-
1
-
-
0036205326
-
Conditional disruption of the peroxisome proliferator-activated receptor γ gene in mice results in lowered expression of ABCA1, ABCG1, and apoE in macrophages and reduced cholesterol efflux
-
Akiyama TE, Sakai S, Lambert G, Nicol CJ, Matsusue K, Pimprale S, Lee Y-H, Ricote M, Glass CK, Brewer HB, et al. 2002. Conditional disruption of the peroxisome proliferator-activated receptor γ gene in mice results in lowered expression of ABCA1, ABCG1, and apoE in macrophages and reduced cholesterol efflux. Mol Cell Biol 22: 2607–2619.
-
(2002)
Mol Cell Biol
, vol.22
, pp. 2607-2619
-
-
Akiyama, T.E.1
Sakai, S.2
Lambert, G.3
Nicol, C.J.4
Matsusue, K.5
Pimprale, S.6
Lee, Y.-H.7
Ricote, M.8
Glass, C.K.9
Brewer, H.B.10
-
2
-
-
23244451031
-
Conditional knockout of macrophage PPARγ increases atherosclerosis in C57BL/6 and low-density lipoprotein receptor-deficient mice
-
Babaev VR, Yancey PG, Ryzhov SV, Kon V, Breyer MD, Magnuson MA, Fazio S, Linton MF. 2005. Conditional knockout of macrophage PPARγ increases atherosclerosis in C57BL/6 and low-density lipoprotein receptor-deficient mice. Arterioscler Thromb Vasc Biol 25: 1647–1653.
-
(2005)
Arterioscler Thromb Vasc Biol
, vol.25
, pp. 1647-1653
-
-
Babaev, V.R.1
Yancey, P.G.2
Ryzhov, S.V.3
Kon, V.4
Breyer, M.D.5
Magnuson, M.A.6
Fazio, S.7
Linton, M.F.8
-
3
-
-
34547492488
-
PPARγ activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties
-
Bouhlel MA, Derudas B, Rigamonti E, Dièvart R, Brozek J, Haulon S, Zawadzki C, Jude B, Torpier G, Marx N, et al. 2007. PPARγ activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties. Cell Metab 6: 137–143.
-
(2007)
Cell Metab
, vol.6
, pp. 137-143
-
-
Bouhlel, M.A.1
Derudas, B.2
Rigamonti, E.3
Dièvart, R.4
Brozek, J.5
Haulon, S.6
Zawadzki, C.7
Jude, B.8
Torpier, G.9
Marx, N.10
-
4
-
-
8444233254
-
Nuclear receptors in macrophage biology: At the crossroads of lipid metabolism and inflammation
-
Castrillo A, Tontonoz P. 2004. Nuclear receptors in macrophage biology: at the crossroads of lipid metabolism and inflammation. Annu Rev Cell Dev Biol 20: 455–480.
-
(2004)
Annu Rev Cell Dev Biol
, vol.20
, pp. 455-480
-
-
Castrillo, A.1
Tontonoz, P.2
-
5
-
-
77952997178
-
Control of macrophage activation and function by PPARs
-
Chawla A. 2010. Control of macrophage activation and function by PPARs. Circ Res 106: 1559–1569.
-
(2010)
Circ Res
, vol.106
, pp. 1559-1569
-
-
Chawla, A.1
-
6
-
-
0035132330
-
PPAR-γ dependent and independent effects on macrophage-gene expression in lipid metabolism and inflammation
-
Chawla A, Barak Y, Nagy L, Liao D, Tontonoz P, Evans RM. 2001a. PPAR-γ dependent and independent effects on macrophage-gene expression in lipid metabolism and inflammation. Nat Med 7: 48–52.
-
(2001)
Nat Med
, vol.7
, pp. 48-52
-
-
Chawla, A.1
Barak, Y.2
Nagy, L.3
Liao, D.4
Tontonoz, P.5
Evans, R.M.6
-
7
-
-
17744376173
-
A PPARγ–LXR–ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis
-
Chawla A, Boisvert WA, Lee CH, Laffitte BA, Barak Y, Joseph SB, Liao D, Nagy L, Edwards PA, Curtiss LK, et al. 2001b. A PPARγ–LXR–ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis. Mol Cell 7: 161– 171.
-
(2001)
Mol Cell
, vol.7
, pp. 161-171
-
-
Chawla, A.1
Boisvert, W.A.2
Lee, C.H.3
Laffitte, B.A.4
Barak, Y.5
Joseph, S.B.6
Liao, D.7
Nagy, L.8
Edwards, P.A.9
Curtiss, L.K.10
-
8
-
-
0035138625
-
PPAR-α and PPAR-γ activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway
-
Chinetti G, Lestavel S, Bocher V, Remaley AT, Neve B, Torra IP, Teissier E, Minnich A, Jaye M, Duverger N, et al. 2001. PPAR-α and PPAR-γ activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway. Nat Med 7: 53–58.
-
(2001)
Nat Med
, vol.7
, pp. 53-58
-
-
Chinetti, G.1
Lestavel, S.2
Bocher, V.3
Remaley, A.T.4
Neve, B.5
Torra, I.P.6
Teissier, E.7
Minnich, A.8
Jaye, M.9
Duverger, N.10
-
9
-
-
84877771544
-
Identification of a mitochondrial target of thiazolidinedione insulin sensitizers (MTOT)—relationship to newly identified mitochondrial pyruvate carrier proteins
-
Colca JR, McDonald WG, Cavey GS, Cole SL, Holewa DD, Bright-well-Conrad AS, Wolfe CL, Wheeler JS, Coulter KR, Kilkuskie PM, et al. 2013. Identification of a mitochondrial target of thiazolidinedione insulin sensitizers (mTOT)—relationship to newly identified mitochondrial pyruvate carrier proteins. PLoS One 8: e61551.
-
(2013)
Plos One
, vol.8
-
-
Colca, J.R.1
McDonald, W.G.2
Cavey, G.S.3
Cole, S.L.4
Holewa, D.D.5
Bright-Well-conrad, A.S.6
Wolfe, C.L.7
Wheeler, J.S.8
Coulter, K.R.9
Kilkuskie, P.M.10
-
10
-
-
84976869322
-
Immunoresponsive gene 1 and itaconate inhibit succinate dehydrogenase to modulate intracellular succinate levels
-
Cordes T, Wallace M, Michelucci A, Divakaruni AS, Sapcariu SC, Sousa C, Koseki H, Cabrales P, Murphy AN, Hiller K, et al. 2016. Immunoresponsive gene 1 and itaconate inhibit succinate dehydrogenase to modulate intracellular succinate levels. J Biol Chem 291: 14274–14284.
-
(2016)
J Biol Chem
, vol.291
, pp. 14274-14284
-
-
Cordes, T.1
Wallace, M.2
Michelucci, A.3
Divakaruni, A.S.4
Sapcariu, S.C.5
Sousa, C.6
Koseki, H.7
Cabrales, P.8
Murphy, A.N.9
Hiller, K.10
-
11
-
-
85020282873
-
A past and present overview of macrophage metabolism and functional outcomes
-
Curi R, de Siqueira Mendes R, de Campos Crispin LA, Norata GD, Sampaio SC, Newsholme P. 2017. A past and present overview of macrophage metabolism and functional outcomes. Clin Sci 131: 1329–1342.
-
(2017)
Clin Sci
, vol.131
, pp. 1329-1342
-
-
Curi, R.1
de Siqueira Mendes, R.2
de Campos Crispin, L.A.3
Norata, G.D.4
Sampaio, S.C.5
Newsholme, P.6
-
12
-
-
85037739168
-
Peritoneal tissue-resident macrophages are metabolically poised to engage microbes using tissue-niche fuels
-
Davies LC, Rice CM, Palmieri EM, Taylor PR, Kuhns DB, McVicar DW. 2017. Peritoneal tissue-resident macrophages are metabolically poised to engage microbes using tissue-niche fuels. Nat Commun 8: 2074.
-
(2017)
Nat Commun
, vol.8
, pp. 2074
-
-
Davies, L.C.1
Rice, C.M.2
Palmieri, E.M.3
Taylor, P.R.4
Kuhns, D.B.5
McVicar, D.W.6
-
13
-
-
84875858252
-
Thiazolidinediones are acute, specific inhibitors of the mitochondrial pyruvate carrier
-
Divakaruni AS, Wiley SE, Rogers GW, Andreyev AY, Petrosyan S, Loviscach M, Wall EA, Yadava N, Heuck AP, Ferrick DA, et al. 2013. Thiazolidinediones are acute, specific inhibitors of the mitochondrial pyruvate carrier. Proc Natl Acad Sci 110: 5422–5427.
-
(2013)
Proc Natl Acad Sci
, vol.110
, pp. 5422-5427
-
-
Divakaruni, A.S.1
Wiley, S.E.2
Rogers, G.W.3
Andreyev, A.Y.4
Petrosyan, S.5
Loviscach, M.6
Wall, E.A.7
Yadava, N.8
Heuck, A.P.9
Ferrick, D.A.10
-
14
-
-
84890209181
-
Glutamine-driven oxidative phosphorylation is a major ATP source in transformed mammalian cells in both normoxia and hypoxia
-
Fan J, Kamphorst JJ, Mathew R, Chung MK, White E, Shlomi T, Rabinowitz JD. 2013. Glutamine-driven oxidative phosphorylation is a major ATP source in transformed mammalian cells in both normoxia and hypoxia. Mol Syst Biol 9: 712.
-
(2013)
Mol Syst Biol
, vol.9
, pp. 712
-
-
Fan, J.1
Kamphorst, J.J.2
Mathew, R.3
Chung, M.K.4
White, E.5
Shlomi, T.6
Rabinowitz, J.D.7
-
15
-
-
85018724259
-
Loss of macrophage fatty acid oxidation does not potentiate systemic metabolic dysfunction
-
Gonzalez-Hurtado E, Lee J, Choi J, Selen Alpergin ES, Collins SL, Horton MR, Wolfgang MJ. 2017. Loss of macrophage fatty acid oxidation does not potentiate systemic metabolic dysfunction. Am J Physiol Endocrinol Metab 312, E381– E393.
-
(2017)
Am J Physiol Endocrinol Metab
, vol.312
, pp. E381-E393
-
-
Gonzalez-Hurtado, E.1
Lee, J.2
Choi, J.3
Selen Alpergin, E.S.4
Collins, S.L.5
Horton, M.R.6
Wolfgang, M.J.7
-
16
-
-
77952567987
-
Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities
-
Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, Cheng JX, Murre C, Singh H, Glass CK. 2010. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell 38: 576–589.
-
(2010)
Mol Cell
, vol.38
, pp. 576-589
-
-
Heinz, S.1
Benner, C.2
Spann, N.3
Bertolino, E.4
Lin, Y.C.5
Laslo, P.6
Cheng, J.X.7
Murre, C.8
Singh, H.9
Glass, C.K.10
-
17
-
-
34249907880
-
Macrophage PPARγ is required for normal skeletal muscle and hepatic insulin sensitivity and full antidiabetic effects of thiazolidinediones
-
Hevener AL, Olefsky JM, Reichart D, Nguyen MTA, Bandyopadyhay G, Leung H-Y, Watt MJ, Benner C, Febbraio MA, Nguyen A-K, et al. 2007. Macrophage PPARγ is required for normal skeletal muscle and hepatic insulin sensitivity and full antidiabetic effects of thiazolidinediones. J Clin Invest 117: 1658–1669.
-
(2007)
J Clin Invest
, vol.117
, pp. 1658-1669
-
-
Hevener, A.L.1
Olefsky, J.M.2
Reichart, D.3
Nguyen, M.T.A.4
Bandyopadyhay, G.5
Leung, H.-Y.6
Watt, M.J.7
Benner, C.8
Febbraio, M.A.9
Nguyen, A.-K.10
-
18
-
-
0033595261
-
Interleu-kin-4-dependent production of PPAR-γ ligands in macrophages by 12/15-lipoxygenase
-
Huang JT, Welch JS, Ricote M, Binder CJ, Willson TM, Kelly C, Witztum JL, Funk CD, Conrad D, Glass CK. 1999. Interleu-kin-4-dependent production of PPAR-γ ligands in macrophages by 12/15-lipoxygenase. Nature 400: 378–382.
-
(1999)
Nature
, vol.400
, pp. 378-382
-
-
Huang, J.T.1
Welch, J.S.2
Ricote, M.3
Binder, C.J.4
Willson, T.M.5
Kelly, C.6
Witztum, J.L.7
Funk, C.D.8
Conrad, D.9
Glass, C.K.10
-
19
-
-
85042682549
-
The small intestine converts dietary fructose into glucose and organic acids
-
Jang C, Hui S, Lu W, Cowan AJ, Morscher RJ, Lee G, Liu W, Tesz GJ, Birnbaum MJ, Rabinowitz JD. 2018. The small intestine converts dietary fructose into glucose and organic acids. Cell Metab 27: 351–361.
-
(2018)
Cell Metab
, vol.27
, pp. 351-361
-
-
Jang, C.1
Hui, S.2
Lu, W.3
Cowan, A.J.4
Morscher, R.J.5
Lee, G.6
Liu, W.7
Tesz, G.J.8
Birnbaum, M.J.9
Rabinowitz, J.D.10
-
20
-
-
84924935721
-
Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization
-
Jha AK, Huang SC-C, Sergushichev A, Lampropoulou V, Ivanova Y, Loginicheva E, Chmielewski K, Stewart KM, Ashall J, Everts B, et al. 2015. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 42: 419– 430.
-
(2015)
Immunity
, vol.42
, pp. 419-430
-
-
Jha, A.K.1
Huang, S.-C.2
Sergushichev, A.3
Lampropoulou, V.4
Ivanova, Y.5
Loginicheva, E.6
Chmielewski, K.7
Stewart, K.M.8
Ashall, J.9
Everts, B.10
-
21
-
-
84876996918
-
TopHat2: Accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions
-
Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. 2013. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14: R36.
-
(2013)
Genome Biol
, vol.14
, pp. R36
-
-
Kim, D.1
Pertea, G.2
Trapnell, C.3
Pimentel, H.4
Kelley, R.5
Salzberg, S.L.6
-
22
-
-
84978468846
-
Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation
-
Lampropoulou V, Sergushichev A, Bambouskova M, Nair S, Vincent EE, Loginicheva E, Cervantes-Barragan L, Ma X, Huang SC-C, Griss T, et al. 2016. Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation. Cell Metab 24: 158–166.
-
(2016)
Cell Metab
, vol.24
, pp. 158-166
-
-
Lampropoulou, V.1
Sergushichev, A.2
Bambouskova, M.3
Nair, S.4
Vincent, E.E.5
Loginicheva, E.6
Cervantes-Barragan, L.7
Ma, X.8
Huang, S.-C.9
Griss, T.10
-
23
-
-
62349130698
-
Ultrafast and memory-efficient alignment of short DNA sequences to the human genome
-
Langmead B, Trapnell C, Pop M, Salzberg SL. 2009. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10: R25.
-
(2009)
Genome Biol
, vol.10
, pp. R25
-
-
Langmead, B.1
Trapnell, C.2
Pop, M.3
Salzberg, S.L.4
-
24
-
-
77950634721
-
Cell-specific determinants of peroxisome proliferator-activated receptor γ function in adipocytes and macrophages
-
Lefterova MI, Steger DJ, Zhuo D, Qatanani M, Mullican SE, Tuteja G, Manduchi E, Grant GR, Lazar MA. 2010. Cell-specific determinants of peroxisome proliferator-activated receptor γ function in adipocytes and macrophages. Mol Cell Biol 30: 2078–2089.
-
(2010)
Mol Cell Biol
, vol.30
, pp. 2078-2089
-
-
Lefterova, M.I.1
Steger, D.J.2
Zhuo, D.3
Qatanani, M.4
Mullican, S.E.5
Tuteja, G.6
Manduchi, E.7
Grant, G.R.8
Lazar, M.A.9
-
25
-
-
0029016829
-
An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor γ (PPARγ)
-
Lehmann JM, Moore LB, Smith-Oliver TA, Wilkison WO, Willson TM, Kliewer SA. 1995. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor γ (PPARγ). J Biol Chem 270: 12953–12956.
-
(1995)
J Biol Chem
, vol.270
, pp. 12953-12956
-
-
Lehmann, J.M.1
Moore, L.B.2
Smith-Oliver, T.A.3
Wilkison, W.O.4
Willson, T.M.5
Kliewer, S.A.6
-
26
-
-
0033864582
-
Peroxisome proliferator-activated receptor γ ligands inhibit development of atherosclerosis in LDL receptor-deficient mice
-
Li AC, Brown KK, Silvestre MJ, Willson TM, Palinski W, Glass CK. 2000a. Peroxisome proliferator-activated receptor γ ligands inhibit development of atherosclerosis in LDL receptor-deficient mice. J Clin Invest 106: 523–531.
-
(2000)
J Clin Invest
, vol.106
, pp. 523-531
-
-
Li, A.C.1
Brown, K.K.2
Silvestre, M.J.3
Willson, T.M.4
Palinski, W.5
Glass, C.K.6
-
27
-
-
0034121698
-
Peroxisome proliferator-activated receptor γ-dependent repression of the inducible nitric oxide synthase gene
-
Li M, Pascual G, Glass CK. 2000b. Peroxisome proliferator-activated receptor γ-dependent repression of the inducible nitric oxide synthase gene. Mol Cell Biol 20: 4699–4707.
-
(2000)
Mol Cell Biol
, vol.20
, pp. 4699-4707
-
-
Li, M.1
Pascual, G.2
Glass, C.K.3
-
28
-
-
84897397058
-
FeatureCounts: An efficient general purpose program for assigning sequence reads to genomic features
-
Liao Y, Smyth GK, Shi W. 2014. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30: 923–930.
-
(2014)
Bioinformatics
, vol.30
, pp. 923-930
-
-
Liao, Y.1
Smyth, G.K.2
Shi, W.3
-
29
-
-
85027878861
-
α-keto-glutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming
-
Liu P-S, Wang H, Li X, Chao T, Teav T, Christen S, Di Conza G, Cheng W-C, Chou C-H, Vavakova M, et al. 2017. α-keto-glutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming. Nat Immunol 18: 985–994.
-
(2017)
Nat Immunol
, vol.18
, pp. 985-994
-
-
Liu, P.-S.1
Wang, H.2
Li, X.3
Chao, T.4
Teav, T.5
Christen, S.6
Di Conza, G.7
Cheng, W.-C.8
Chou, C.-H.9
Vavakova, M.10
-
30
-
-
85021631678
-
Metabolite measurement: Pitfalls to avoid and practices to follow
-
Lu W, Su X, Klein MS, Lewis IA, Fiehn O, Rabinowitz JD. 2017. Metabolite measurement: pitfalls to avoid and practices to follow. Annu Rev Biochem 86: 277–304.
-
(2017)
Annu Rev Biochem
, vol.86
, pp. 277-304
-
-
Lu, W.1
Su, X.2
Klein, M.S.3
Lewis, I.A.4
Fiehn, O.5
Rabinowitz, J.D.6
-
31
-
-
78649695759
-
Metabolomic analysis and visualization engine for LC-MS data
-
Melamud E, Vastag L, Rabinowitz JD. 2010. Metabolomic analysis and visualization engine for LC-MS data. Anal Chem 82: 9818–9826.
-
(2010)
Anal Chem
, vol.82
, pp. 9818-9826
-
-
Melamud, E.1
Vastag, L.2
Rabinowitz, J.D.3
-
32
-
-
84892511644
-
Large-scale gene function analysis with the PANTHER classification system
-
Mi H, Muruganujan A, Casagrande JT, Thomas PD. 2013. Large-scale gene function analysis with the PANTHER classification system. Nat Protoc 8: 1551–1566.
-
(2013)
Nat Protoc
, vol.8
, pp. 1551-1566
-
-
Mi, H.1
Muruganujan, A.2
Casagrande, J.T.3
Thomas, P.D.4
-
33
-
-
84877343356
-
Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production
-
Michelucci A, Cordes T, Ghelfi J, Pailot A, Reiling N, Goldmann O, Binz T, Wegner A, Tallam A, Rausell A, et al. 2013. Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production. Proc Natl Acad Sci 110: 7820–7825.
-
(2013)
Proc Natl Acad Sci
, vol.110
, pp. 7820-7825
-
-
Michelucci, A.1
Cordes, T.2
Ghelfi, J.3
Pailot, A.4
Reiling, N.5
Goldmann, O.6
Binz, T.7
Wegner, A.8
Tallam, A.9
Rausell, A.10
-
34
-
-
85045147264
-
Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1
-
Mills EL, Ryan DG, Prag HA, Dikovskaya D, Menon D, Zaslona Z, Jedrychowski MP, Costa ASH, Higgins M, Hams E, et al. 2018. Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature 556: 113–117.
-
(2018)
Nature
, vol.556
, pp. 113-117
-
-
Mills, E.L.1
Ryan, D.G.2
Prag, H.A.3
Dikovskaya, D.4
Menon, D.5
Zaslona, Z.6
Jedrychowski, M.P.7
Costa, A.S.H.8
Higgins, M.9
Hams, E.10
-
35
-
-
0032540325
-
Oxidized LDL regulates macrophage gene expression through ligand activation of PPARγ
-
Nagy L, Tontonoz P, Alvarez JGA, Chen H, Evans RM. 1998. Oxidized LDL regulates macrophage gene expression through ligand activation of PPARγ. Cell 93: 229–240.
-
(1998)
Cell
, vol.93
, pp. 229-240
-
-
Nagy, L.1
Tontonoz, P.2
Alvarez, J.G.A.3
Chen, H.4
Evans, R.M.5
-
36
-
-
33646346627
-
Mice lacking adiponectin show decreased hepatic insulin sensitivity and reduced responsiveness to peroxisome proliferator-activated receptor γ agonists
-
Nawrocki AR, Rajala MW, Tomas E, Pajvani UB, Saha AK, Trumbauer ME, Pang Z, Chen AS, Ruderman NB, Chen H, et al. 2006. Mice lacking adiponectin show decreased hepatic insulin sensitivity and reduced responsiveness to peroxisome proliferator-activated receptor γ agonists. J Biol Chem 281: 2654–2660.
-
(2006)
J Biol Chem
, vol.281
, pp. 2654-2660
-
-
Nawrocki, A.R.1
Rajala, M.W.2
Tomas, E.3
Pajvani, U.B.4
Saha, A.K.5
Trumbauer, M.E.6
Pang, Z.7
Chen, A.S.8
Ruderman, N.B.9
Chen, H.10
-
37
-
-
0023029455
-
Metabolism of glucose, glutamine, long-chain fatty acids and ketone bodies by murine macrophages
-
Newsholme P, Curi R, Gordon S, Newsholme EA. 1986. Metabolism of glucose, glutamine, long-chain fatty acids and ketone bodies by murine macrophages. Biochem J 239: 121–125.
-
(1986)
Biochem J
, vol.239
, pp. 121-125
-
-
Newsholme, P.1
Curi, R.2
Gordon, S.3
Newsholme, E.A.4
-
38
-
-
84962450023
-
Fatty acid oxidation in macrophage polarization
-
Nomura M, Liu J, Rovira II, Gonzalez-Hurtado E, Lee J, Wolfgang MJ, Finkel T. 2016. Fatty acid oxidation in macrophage polarization. Nat Immunol 17: 216–217.
-
(2016)
Nat Immunol
, vol.17
, pp. 216-217
-
-
Nomura, M.1
Liu, J.2
Rovira, I.I.3
Gonzalez-Hurtado, E.4
Lee, J.5
Wolfgang, M.J.6
Finkel, T.7
-
39
-
-
34347354309
-
Macrophage-specific PPARγ controls alternative activation and improves insulin resistance
-
Odegaard JI, Ricardo-Gonzalez RR, Goforth MH, Morel CR, Subramanian V, Mukundan L, Red Eagle A, Vats D, Brombacher F, Ferrante AW, et al. 2007. Macrophage-specific PPARγ controls alternative activation and improves insulin resistance. Nature 447: 1116–1120.
-
(2007)
Nature
, vol.447
, pp. 1116-1120
-
-
Odegaard, J.I.1
Ricardo-Gonzalez, R.R.2
Goforth, M.H.3
Morel, C.R.4
Subramanian, V.5
Mukundan, L.6
Red Eagle, A.7
Vats, D.8
Brombacher, F.9
Ferrante, A.W.10
-
40
-
-
84924939702
-
A broken krebs cycle in macrophages
-
O’Neill LAJ. 2015. A broken krebs cycle in macrophages. Immunity 42: 393–394.
-
(2015)
Immunity
, vol.42
, pp. 393-394
-
-
O’Neill, L.A.J.1
-
41
-
-
85027849350
-
Pharmacologic or genetic targeting of glutamine synthetase skews macrophages toward an M1-like phenotype and inhibits tumor metastasis
-
Palmieri EM, Menga A, Martín-Pérez R, Quinto A, Riera-Domingo C, De Tullio G, Hooper DC, Lamers WH, Ghesquière B, McVicar DW, et al. 2017. Pharmacologic or genetic targeting of glutamine synthetase skews macrophages toward an M1-like phenotype and inhibits tumor metastasis. Cell Rep 20: 1654–1666.
-
(2017)
Cell Rep
, vol.20
, pp. 1654-1666
-
-
Palmieri, E.M.1
Menga, A.2
Martín-Pérez, R.3
Quinto, A.4
Riera-Domingo, C.5
de Tullio, G.6
Hooper, D.C.7
Lamers, W.H.8
Ghesquière, B.9
McVicar, D.W.10
-
42
-
-
2542491213
-
Peroxisome proliferator-activated receptor γ in diabetes and metabolism
-
Rangwala SM, Lazar MA. 2004. Peroxisome proliferator-activated receptor γ in diabetes and metabolism. Trends Pharmacol Sci 25: 331–336.
-
(2004)
Trends Pharmacol Sci
, vol.25
, pp. 331-336
-
-
Rangwala, S.M.1
Lazar, M.A.2
-
43
-
-
0031886864
-
The peroxisome proliferator-activated receptor-γ is a negative regulator of macrophage activation
-
Ricote M, Li AC, Willson TM, Kelly CJ, Glass CK. 1998. The peroxisome proliferator-activated receptor-γ is a negative regulator of macrophage activation. Nature 391: 79–82.
-
(1998)
Nature
, vol.391
, pp. 79-82
-
-
Ricote, M.1
Li, A.C.2
Willson, T.M.3
Kelly, C.J.4
Glass, C.K.5
-
44
-
-
75249087100
-
EdgeR: A Bioconductor package for differential expression analysis of digital gene expression data
-
Robinson MD, McCarthy DJ, Smyth GK. 2010. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26: 139–140.
-
(2010)
Bioinformatics
, vol.26
, pp. 139-140
-
-
Robinson, M.D.1
McCarthy, D.J.2
Smyth, G.K.3
-
45
-
-
0033213631
-
PPARγ is required for the differentiation of adipose tissue in vivo and in vitro
-
Rosen ED, Sarraf P, Troy AE, Bradwin G, Moore K, Milstone DS, Spiegelman BM, Mortensen RM. 1999. PPARγ is required for the differentiation of adipose tissue in vivo and in vitro. Mol Cell 4: 611–617.
-
(1999)
Mol Cell
, vol.4
, pp. 611-617
-
-
Rosen, E.D.1
Sarraf, P.2
Troy, A.E.3
Bradwin, G.4
Moore, K.5
Milstone, D.S.6
Spiegelman, B.M.7
Mortensen, R.M.8
-
47
-
-
84907990392
-
Thiazolidinediones and the promise of insulin sensitization in type 2 diabetes
-
Soccio RE, Chen ER, Lazar MA. 2014. Thiazolidinediones and the promise of insulin sensitization in type 2 diabetes. Cell Metab 20: 573–591.
-
(2014)
Cell Metab
, vol.20
, pp. 573-591
-
-
Soccio, R.E.1
Chen, E.R.2
Lazar, M.A.3
-
48
-
-
85018709588
-
Targeting PPARγ in the epigenome rescues genetic metabolic defects in mice
-
Soccio RE, Li Z, Chen ER, Foong YH, Benson KK, Dispirito JR, Mullican SE, Emmett MJ, Briggs ER, Peed LC, et al. 2017. Targeting PPARγ in the epigenome rescues genetic metabolic defects in mice. J Clin Invest 127: 1451–1462.
-
(2017)
J Clin Invest
, vol.127
, pp. 1451-1462
-
-
Soccio, R.E.1
Li, Z.2
Chen, E.R.3
Foong, Y.H.4
Benson, K.K.5
Dispirito, J.R.6
Mullican, S.E.7
Emmett, M.J.8
Briggs, E.R.9
Peed, L.C.10
-
49
-
-
42149146774
-
DOT1L/ KMT4 recruitment and H3K79 methylation are ubiquitously coupled with gene transcription in mammalian cells
-
Steger DJ, Lefterova MI, Ying L, Stonestrom AJ, Schupp M, Zhuo D, Vakoc AL, Kim J-E, Chen J, Lazar MA, et al. 2008. DOT1L/ KMT4 recruitment and H3K79 methylation are ubiquitously coupled with gene transcription in mammalian cells. Mol Cell Biol 28: 2825–2839.
-
(2008)
Mol Cell Biol
, vol.28
, pp. 2825-2839
-
-
Steger, D.J.1
Lefterova, M.I.2
Ying, L.3
Stonestrom, A.J.4
Schupp, M.5
Zhuo, D.6
Vakoc, A.L.7
Kim, J.-E.8
Chen, J.9
Lazar, M.A.10
-
50
-
-
84899710827
-
Anti-diabetic rosiglitazone remodels the adipocyte transcriptome by redistributing transcription to PPARγ-driven enhancers
-
Step SE, Lim H-W, Marinis JM, Prokesch A, Steger DJ, You S-H, Won K-J, Lazar MA. 2014. Anti-diabetic rosiglitazone remodels the adipocyte transcriptome by redistributing transcription to PPARγ-driven enhancers. Genes Dev 28: 1018– 1028.
-
(2014)
Genes Dev
, vol.28
, pp. 1018-1028
-
-
Step, S.E.1
Lim, H.-W.2
Marinis, J.M.3
Prokesch, A.4
Steger, D.J.5
You, S.-H.6
Won, K.-J.7
Lazar, M.A.8
-
51
-
-
53049093989
-
Peroxisome proliferator-activated receptor γ activation promotes infiltration of alternatively activated macrophages into adipose tissue
-
Stienstra R, Duval C, Keshtkar S, van der Laak J, Kersten S, Müller M. 2008. Peroxisome proliferator-activated receptor γ activation promotes infiltration of alternatively activated macrophages into adipose tissue. J Biol Chem 283: 22620– 22627.
-
(2008)
J Biol Chem
, vol.283
, pp. 22620-22627
-
-
Stienstra, R.1
Duval, C.2
Keshtkar, S.3
van der Laak, J.4
Kersten, S.5
Müller, M.6
-
52
-
-
80054737427
-
Itaconic acid is a mammalian metabolite induced during macrophage activation
-
Strelko CL, Lu W, Dufort FJ, Seyfried TN, Chiles TC, Rabinowitz JD, Roberts MF. 2011. Itaconic acid is a mammalian metabolite induced during macrophage activation. J Am Chem Soc 133: 16386–16389.
-
(2011)
J am Chem Soc
, vol.133
, pp. 16386-16389
-
-
Strelko, C.L.1
Lu, W.2
Dufort, F.J.3
Seyfried, T.N.4
Chiles, T.C.5
Rabinowitz, J.D.6
Roberts, M.F.7
-
53
-
-
0032540012
-
PPARγ promotes monocyte/macrophage differentiation and uptake of oxidized LDL
-
Tontonoz P, Nagy L, Alvarez JG, Thomazy VA, Evans RM. 1998. PPARγ promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell 93: 241–252.
-
(1998)
Cell
, vol.93
, pp. 241-252
-
-
Tontonoz, P.1
Nagy, L.2
Alvarez, J.G.3
Thomazy, V.A.4
Evans, R.M.5
-
54
-
-
33745428666
-
Oxidative metabolism and PGC-1β attenuate macrophage-mediated inflammation
-
Vats D, Mukundan L, Odegaard JI, Zhang L, Smith KL, Morel CR, Wagner RA, Greaves DR, Murray PJ, Chawla A. 2006. Oxidative metabolism and PGC-1β attenuate macrophage-mediated inflammation. Cell Metab 4: 13–24.
-
(2006)
Cell Metab
, vol.4
, pp. 13-24
-
-
Vats, D.1
Mukundan, L.2
Odegaard, J.I.3
Zhang, L.4
Smith, K.L.5
Morel, C.R.6
Wagner, R.A.7
Greaves, D.R.8
Murray, P.J.9
Chawla, A.10
|