메뉴 건너뛰기




Volumn 38, Issue 7, 2016, Pages 618-626

Cofactor squelching: Artifact or fact?

Author keywords

ChIP seq; cofactor redistribution; cofactor squelching; super enhancers; transcriptional repression

Indexed keywords

CELL NUCLEUS RECEPTOR; ESTRADIOL; ESTROGEN RECEPTOR; PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR GAMMA; RNA POLYMERASE II; ROSIGLITAZONE; THYMIDINE; TRANSCRIPTION FACTOR; TRANSCRIPTION FACTOR RELA;

EID: 84976603170     PISSN: 02659247     EISSN: 15211878     Source Type: Journal    
DOI: 10.1002/bies.201600034     Document Type: Article
Times cited : (42)

References (79)
  • 1
    • 84923804845 scopus 로고    scopus 로고
    • Structural basis of transcription initiation by RNA polymerase II
    • Sainsbury S, Bernecky C, Cramer P. 2015. Structural basis of transcription initiation by RNA polymerase II. Nat Rev Mol Cell Biol 16: 129–43.
    • (2015) Nat Rev Mol Cell Biol , vol.16 , pp. 129-143
    • Sainsbury, S.1    Bernecky, C.2    Cramer, P.3
  • 2
    • 84923782190 scopus 로고    scopus 로고
    • Histone exchange, chromatin structure and the regulation of transcription
    • Venkatesh S, Workman JL. 2015. Histone exchange, chromatin structure and the regulation of transcription. Nat Rev Mol Cell Biol 16: 178–89.
    • (2015) Nat Rev Mol Cell Biol , vol.16 , pp. 178-189
    • Venkatesh, S.1    Workman, J.L.2
  • 3
    • 84923780299 scopus 로고    scopus 로고
    • Getting up to speed with transcription elongation by RNA polymerase II
    • Jonkers I, Lis JT. 2015. Getting up to speed with transcription elongation by RNA polymerase II. Nat Rev Mol Cell Biol 16: 167–77.
    • (2015) Nat Rev Mol Cell Biol , vol.16 , pp. 167-177
    • Jonkers, I.1    Lis, J.T.2
  • 4
    • 84892800329 scopus 로고    scopus 로고
    • Dynamic regulation of transcriptional states by chromatin and transcription factors
    • Voss TC, Hager GL. 2014. Dynamic regulation of transcriptional states by chromatin and transcription factors. Nat Rev Genet 15: 69–81.
    • (2014) Nat Rev Genet , vol.15 , pp. 69-81
    • Voss, T.C.1    Hager, G.L.2
  • 5
    • 84897147399 scopus 로고    scopus 로고
    • Nuclear receptors, RXR, and the big bang
    • Evans RM, Mangelsdorf DJ. 2014. Nuclear receptors, RXR, and the big bang. Cell 157: 255–66.
    • (2014) Cell , vol.157 , pp. 255-266
    • Evans, R.M.1    Mangelsdorf, D.J.2
  • 6
    • 33748702268 scopus 로고    scopus 로고
    • Nuclear receptors versus inflammation: mechanisms of transrepression
    • Pascual G, Glass CK. 2006. Nuclear receptors versus inflammation: mechanisms of transrepression. Trends Endocrinol Metab 17: 321–7.
    • (2006) Trends Endocrinol Metab , vol.17 , pp. 321-327
    • Pascual, G.1    Glass, C.K.2
  • 7
    • 77951602823 scopus 로고    scopus 로고
    • Nuclear receptor transrepression pathways that regulate inflammation in macrophages and T cells
    • Glass CK, Saijo K. 2010. Nuclear receptor transrepression pathways that regulate inflammation in macrophages and T cells. Nat Rev Immunol 10: 365–76.
    • (2010) Nat Rev Immunol , vol.10 , pp. 365-376
    • Glass, C.K.1    Saijo, K.2
  • 8
    • 75649135910 scopus 로고    scopus 로고
    • Deconstructing repression: evolving models of co-repressor action
    • Perissi V, Jepsen K, Glass CK, Rosenfeld MG. 2010. Deconstructing repression: evolving models of co-repressor action. Nat Rev Genet 11: 109–23.
    • (2010) Nat Rev Genet , vol.11 , pp. 109-123
    • Perissi, V.1    Jepsen, K.2    Glass, C.K.3    Rosenfeld, M.G.4
  • 9
    • 79953871100 scopus 로고    scopus 로고
    • Widespread negative response elements mediate direct repression by agonist-liganded glucocorticoid receptor
    • Surjit M, Ganti KP, Mukherji A, Ye T, et al. 2011. Widespread negative response elements mediate direct repression by agonist-liganded glucocorticoid receptor. Cell 145: 224–41.
    • (2011) Cell , vol.145 , pp. 224-241
    • Surjit, M.1    Ganti, K.P.2    Mukherji, A.3    Ye, T.4
  • 10
    • 84872036772 scopus 로고    scopus 로고
    • The structural basis of direct glucocorticoid-mediated transrepression
    • Hudson WH, Youn C, Ortlund EA. 2013. The structural basis of direct glucocorticoid-mediated transrepression. Nat Struct Mol Biol 20: 53–8.
    • (2013) Nat Struct Mol Biol , vol.20 , pp. 53-58
    • Hudson, W.H.1    Youn, C.2    Ortlund, E.A.3
  • 11
    • 84872263381 scopus 로고    scopus 로고
    • Insights into negative regulation by the glucocorticoid receptor from genome-wide profiling of inflammatory cistromes
    • Uhlenhaut NH, Barish GD, Yu RT, Downes M, et al. 2013. Insights into negative regulation by the glucocorticoid receptor from genome-wide profiling of inflammatory cistromes. Mol Cell 49: 158–71.
    • (2013) Mol Cell , vol.49 , pp. 158-171
    • Uhlenhaut, N.H.1    Barish, G.D.2    Yu, R.T.3    Downes, M.4
  • 12
    • 0023805741 scopus 로고
    • Negative effect of the transcriptional activator GAL4
    • Gill G, Ptashne M. 1988. Negative effect of the transcriptional activator GAL4. Nature 334: 721–4.
    • (1988) Nature , vol.334 , pp. 721-724
    • Gill, G.1    Ptashne, M.2
  • 13
    • 0024564101 scopus 로고
    • Steroid hormone receptors compete for factors that mediate their enhancer function
    • Meyer ME, Gronemeyer H, Turcotte B, Bocquel MT, et al. 1989. Steroid hormone receptors compete for factors that mediate their enhancer function. Cell 57: 433–42.
    • (1989) Cell , vol.57 , pp. 433-442
    • Meyer, M.E.1    Gronemeyer, H.2    Turcotte, B.3    Bocquel, M.T.4
  • 14
    • 0026512729 scopus 로고
    • In vitro squelching of activated transcription by serum response factor: evidence for a common coactivator used by multiple transcriptional activators
    • Prywes R, Zhu H. 1992. In vitro squelching of activated transcription by serum response factor: evidence for a common coactivator used by multiple transcriptional activators. Nucleic Acids Res 20: 513–20.
    • (1992) Nucleic Acids Res , vol.20 , pp. 513-520
    • Prywes, R.1    Zhu, H.2
  • 15
    • 0028060212 scopus 로고
    • Role of transcription factor TFIIF in serum response factor-activated transcription
    • Zhu H, Joliot V, Prywes R. 1994. Role of transcription factor TFIIF in serum response factor-activated transcription. J Biol Chem 269: 3489–97.
    • (1994) J Biol Chem , vol.269 , pp. 3489-3497
    • Zhu, H.1    Joliot, V.2    Prywes, R.3
  • 16
    • 0026753691 scopus 로고
    • Identification of a coactivator that increases activation of transcription by serum response factor and GAL4-VP16 in vitro
    • Zhu H, Pyrwes R. 1992. Identification of a coactivator that increases activation of transcription by serum response factor and GAL4-VP16 in vitro. Proc Natl Acad Sci USA 89: 5291–5.
    • (1992) Proc Natl Acad Sci USA , vol.89 , pp. 5291-5295
    • Zhu, H.1    Pyrwes, R.2
  • 17
    • 0028842910 scopus 로고
    • Reversal of in vitro p53 squelching by both TFIIB and TFIID
    • Liu X, Berk AJ. 1995. Reversal of in vitro p53 squelching by both TFIIB and TFIID. Mol Cell Biol 15: 6474–8.
    • (1995) Mol Cell Biol , vol.15 , pp. 6474-6478
    • Liu, X.1    Berk, A.J.2
  • 18
    • 0023683667 scopus 로고
    • How eukaryotic transcriptional activators work
    • Ptashne M. 1988. How eukaryotic transcriptional activators work. Nature 335: 683–9.
    • (1988) Nature , vol.335 , pp. 683-689
    • Ptashne, M.1
  • 19
    • 0023697252 scopus 로고
    • GAL4-VP16 is an unusually potent transcriptional activator
    • Sadowski I, Ma J, Triezenberg S, Ptashne M. 1988. GAL4-VP16 is an unusually potent transcriptional activator. Nature 335: 563–4.
    • (1988) Nature , vol.335 , pp. 563-564
    • Sadowski, I.1    Ma, J.2    Triezenberg, S.3    Ptashne, M.4
  • 20
    • 0025332921 scopus 로고
    • Selective inhibition of activated but not basal transcription by the acidic activation domain of VP16: evidence for transcriptional adaptors
    • Berger SL, Cress WD, Cress A, Triezenberg SJ, et al. 1990. Selective inhibition of activated but not basal transcription by the acidic activation domain of VP16: evidence for transcriptional adaptors. Cell 61: 1199–208.
    • (1990) Cell , vol.61 , pp. 1199-1208
    • Berger, S.L.1    Cress, W.D.2    Cress, A.3    Triezenberg, S.J.4
  • 21
    • 0242587820 scopus 로고    scopus 로고
    • A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors
    • Kamei Y, Xu L, Heinzel T, Torchia J, et al. 1996. A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell 85: 403–14.
    • (1996) Cell , vol.85 , pp. 403-414
    • Kamei, Y.1    Xu, L.2    Heinzel, T.3    Torchia, J.4
  • 22
    • 0033610866 scopus 로고    scopus 로고
    • CREB binding protein is a coactivator for the androgen receptor and mediates cross-talk with AP-1
    • Fronsdal K, Engedal N, Slagsvold T, Saatcioglu F. 1998. CREB binding protein is a coactivator for the androgen receptor and mediates cross-talk with AP-1. J Biol Chem 273: 31853–9.
    • (1998) J Biol Chem , vol.273 , pp. 31853-31859
    • Fronsdal, K.1    Engedal, N.2    Slagsvold, T.3    Saatcioglu, F.4
  • 23
    • 0025286261 scopus 로고
    • A novel mediator between activator proteins and the RNA polymerase II transcription apparatus
    • Kelleher RJ, 3rd, Flanagan PM, Kornberg RD. 1990. A novel mediator between activator proteins and the RNA polymerase II transcription apparatus. Cell 61: 1209–15.
    • (1990) Cell , vol.61 , pp. 1209-1215
    • Kelleher, R.J.1    Flanagan, P.M.2    Kornberg, R.D.3
  • 24
    • 0025891809 scopus 로고
    • A mediator required for activation of RNA polymerase II transcription in vitro
    • Flanagan PM, Kelleher RJ, 3rd, Sayre MH, Tschochner H, et al. 1991. A mediator required for activation of RNA polymerase II transcription in vitro. Nature 350: 436–8.
    • (1991) Nature , vol.350 , pp. 436-438
    • Flanagan, P.M.1    Kelleher, R.J.2    Sayre, M.H.3    Tschochner, H.4
  • 25
    • 0025351398 scopus 로고
    • Mechanism of transcriptional activation by Sp1: evidence for coactivators
    • Pugh BF, Tjian R. 1990. Mechanism of transcriptional activation by Sp1: evidence for coactivators. Cell 61: 1187–97.
    • (1990) Cell , vol.61 , pp. 1187-1197
    • Pugh, B.F.1    Tjian, R.2
  • 26
    • 84869502241 scopus 로고    scopus 로고
    • ChIP-seq and beyond: new and improved methodologies to detect and characterize protein-DNA interactions
    • Furey TS. 2012. ChIP-seq and beyond: new and improved methodologies to detect and characterize protein-DNA interactions. Nat Rev Genet 13: 840–52.
    • (2012) Nat Rev Genet , vol.13 , pp. 840-852
    • Furey, T.S.1
  • 27
    • 84961635338 scopus 로고    scopus 로고
    • A Genome-Wide perspective on metabolism
    • Rauch A, Mandrup S. 2016. A Genome-Wide perspective on metabolism. Handb Exp Pharmacol 233:1–28.
    • (2016) Handb Exp Pharmacol , vol.233 , pp. 1-28
    • Rauch, A.1    Mandrup, S.2
  • 28
    • 84865790047 scopus 로고    scopus 로고
    • An integrated encyclopedia of DNA elements in the human genome
    • Consortium EP. 2012. An integrated encyclopedia of DNA elements in the human genome. Nature 489: 57–74.
    • (2012) Nature , vol.489 , pp. 57-74
    • Consortium, E.P.1
  • 29
    • 33747072322 scopus 로고    scopus 로고
    • Hotspots of transcription factor colocalization in the genome of Drosophila melanogaster
    • Moorman C, Sun L, Wang J, de Wit E, et al. 2006. Hotspots of transcription factor colocalization in the genome of Drosophila melanogaster. Proc Nat Acad Sci USA 103: 12027–32.
    • (2006) Proc Nat Acad Sci USA , vol.103 , pp. 12027-12032
    • Moorman, C.1    Sun, L.2    Wang, J.3    de Wit, E.4
  • 30
    • 44649117905 scopus 로고    scopus 로고
    • Integration of external signaling pathways with the core transcriptional network in embryonic stem cells
    • Chen X, Xu H, Yuan P, Fang F, et al. 2008. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 133: 1106–17.
    • (2008) Cell , vol.133 , pp. 1106-1117
    • Chen, X.1    Xu, H.2    Yuan, P.3    Fang, F.4
  • 31
    • 84856777771 scopus 로고    scopus 로고
    • Genome-wide profiling of liver X receptor, retinoid X receptor, and peroxisome proliferator-activated receptor α in mouse liver reveals extensive sharing of binding sites
    • Boergesen M, Pedersen T, Gross B, van Heeringen S, et al. 2012. Genome-wide profiling of liver X receptor, retinoid X receptor, and peroxisome proliferator-activated receptor α in mouse liver reveals extensive sharing of binding sites. Mol Cell Biol 32: 852–67.
    • (2012) Mol Cell Biol , vol.32 , pp. 852-867
    • Boergesen, M.1    Pedersen, T.2    Gross, B.3    van Heeringen, S.4
  • 32
    • 84865739425 scopus 로고    scopus 로고
    • Architecture of the human regulatory network derived from ENCODE data
    • Gerstein M, Kundaje A, Hariharan M, Landt S, et al. 2012. Architecture of the human regulatory network derived from ENCODE data. Nature 489: 91–100.
    • (2012) Nature , vol.489 , pp. 91-100
    • Gerstein, M.1    Kundaje, A.2    Hariharan, M.3    Landt, S.4
  • 33
    • 79954992662 scopus 로고    scopus 로고
    • Extensive chromatin remodelling and establishment of transcription factor 'hotspots' during early adipogenesis
    • Siersbæk R, Nielsen R, John S, Sung M-H, et al. 2011. Extensive chromatin remodelling and establishment of transcription factor 'hotspots' during early adipogenesis. EMBO J 30: 1459–72.
    • (2011) EMBO J , vol.30 , pp. 1459-1472
    • Siersbæk, R.1    Nielsen, R.2    John, S.3    Sung, M.-H.4
  • 34
    • 78650331647 scopus 로고    scopus 로고
    • Identification of functional elements and regulatory circuits by Drosophila modENCODE
    • Mod EC, Roy S, Ernst J, Kharchenko PV, et al. 2010. Identification of functional elements and regulatory circuits by Drosophila modENCODE. Science 330: 1787–97.
    • (2010) Science , vol.330 , pp. 1787-1797
    • Mod, E.C.1    Roy, S.2    Ernst, J.3    Kharchenko, P.V.4
  • 35
    • 78650410139 scopus 로고    scopus 로고
    • Integrative analysis of the Caenorhabditis elegans genome by the modENCODE project
    • Gerstein MB, Lu ZJ, Van Nostrand EL, Cheng C, et al., 2010. Integrative analysis of the Caenorhabditis elegans genome by the modENCODE project. Science 330: 1775–87.
    • (2010) Science , vol.330 , pp. 1775-1787
    • Gerstein, M.B.1    Lu, Z.J.2    Van Nostrand, E.L.3    Cheng, C.4
  • 36
    • 84902302671 scopus 로고    scopus 로고
    • Transcription factor cooperativity in early adipogenic hotspots and super-enhancers
    • Siersbaek R, Rabiee A, Nielsen R, Sidoli S, et al. 2014. Transcription factor cooperativity in early adipogenic hotspots and super-enhancers. Cell Rep 7: 1443–55.
    • (2014) Cell Rep , vol.7 , pp. 1443-1455
    • Siersbaek, R.1    Rabiee, A.2    Nielsen, R.3    Sidoli, S.4
  • 37
    • 0023663887 scopus 로고
    • Position-independent, high-level expression of the human beta-globin gene in transgenic mice
    • Grosveld F, van Assendelft GB, Greaves DR, Kollias G. 1987. Position-independent, high-level expression of the human beta-globin gene in transgenic mice. Cell 51: 975–85.
    • (1987) Cell , vol.51 , pp. 975-985
    • Grosveld, F.1    van Assendelft, G.B.2    Greaves, D.R.3    Kollias, G.4
  • 38
    • 0025101148 scopus 로고
    • Definition of the minimal requirements within the human beta-globin gene and the dominant control region for high level expression
    • Collis P, Antoniou M, Grosveld F. 1990. Definition of the minimal requirements within the human beta-globin gene and the dominant control region for high level expression. EMBO J 9: 233–40.
    • (1990) EMBO J , vol.9 , pp. 233-240
    • Collis, P.1    Antoniou, M.2    Grosveld, F.3
  • 39
    • 84887072795 scopus 로고    scopus 로고
    • Chromatin stretch enhancer states drive cell-specific gene regulation and harbor human disease risk variants
    • Parker SC, Stitzel ML, Taylor DL, Orozco JM, et al. 2013. Chromatin stretch enhancer states drive cell-specific gene regulation and harbor human disease risk variants. Proc Nat Acad Sci USA 110: 17921–6.
    • (2013) Proc Nat Acad Sci USA , vol.110 , pp. 17921-17926
    • Parker, S.C.1    Stitzel, M.L.2    Taylor, D.L.3    Orozco, J.M.4
  • 40
    • 84876216563 scopus 로고    scopus 로고
    • Master transcription factors and mediator establish super-enhancers at key cell identity genes
    • Whyte WA, Orlando DA, Hnisz D, Abraham BJ, et al. 2013. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153: 307–19.
    • (2013) Cell , vol.153 , pp. 307-319
    • Whyte, W.A.1    Orlando, D.A.2    Hnisz, D.3    Abraham, B.J.4
  • 41
    • 84876222028 scopus 로고    scopus 로고
    • Selective inhibition of tumor oncogenes by disruption of super-enhancers
    • Loven J, Hoke HA, Lin CY, Lau A, et al. 2013. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell 153: 320–34.
    • (2013) Cell , vol.153 , pp. 320-334
    • Loven, J.1    Hoke, H.A.2    Lin, C.Y.3    Lau, A.4
  • 42
    • 84888015137 scopus 로고    scopus 로고
    • Super-enhancers in the control of cell identity and disease
    • Hnisz D, Abraham BJ, Lee TI, Lau A, et al. 2013. Super-enhancers in the control of cell identity and disease. Cell 155: 934–47.
    • (2013) Cell , vol.155 , pp. 934-947
    • Hnisz, D.1    Abraham, B.J.2    Lee, T.I.3    Lau, A.4
  • 43
    • 84920403959 scopus 로고    scopus 로고
    • Browning of human adipocytes requires KLF11 and reprogramming of PPARgamma superenhancers
    • Loft A, Forss I, Siersbaek MS, Schmidt SF, et al. 2015. Browning of human adipocytes requires KLF11 and reprogramming of PPARgamma superenhancers. Genes Dev 29: 7–22.
    • (2015) Genes Dev , vol.29 , pp. 7-22
    • Loft, A.1    Forss, I.2    Siersbaek, M.S.3    Schmidt, S.F.4
  • 44
    • 84960349182 scopus 로고    scopus 로고
    • Models of human core transcriptional regulatory circuitries
    • Saint-Andre V, Federation AJ, Lin CY, Abraham BJ, et al. 2016. Models of human core transcriptional regulatory circuitries. Genome Res 26: 385–96.
    • (2016) Genome Res , vol.26 , pp. 385-396
    • Saint-Andre, V.1    Federation, A.J.2    Lin, C.Y.3    Abraham, B.J.4
  • 45
    • 84908602740 scopus 로고    scopus 로고
    • NF-kappaB directs dynamic super enhancer formation in inflammation and atherogenesis
    • Brown JD, Lin CY, Duan Q, Griffin G, et al. 2014. NF-kappaB directs dynamic super enhancer formation in inflammation and atherogenesis. Mol Cell 56: 219–31.
    • (2014) Mol Cell , vol.56 , pp. 219-231
    • Brown, J.D.1    Lin, C.Y.2    Duan, Q.3    Griffin, G.4
  • 46
    • 84928207423 scopus 로고    scopus 로고
    • Convergence of developmental and oncogenic signaling pathways at transcriptional super-enhancers
    • Hnisz D, Schuijers J, Lin CY, Weintraub AS, et al. 2015. Convergence of developmental and oncogenic signaling pathways at transcriptional super-enhancers. Mol Cell 58: 362–70.
    • (2015) Mol Cell , vol.58 , pp. 362-370
    • Hnisz, D.1    Schuijers, J.2    Lin, C.Y.3    Weintraub, A.S.4
  • 47
    • 84927711843 scopus 로고    scopus 로고
    • Spatial enhancer clustering and regulation of enhancer-proximal genes by cohesin
    • Ing-Simmons E, Seitan VC, Faure AJ, Flicek P, et al. 2015. Spatial enhancer clustering and regulation of enhancer-proximal genes by cohesin. Genome Res 25: 504–13.
    • (2015) Genome Res , vol.25 , pp. 504-513
    • Ing-Simmons, E.1    Seitan, V.C.2    Faure, A.J.3    Flicek, P.4
  • 48
    • 84929511084 scopus 로고    scopus 로고
    • Transient estrogen receptor binding and p300 redistribution support a squelching mechanism for estradiol-repressed genes
    • Guertin MJ, Zhang X, Coonrod SA, Hager GL. 2014. Transient estrogen receptor binding and p300 redistribution support a squelching mechanism for estradiol-repressed genes. Mol Endocrinol 28: 1522–33.
    • (2014) Mol Endocrinol , vol.28 , pp. 1522-1533
    • Guertin, M.J.1    Zhang, X.2    Coonrod, S.A.3    Hager, G.L.4
  • 49
    • 84861889354 scopus 로고    scopus 로고
    • Differential DNase I hypersensitivity reveals factor-dependent chromatin dynamics
    • He HH, Meyer CA, Chen MW, Jordan VC, et al. 2012. Differential DNase I hypersensitivity reveals factor-dependent chromatin dynamics. Genome Res 22: 1015–25.
    • (2012) Genome Res , vol.22 , pp. 1015-1025
    • He, H.H.1    Meyer, C.A.2    Chen, M.W.3    Jordan, V.C.4
  • 50
    • 84899710827 scopus 로고    scopus 로고
    • Anti-diabetic rosiglitazone remodels the adipocyte transcriptome by redistributing transcription to PPARgamma-driven enhancers
    • Step SE, Lim HW, Marinis JM, Prokesch A, et al. 2014. Anti-diabetic rosiglitazone remodels the adipocyte transcriptome by redistributing transcription to PPARgamma-driven enhancers. Genes Dev 28: 1018–28.
    • (2014) Genes Dev , vol.28 , pp. 1018-1028
    • Step, S.E.1    Lim, H.W.2    Marinis, J.M.3    Prokesch, A.4
  • 51
    • 84941000331 scopus 로고    scopus 로고
    • Acute TNF-induced repression of cell identity genes is mediated by NFκB-directed redistribution of cofactors from super-enhancers
    • Schmidt SF, Larsen BD, Loft A, Nielsen R, et al. 2015. Acute TNF-induced repression of cell identity genes is mediated by NFκB-directed redistribution of cofactors from super-enhancers. Genome Res 25: 1281–94.
    • (2015) Genome Res , vol.25 , pp. 1281-1294
    • Schmidt, S.F.1    Larsen, B.D.2    Loft, A.3    Nielsen, R.4
  • 52
    • 84887478181 scopus 로고    scopus 로고
    • Highly expressed loci are vulnerable to misleading ChIP localization of multiple unrelated proteins
    • Teytelman L, Thurtle DM, Rine J, van Oudenaarden A. 2013. Highly expressed loci are vulnerable to misleading ChIP localization of multiple unrelated proteins. Proc Nat Acad Sci USA 110: 18602–7.
    • (2013) Proc Nat Acad Sci USA , vol.110 , pp. 18602-18607
    • Teytelman, L.1    Thurtle, D.M.2    Rine, J.3    van Oudenaarden, A.4
  • 53
    • 84980329742 scopus 로고    scopus 로고
    • Active promoters give rise to false positive 'Phantom Peaks' in ChIP-seq experiments
    • Jain D, Baldi S, Zabel A, Straub T, et al. 2015. Active promoters give rise to false positive 'Phantom Peaks' in ChIP-seq experiments. Nucleic Acids Res 43: 6959–68.
    • (2015) Nucleic Acids Res , vol.43 , pp. 6959-6968
    • Jain, D.1    Baldi, S.2    Zabel, A.3    Straub, T.4
  • 54
    • 84927581510 scopus 로고    scopus 로고
    • MTOR is involved in 17beta-estradiol-induced, cultured immature boar Sertoli cell proliferation via regulating the expression of SKP2, CCND1, and CCNE1
    • Yang WR, Wang Y, Zhang JJ, Zhang JH, et al. 2015. MTOR is involved in 17beta-estradiol-induced, cultured immature boar Sertoli cell proliferation via regulating the expression of SKP2, CCND1, and CCNE1. Mol Reprod Dev 82: 305–14.
    • (2015) Mol Reprod Dev , vol.82 , pp. 305-314
    • Yang, W.R.1    Wang, Y.2    Zhang, J.J.3    Zhang, J.H.4
  • 55
    • 84875858252 scopus 로고    scopus 로고
    • Thiazolidinediones are acute, specific inhibitors of the mitochondrial pyruvate carrier
    • Divakaruni AS, Wiley SE, Rogers GW, Andreyev AY, et al. 2013. Thiazolidinediones are acute, specific inhibitors of the mitochondrial pyruvate carrier. Proc Natl Acad Sci USA 110: 5422–7.
    • (2013) Proc Natl Acad Sci USA , vol.110 , pp. 5422-5427
    • Divakaruni, A.S.1    Wiley, S.E.2    Rogers, G.W.3    Andreyev, A.Y.4
  • 56
    • 0023803638 scopus 로고
    • Cooperative DNA binding of the yeast transcriptional activator GAL4
    • Giniger E, Ptashne M. 1988. Cooperative DNA binding of the yeast transcriptional activator GAL4. Proc Nat Acad Sci USA 85: 382–6.
    • (1988) Proc Nat Acad Sci USA , vol.85 , pp. 382-386
    • Giniger, E.1    Ptashne, M.2
  • 57
    • 0025996980 scopus 로고
    • Regulated expression of the GAL4 activator gene in yeast provides a sensitive genetic switch for glucose repression
    • Griggs DW, Johnston M. 1991. Regulated expression of the GAL4 activator gene in yeast provides a sensitive genetic switch for glucose repression. Proc Nat Acad Sci USA 88: 8597–601.
    • (1991) Proc Nat Acad Sci USA , vol.88 , pp. 8597-8601
    • Griggs, D.W.1    Johnston, M.2
  • 58
    • 84922435519 scopus 로고    scopus 로고
    • Inflammation-sensitive super enhancers form domains of coordinately regulated enhancer RNAs
    • Hah N, Benner C, Chong LW, Yu RT, et al. 2015. Inflammation-sensitive super enhancers form domains of coordinately regulated enhancer RNAs. Proc Nat Acad Sci USA 112: E297–302.
    • (2015) Proc Nat Acad Sci USA , vol.112 , pp. 302
    • Hah, N.1    Benner, C.2    Chong, L.W.3    Yu, R.T.4
  • 59
    • 0035147033 scopus 로고    scopus 로고
    • Glucocorticoid repression of AP-1 is not mediated by competition for nuclear coactivators
    • De Bosscher K, Vanden Berghe W, Haegeman G. 2001. Glucocorticoid repression of AP-1 is not mediated by competition for nuclear coactivators. Mol Endocrinol 15: 219–27.
    • (2001) Mol Endocrinol , vol.15 , pp. 219-227
    • De Bosscher, K.1    Vanden Berghe, W.2    Haegeman, G.3
  • 60
    • 0034636021 scopus 로고    scopus 로고
    • Glucocorticoids repress NF-kappaB-driven genes by disturbing the interaction of p65 with the basal transcription machinery, irrespective of coactivator levels in the cell
    • De Bosscher K, Vanden Berghe W, Vermeulen L, Plaisance S, et al. 2000. Glucocorticoids repress NF-kappaB-driven genes by disturbing the interaction of p65 with the basal transcription machinery, irrespective of coactivator levels in the cell. Proc Nat Acad Sci USA 97: 3919–24.
    • (2000) Proc Nat Acad Sci USA , vol.97 , pp. 3919-3924
    • De Bosscher, K.1    Vanden Berghe, W.2    Vermeulen, L.3    Plaisance, S.4
  • 61
    • 84885180675 scopus 로고    scopus 로고
    • Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system
    • Cheng AW, Wang H, Yang H, Shi L, et al. 2013. Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Res 23: 1163–71.
    • (2013) Cell Res , vol.23 , pp. 1163-1171
    • Cheng, A.W.1    Wang, H.2    Yang, H.3    Shi, L.4
  • 62
    • 84929666410 scopus 로고    scopus 로고
    • Expanding the biologist's toolkit with CRISPR-Cas9
    • Sternberg SH, Doudna JA. 2015. Expanding the biologist's toolkit with CRISPR-Cas9. Mol Cell 58: 568–74.
    • (2015) Mol Cell , vol.58 , pp. 568-574
    • Sternberg, S.H.1    Doudna, J.A.2
  • 63
    • 84938303841 scopus 로고    scopus 로고
    • IRNA-seq: computational method for genome-wide assessment of acute transcriptional regulation from total RNA-seq data
    • Madsen JG, Schmidt SF, Larsen BD, Loft A, et al. 2015. IRNA-seq: computational method for genome-wide assessment of acute transcriptional regulation from total RNA-seq data. Nucleic Acids Res 43: e40.
    • (2015) Nucleic Acids Res , vol.43
    • Madsen, J.G.1    Schmidt, S.F.2    Larsen, B.D.3    Loft, A.4
  • 64
    • 84937205347 scopus 로고    scopus 로고
    • LobChIP: from cells to sequencing ready ChIP libraries in a single day
    • Wallerman O, Nord H, Bysani M, Borghini L, et al. 2015. LobChIP: from cells to sequencing ready ChIP libraries in a single day. Epigenetics Chromatin 8: 25.
    • (2015) Epigenetics Chromatin , vol.8 , pp. 25
    • Wallerman, O.1    Nord, H.2    Bysani, M.3    Borghini, L.4
  • 65
    • 84907419194 scopus 로고    scopus 로고
    • Immunogenetics. Chromatin state dynamics during blood formation
    • Lara-Astiaso D, Weiner A, Lorenzo-Vivas E, Zaretsky I, et al. 2014. Immunogenetics. Chromatin state dynamics during blood formation. Science 345: 943–9.
    • (2014) Science , vol.345 , pp. 943-949
    • Lara-Astiaso, D.1    Weiner, A.2    Lorenzo-Vivas, E.3    Zaretsky, I.4
  • 66
    • 84946110619 scopus 로고    scopus 로고
    • A high-throughput RNA-seq approach to profile transcriptional responses
    • Moyerbrailean GA, Davis GO, Harvey CT, Watza D, et al. 2015. A high-throughput RNA-seq approach to profile transcriptional responses. Sci Rep 5: 14976.
    • (2015) Sci Rep , vol.5 , pp. 14976
    • Moyerbrailean, G.A.1    Davis, G.O.2    Harvey, C.T.3    Watza, D.4
  • 67
    • 84926670353 scopus 로고    scopus 로고
    • An automated method for efficient, accurate and reproducible construction of RNA-seq libraries
    • Tsompana M, Valiyaparambil S, Bard J, Marzullo B, et al. 2015. An automated method for efficient, accurate and reproducible construction of RNA-seq libraries. BMC Res Notes 8: 124.
    • (2015) BMC Res Notes , vol.8 , pp. 124
    • Tsompana, M.1    Valiyaparambil, S.2    Bard, J.3    Marzullo, B.4
  • 68
    • 84917710517 scopus 로고    scopus 로고
    • Automating ChIP-seq experiments to generate epigenetic profiles on 10, 000 HeLa cells
    • Berguet G, Hendrickx J, Sabatel C, Laczik M, et al. 2014. Automating ChIP-seq experiments to generate epigenetic profiles on 10, 000 HeLa cells. J Vis Exp e52150. doi:10.3791/52150
    • (2014) J Vis Exp
    • Berguet, G.1    Hendrickx, J.2    Sabatel, C.3    Laczik, M.4
  • 69
    • 84926161089 scopus 로고    scopus 로고
    • Identification of nuclear hormone receptor pathways causing insulin resistance by transcriptional and epigenomic analysis
    • Kang S, Tsai LT, Zhou Y, Evertts A, et al. 2015. Identification of nuclear hormone receptor pathways causing insulin resistance by transcriptional and epigenomic analysis. Nature Cell Biol 17: 44–56.
    • (2015) Nature Cell Biol , vol.17 , pp. 44-56
    • Kang, S.1    Tsai, L.T.2    Zhou, Y.3    Evertts, A.4
  • 70
    • 0037059777 scopus 로고    scopus 로고
    • Mapping of early signaling events in tumor necrosis factor-alpha −mediated lipolysis in human fat cells
    • Ryden M, Dicker A, van Harmelen V, Hauner H, et al. 2002. Mapping of early signaling events in tumor necrosis factor-alpha −mediated lipolysis in human fat cells. J Biol Chem 277: 1085–91.
    • (2002) J Biol Chem , vol.277 , pp. 1085-1091
    • Ryden, M.1    Dicker, A.2    van Harmelen, V.3    Hauner, H.4
  • 71
    • 0036789186 scopus 로고    scopus 로고
    • Tumor necrosis factor-alpha stimulates lipolysis in differentiated human adipocytes through activation of extracellular signal-related kinase and elevation of intracellular cAMP
    • Zhang HH, Halbleib M, Ahmad F, Manganiello VC, et al. 2002. Tumor necrosis factor-alpha stimulates lipolysis in differentiated human adipocytes through activation of extracellular signal-related kinase and elevation of intracellular cAMP. Diabetes 51: 2929–35.
    • (2002) Diabetes , vol.51 , pp. 2929-2935
    • Zhang, H.H.1    Halbleib, M.2    Ahmad, F.3    Manganiello, V.C.4
  • 72
    • 42449097289 scopus 로고    scopus 로고
    • Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes
    • Guilherme A, Virbasius JV, Puri V, Czech MP. 2008. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol 9: 367–77.
    • (2008) Nat Rev Mol Cell Biol , vol.9 , pp. 367-377
    • Guilherme, A.1    Virbasius, J.V.2    Puri, V.3    Czech, M.P.4
  • 73
    • 33144463713 scopus 로고    scopus 로고
    • An RNA interference-based screen identifies MAP4K4/NIK as a negative regulator of PPARgamma, adipogenesis, and insulin-responsive hexose transport
    • Tang X, Guilherme A, Chakladar A, Powelka AM, et al. 2006. An RNA interference-based screen identifies MAP4K4/NIK as a negative regulator of PPARgamma, adipogenesis, and insulin-responsive hexose transport. Proc Nat Acad Sci USA 103: 2087–92.
    • (2006) Proc Nat Acad Sci USA , vol.103 , pp. 2087-2092
    • Tang, X.1    Guilherme, A.2    Chakladar, A.3    Powelka, A.M.4
  • 74
    • 0030458404 scopus 로고    scopus 로고
    • Negative regulation of peroxisome proliferator-activated receptor-gamma gene expression contributes to the antiadipogenic effects of tumor necrosis factor-alpha
    • Zhang B, Berger J, Hu E, Szalkowski D, et al. 1996. Negative regulation of peroxisome proliferator-activated receptor-gamma gene expression contributes to the antiadipogenic effects of tumor necrosis factor-alpha. Mol Endocrinol 10: 1457–66.
    • (1996) Mol Endocrinol , vol.10 , pp. 1457-1466
    • Zhang, B.1    Berger, J.2    Hu, E.3    Szalkowski, D.4
  • 75
    • 84873846887 scopus 로고    scopus 로고
    • SMRT-GPS2 corepressor pathway dysregulation coincides with obesity-linked adipocyte inflammation
    • Toubal A, Clement K, Fan R, Ancel P, et al. 2013. SMRT-GPS2 corepressor pathway dysregulation coincides with obesity-linked adipocyte inflammation. J Clinical Invest 123: 362–79.
    • (2013) J Clinical Invest , vol.123 , pp. 362-379
    • Toubal, A.1    Clement, K.2    Fan, R.3    Ancel, P.4
  • 76
    • 84885859572 scopus 로고    scopus 로고
    • Analysis of in vitro insulin-resistance models and their physiological relevance to in vivo diet-induced adipose insulin resistance
    • Lo KA, Labadorf A, Kennedy NJ, Han MS, et al. 2013. Analysis of in vitro insulin-resistance models and their physiological relevance to in vivo diet-induced adipose insulin resistance. Cell Reports 5: 259–70.
    • (2013) Cell Reports , vol.5 , pp. 259-270
    • Lo, K.A.1    Labadorf, A.2    Kennedy, N.J.3    Han, M.S.4
  • 77
    • 34249307295 scopus 로고    scopus 로고
    • Regulation of vascular smooth muscle cell differentiation
    • Rzucidlo EM, Martin KA, Powell RJ. 2007. Regulation of vascular smooth muscle cell differentiation. J Vascular Surg 45: A25–32.
    • (2007) J Vascular Surg , vol.45 , pp. 25-32
    • Rzucidlo, E.M.1    Martin, K.A.2    Powell, R.J.3
  • 79
    • 84902302671 scopus 로고    scopus 로고
    • Transcription factor cooperativity in early adipogenic hotspots and super-enhancers
    • Siersbaek R, Rabiee A, Nielsen R, Sidoli S, et al. 2014. Transcription factor cooperativity in early adipogenic hotspots and super-enhancers. Cell reports 7: 1443–55.
    • (2014) Cell reports , vol.7 , pp. 1443-1455
    • Siersbaek, R.1    Rabiee, A.2    Nielsen, R.3    Sidoli, S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.