메뉴 건너뛰기




Volumn 38, Issue 23, 2017, Pages 6554-6581

A central-point-enhanced convolutional neural network for high-resolution remote-sensing image classification

Author keywords

[No Author keywords available]

Indexed keywords

CONVOLUTION; DEEP LEARNING; IMAGE ENHANCEMENT; MAXIMUM LIKELIHOOD; NEAREST NEIGHBOR SEARCH; NEURAL NETWORKS; PIXELS; REMOTE SENSING;

EID: 85048958895     PISSN: 01431161     EISSN: 13665901     Source Type: Journal    
DOI: 10.1080/01431161.2017.1362131     Document Type: Article
Times cited : (38)

References (36)
  • 2
    • 73249139477 scopus 로고    scopus 로고
    • Object Based Image Analysis for Remote Sensing
    • Blaschke, T. 2010. “Object Based Image Analysis for Remote Sensing.” Isprs Journal of Photogrammetry and Remote Sensing 65 (1): 2–16. doi:10.1016/j.isprsjprs.2009.06.004.
    • (2010) Isprs Journal of Photogrammetry and Remote Sensing , vol.65 , Issue.1 , pp. 2-16
    • Blaschke, T.1
  • 5
    • 84992303973 scopus 로고    scopus 로고
    • Target Classification Using the Deep Convolutional Networks for SAR Images
    • Chen, S. Z., H. P. Wang, F. Xu, and Y. Q. Jin. 2016. “Target Classification Using the Deep Convolutional Networks for SAR Images.” Ieee Transactions on Geoscience and Remote Sensing 54 (8): 4806–4817. doi:10.1109/Tgrs.2016.2551720.
    • (2016) Ieee Transactions on Geoscience and Remote Sensing , vol.54 , Issue.8 , pp. 4806-4817
    • Chen, S.Z.1    Wang, H.P.2    Xu, F.3    Jin, Y.Q.4
  • 6
    • 84901322878 scopus 로고    scopus 로고
    • Vehicle Detection in Satellite Images by Hybrid Deep Convolutional Neural Networks
    • Chen, X. Y., S. M. Xiang, C. L. Liu, and C. H. Pan. 2014a. “Vehicle Detection in Satellite Images by Hybrid Deep Convolutional Neural Networks.” Ieee Geoscience and Remote Sensing Letters 11 (10): 1797–1801. doi:10.1109/Lgrs.2014.2309695.
    • (2014) Ieee Geoscience and Remote Sensing Letters , vol.11 , Issue.10 , pp. 1797-1801
    • Chen, X.Y.1    Xiang, S.M.2    Liu, C.L.3    Pan, C.H.4
  • 8
    • 84947126879 scopus 로고    scopus 로고
    • High-Resolution SAR Image Classification via Deep Convolutional Autoencoders
    • Geng, J., J. C. Fan, H. Y. Wang, X. R. Ma, B. M. Li, and F. L. Chen. 2015. “High-Resolution SAR Image Classification via Deep Convolutional Autoencoders.” Ieee Geoscience and Remote Sensing Letters 12 (11): 2351–2355. doi:10.1109/Lgrs.2015.2478256.
    • (2015) Ieee Geoscience and Remote Sensing Letters , vol.12 , Issue.11 , pp. 2351-2355
    • Geng, J.1    Fan, J.C.2    Wang, H.Y.3    Ma, X.R.4    Li, B.M.5    Chen, F.L.6
  • 9
    • 33745805403 scopus 로고    scopus 로고
    • A Fast Learning Algorithm for Deep Belief Nets
    • Hinton, G. E., S. Osindero, and Y. W. Teh. 2006. “A Fast Learning Algorithm for Deep Belief Nets.” Neural Computation 18 (7): 1527–1554. doi:10.1162/neco.2006.18.7.1527.
    • (2006) Neural Computation , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.W.3
  • 10
    • 84939141053 scopus 로고    scopus 로고
    • Deep Convolutional Neural Networks for Hyperspectral Image Classification
    • Hu, W., Y. Y. Huang, L. Wei, F. Zhang, and H. C. Li. 2015. “Deep Convolutional Neural Networks for Hyperspectral Image Classification.” Journal of Sensors 2015: 1–12. doi:10.1155/2015/258619.
    • (2015) Journal of Sensors , vol.2015 , pp. 1-12
    • Hu, W.1    Huang, Y.Y.2    Wei, L.3    Zhang, F.4    Li, H.C.5
  • 12
    • 33645410496 scopus 로고
    • Receptive Fields Binocular Interaction and Functional Architecture in the Cat Visual Cortex
    • Huble, D. H., and T. N. Wiesel. 1962. “Receptive Fields Binocular Interaction and Functional Architecture in the Cat Visual Cortex.” The Journal of Physiology 160 (1): 106–154. doi:10.1113/jphysiol.1962.sp006837.
    • (1962) The Journal of Physiology , vol.160 , Issue.1 , pp. 106-154
    • Huble, D.H.1    Wiesel, T.N.2
  • 13
    • 84963532632 scopus 로고    scopus 로고
    • Classification of Human Actions Using Pose-Based Features and Stacked Auto Encoder
    • Ijjina, E. P., and C. K. Mohan. 2016. “Classification of Human Actions Using Pose-Based Features and Stacked Auto Encoder.” Pattern Recognition Letters 83: 268–277. doi:10.1016/j. patrec.2016.03.021.
    • (2016) Pattern Recognition Letters , vol.83 , pp. 268-277
    • Ijjina, E.P.1    Mohan, C.K.2
  • 14
    • 84879561232 scopus 로고    scopus 로고
    • Classifying a High Resolution Image of an Urban Area Using Super-Object Information
    • Johnson, B., and Z. X. Xie. 2013. “Classifying a High Resolution Image of an Urban Area Using Super-Object Information.” Isprs Journal of Photogrammetry and Remote Sensing 83: 40–49. doi:10.1016/j.isprsjprs.2013.05.008.
    • (2013) Isprs Journal of Photogrammetry and Remote Sensing , vol.83 , pp. 40-49
    • Johnson, B.1    Xie, Z.X.2
  • 17
    • 79955383550 scopus 로고    scopus 로고
    • Assessing Object-Based Classification: Advantages and Limitations
    • Liu, D. S., and F. Xia. 2010. “Assessing Object-Based Classification: Advantages and Limitations.” Remote Sensing Letters 1 (4): 187–194. doi:10.1080/01431161003743173.
    • (2010) Remote Sensing Letters , vol.1 , Issue.4 , pp. 187-194
    • Liu, D.S.1    Xia, F.2
  • 18
    • 84937140953 scopus 로고    scopus 로고
    • Hyperspectral Classification via Deep Networks and Superpixel Segmentation
    • Liu, Y. Z., G. Cao, Q. S. Sun, and M. Siegel. 2015. “Hyperspectral Classification via Deep Networks and Superpixel Segmentation.” International Journal of Remote Sensing 36 (13): 3459–3482. doi:10.1080/01431161.2015.1055607.
    • (2015) International Journal of Remote Sensing , vol.36 , Issue.13 , pp. 3459-3482
    • Liu, Y.Z.1    Cao, G.2    Sun, Q.S.3    Siegel, M.4
  • 20
    • 84969338344 scopus 로고    scopus 로고
    • Classification of Hyperspectral Remote Sensing Image Using Hierarchical Local-Receptive-Field-Based Extreme Learning Machine
    • Lv, Q., X. Niu, Y. Dou, J. Q. Xu, and Y. W. Lei. 2016. “Classification of Hyperspectral Remote Sensing Image Using Hierarchical Local-Receptive-Field-Based Extreme Learning Machine.” Ieee Geoscience and Remote Sensing Letters 13 (3): 434–438. doi:10.1109/Lgrs.2016.2517178.
    • (2016) Ieee Geoscience and Remote Sensing Letters , vol.13 , Issue.3 , pp. 434-438
    • Lv, Q.1    Niu, X.2    Dou, Y.3    Xu, J.Q.4    Lei, Y.W.5
  • 22
    • 84949921276 scopus 로고    scopus 로고
    • Deep Learning Earth Observation Classification Using ImageNet Pretrained Networks
    • Marmanis, D., M. Datcu, T. Esch, and U. Stilla. 2016. “Deep Learning Earth Observation Classification Using ImageNet Pretrained Networks.” Ieee Geoscience and Remote Sensing Letters 13 (1): 105– 109. doi:10.1109/Lgrs.2015.2499239.
    • (2016) Ieee Geoscience and Remote Sensing Letters , vol.13 , Issue.1 , pp. 105-109
    • Marmanis, D.1    Datcu, M.2    Esch, T.3    Stilla, U.4
  • 23
    • 84978388572 scopus 로고    scopus 로고
    • Using Convolutional Features and a Sparse Autoencoder for Land-Use Scene Classification
    • Othmana, E., Y. Bazi, N. Alajlan, H. Alhichri, and F. Melgani. 2016. “Using Convolutional Features and a Sparse Autoencoder for Land-Use Scene Classification.” International Journal of Remote Sensing 37 (10): 2149–2167. doi:10.1080/01431161.2016.1171928.
    • (2016) International Journal of Remote Sensing , vol.37 , Issue.10 , pp. 2149-2167
    • Othmana, E.1    Bazi, Y.2    Alajlan, N.3    Alhichri, H.4    Melgani, F.5
  • 24
    • 78649797191 scopus 로고    scopus 로고
    • A Variable Precision Rough Set Approach to the Remote Sensing Land Use/Cover Classification
    • Pan, X., S. Q. Zhang, H. Q. Zhang, X. D. Na, and X. F. Li. 2010. “A Variable Precision Rough Set Approach to the Remote Sensing Land Use/Cover Classification.” Computers & Geosciences 36 (12): 1466–1473. doi:10.1016/j.cageo.2009.11.010.
    • (2010) Computers & Geosciences , vol.36 , Issue.12 , pp. 1466-1473
    • Pan, X.1    Zhang, S.Q.2    Zhang, H.Q.3    Na, X.D.4    Li, X.F.5
  • 25
    • 84940417789 scopus 로고    scopus 로고
    • Unsupervised Deep Feature Extraction for Remote Sensing Image Classification
    • Romero, A., C. Gatta, and G. Camps-Valls. 2016. “Unsupervised Deep Feature Extraction for Remote Sensing Image Classification.” Ieee Transactions on Geoscience and Remote Sensing 54 (3): 1349– 1362. doi:10.1109/Tgrs.2015.2478379.
    • (2016) Ieee Transactions on Geoscience and Remote Sensing , vol.54 , Issue.3 , pp. 1349-1362
    • Romero, A.1    Gatta, C.2    Camps-Valls, G.3
  • 29
    • 79957460116 scopus 로고    scopus 로고
    • Using Active Learning to Adapt Remote Sensing Image Classifiers
    • Tuia, D., E. Pasolli, and W. J. Emery. 2011. “Using Active Learning to Adapt Remote Sensing Image Classifiers.” Remote Sensing of Environment 115 (9): 2232–2242. doi:10.1016/j.rse.2011.04.022.
    • (2011) Remote Sensing of Environment , vol.115 , Issue.9 , pp. 2232-2242
    • Tuia, D.1    Pasolli, E.2    Emery, W.J.3
  • 30
    • 84934294672 scopus 로고    scopus 로고
    • Road Network Extraction: A Neural-Dynamic Framework Based on Deep Learning and a Finite State Machine
    • Wang, J., J. W. Song, M. Q. Chen, and Z. Yang. 2015. “Road Network Extraction: A Neural-Dynamic Framework Based on Deep Learning and a Finite State Machine.” International Journal of Remote Sensing 36 (12): 3144–3169. doi:10.1080/01431161.2015.1054049.
    • (2015) International Journal of Remote Sensing , vol.36 , Issue.12 , pp. 3144-3169
    • Wang, J.1    Song, J.W.2    Chen, M.Q.3    Yang, Z.4
  • 31
    • 84949650401 scopus 로고    scopus 로고
    • An Efficient and Effective Convolutional Auto-Encoder Extreme Learning Machine Network for 3d Feature Learning
    • Wang, Y. Q., Z. G. Xie, K. Xu, Y. Dou, and Y. W. Lei. 2016. “An Efficient and Effective Convolutional Auto-Encoder Extreme Learning Machine Network for 3d Feature Learning.” Neurocomputing 174: 988–998. doi:10.1016/j.neucom.2015.10.035.
    • (2016) Neurocomputing , vol.174 , pp. 988-998
    • Wang, Y.Q.1    Xie, Z.G.2    Xu, K.3    Dou, Y.4    Lei, Y.W.5
  • 33
    • 84976347344 scopus 로고    scopus 로고
    • A Deep Learning Framework for Hyperspectral Image Classification Using Spatial Pyramid Pooling
    • Yue, J., S. J. Mao, and M. Li. 2016. “A Deep Learning Framework for Hyperspectral Image Classification Using Spatial Pyramid Pooling.” Remote Sensing Letters 7 (9): 875–884. doi:10.1080/2150704X.2016.1193793.
    • (2016) Remote Sensing Letters , vol.7 , Issue.9 , pp. 875-884
    • Yue, J.1    Mao, S.J.2    Li, M.3
  • 34
    • 84930423638 scopus 로고    scopus 로고
    • Spectral-Spatial Classification of Hyperspectral Images Using Deep Convolutional Neural Networks
    • Yue, J., W. Z. Zhao, S. J. Mao, and H. Liu. 2015. “Spectral-Spatial Classification of Hyperspectral Images Using Deep Convolutional Neural Networks.” Remote Sensing Letters 6 (6): 468–477. doi:10.1080/2150704X.2015.1047045.
    • (2015) Remote Sensing Letters , vol.6 , Issue.6 , pp. 468-477
    • Yue, J.1    Zhao, W.Z.2    Mao, S.J.3    Liu, H.4
  • 35
    • 84956620231 scopus 로고    scopus 로고
    • Learning Multiscale and Deep Representations for Classifying Remotely Sensed Imagery
    • Zhao, W. Z., and S. H. Du. 2016a. “Learning Multiscale and Deep Representations for Classifying Remotely Sensed Imagery.” Isprs Journal of Photogrammetry and Remote Sensing 113: 155–165. doi:10.1016/j.isprsjprs.2016.01.004.
    • (2016) Isprs Journal of Photogrammetry and Remote Sensing , vol.113 , pp. 155-165
    • Zhao, W.Z.1    Du, S.H.2
  • 36
    • 84979492674 scopus 로고    scopus 로고
    • Spectral-Spatial Feature Extraction for Hyperspectral Image Classification: A Dimension Reduction and Deep Learning Approach
    • Zhao, W. Z., and S. H. Du. 2016b. “Spectral-Spatial Feature Extraction for Hyperspectral Image Classification: A Dimension Reduction and Deep Learning Approach.” Ieee Transactions on Geoscience and Remote Sensing 54 (8): 4544–4554. doi:10.1109/Tgrs.2016.2543748.
    • (2016) Ieee Transactions on Geoscience and Remote Sensing , vol.54 , Issue.8 , pp. 4544-4554
    • Zhao, W.Z.1    Du, S.H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.