8
, Issue.10
, pp. 4895-4909
-
-
Zhang, L.1
Shi, Z.2
Wu, J.3
-
36
-
-
84907463801
-
Compressed-domain ship detection on spaceborne optical image using deep neural network and extreme learning machine
-
Mar.
-
J. Tang, C. Deng, G.-B. Huang, and B. Zhao, "Compressed-domain ship detection on spaceborne optical image using deep neural network and extreme learning machine," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 3, pp. 1174-1185, Mar. 2015.
-
(2015)
IEEE Trans. Geosci. Remote Sens.
, vol.53
, Issue.3
, pp. 1174-1185
-
-
Tang, J.1
Deng, C.2
Huang, G.-B.3
Zhao, B.4
-
37
-
-
84940765932
-
Object recognition in remote sensing images using sparse deep belief networks
-
W. Diao, X. Sun, F. Dou, M. Yan, H. Wang, and K. Fu, "Object recognition in remote sensing images using sparse deep belief networks," Remote Sens. Lett., vol. 6, no. 10, pp. 745-754, 2015.
-
(2015)
Remote Sens. Lett.
, vol.6
, Issue.10
, pp. 745-754
-
-
Diao, W.1
Sun, X.2
Dou, F.3
Yan, M.4
Wang, H.5
Fu, K.6
-
38
-
-
84945898896
-
Scene classification via a gradient boosting random convolutional network framework
-
Mar.
-
F. Zhang, B. Du, and L. Zhang, "Scene classification via a gradient boosting random convolutional network framework," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 3, pp. 1793-1802, Mar. 2016.
-
(2016)
IEEE Trans. Geosci. Remote Sens.
, vol.54
, Issue.3
, pp. 1793-1802
-
-
Zhang, F.1
Du, B.2
Zhang, L.3
-
39
-
-
84947127828
-
Deep learning based feature selection for remote sensing scene classification
-
Nov
-
Q. Zou, L. Ni, T. Zhang, and Q. Wang, "Deep learning based feature selection for remote sensing scene classification," IEEE Geosci. Remote Sens. Lett., vol. 12, no. 11, pp. 2321-2325, Nov. 2015.
-
(2015)
IEEE Geosci. Remote Sens. Lett.
, vol.12
, Issue.11
, pp. 2321-2325
-
-
Zou, Q.1
Ni, L.2
Zhang, T.3
Wang, Q.4
-
40
-
-
84866657764
-
SLIC superpixels compared to state-of-The-Art superpixel methods
-
Nov
-
R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk, "SLIC superpixels compared to state-of-The-Art superpixel methods," IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 11, pp. 2274-2282, Nov. 2012.
-
(2012)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.34
, Issue.11
, pp. 2274-2282
-
-
Achanta, R.1
Shaji, A.2
Smith, K.3
Lucchi, A.4
Fua, P.5
Süsstrunk, S.6
-
41
-
-
84973864191
-
Object detection via a multi-region and semantic segmentation-Aware CNN model
-
Dec
-
S. Gidaris and N. Komodakis, "Object detection via a multi-region and semantic segmentation-Aware CNN model," in Proc. IEEE Int. Conf. Comput. Vis., Dec. 2015, pp. 1134-1142.
-
(2015)
Proc. IEEE Int. Conf. Comput. Vis
, pp. 1134-1142
-
-
Gidaris, S.1
Komodakis, N.2
-
42
-
-
84959233955
-
SegDeepM: Exploiting segmentation and context in deep neural networks for object detection
-
Jun.
-
Y. Zhu, R. Urtasun, R. Salakhutdinov, and S. Fidler, "segDeepM: Exploiting segmentation and context in deep neural networks for object detection," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., vol. 84. Jun. 2015, pp. 4703-4711
-
(2015)
Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
, vol.84
, pp. 4703-4711
-
-
Zhu, Y.1
Urtasun, R.2
Salakhutdinov, R.3
Fidler, S.4
-
43
-
-
77956509090
-
Rectified linear units improve restricted boltzmann machines
-
V. Nair and G. E. Hinton, "Rectified linear units improve restricted boltzmann machines," in Proc. Int. Conf. Mach. Learn., 2010, pp. 21-24.
-
(2010)
Proc. Int. Conf. Mach. Learn
, pp. 21-24
-
-
Nair, V.1
Hinton, G.E.2
-
44
-
-
84876231242
-
ImageNet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet classification with deep convolutional neural networks," Adv. Neural Inf. Process. Syst., vol. 25, no. 2, p. 2012, 2012.
-
(2012)
Adv. Neural Inf. Process. Syst.
, vol.25
, Issue.2
, pp. 2012
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
45
-
-
69349090197
-
Learning deep architectures for AI
-
Y. Bengio, "Learning deep architectures for AI," Found. Trends Mach. Learn., vol. 2, no. 1, pp. 1-127, 2009.
-
(2009)
Found. Trends Mach. Learn.
, vol.2
, Issue.1
, pp. 1-127
-
-
Bengio, Y.1
-
46
-
-
84913580146
-
Caffe: Convolutional architecture for fast feature embedding
-
Y. Jia et al., "Caffe: Convolutional architecture for fast feature embedding," in Proc. ACM Int. Conf. Multimedia, 2014, pp. 675-678.
-
(2014)
Proc. ACM Int. Conf. Multimedia
, pp. 675-678
-
-
Jia, Y.1
-
47
-
-
85017874614
-
-
[Online]. Available
-
-(2016). IEEE GRSS Data Fusion Contest. [Online]. Available: Http://www.grss-ieee.org/community/technical-committees/data-fusion
-
(2016)
IEEE GRSS Data Fusion Contest
-
-
-
48
-
-
85010054420
-
Improving neural networks by preventing coadaptation of feature detectors
-
G. E. Hinton et al., "Improving neural networks by preventing coadaptation of feature detectors," Comput. Sci., vol. 3, no. 4, pp. 212-223, 2012.
-
(2012)
Comput. Sci.
, vol.3
, Issue.4
, pp. 212-223
-
-
Hinton, G.E.1
-
49
-
-
84862277874
-
Understanding the difficulty of training deep feedforward neural networks
-
X. Glorot and Y. Bengio, "Understanding the difficulty of training deep feedforward neural networks," J. Mach. Learn. Res., vol. 9, pp. 249-256, 2010.
-
(2010)
J. Mach. Learn. Res.
, vol.9
, pp. 249-256
-
-
Glorot, X.1
Bengio, Y.2
-
50
-
-
0018306059
-
A threshold selection method from gray-level histograms
-
Jan
-
N. Otsu, "A threshold selection method from gray-level histograms," IEEE Trans. Syst., Man, Cybern., vol. 9, no. 1, pp. 62-66, Jan. 1979.
-
(1979)
IEEE Trans. Syst., Man, Cybern.
, vol.9
, Issue.1
, pp. 62-66
-
-
Otsu, N.1
|