-
1
-
-
84896851032
-
Intestinal epithelial cells: Regulators of barrier function and immune homeostasis
-
Peterson LW, Artis D (2014) Intestinal epithelial cells: Regulators of barrier function and immune homeostasis. Nat Rev Immunol 14:141–153.
-
(2014)
Nat Rev Immunol
, vol.14
, pp. 141-153
-
-
Peterson, L.W.1
Artis, D.2
-
2
-
-
0015850547
-
A new cell type (tuft cell) in the gastrointestinal mucosa of the rat. A transmission and scanning electron microscopic study
-
Isomäki AM (1973) A new cell type (tuft cell) in the gastrointestinal mucosa of the rat. A transmission and scanning electron microscopic study. Acta Pathol Microbiol Scand [A] 240(Suppl):1–35.
-
(1973)
Acta Pathol Microbiol Scand [A]
, vol.240
, pp. 1-35
-
-
Isomäki, A.M.1
-
3
-
-
0016187444
-
Caveolated cells” characterized by deep surface invaginations and abundant filaments in mouse gastro-intestinal epithelia
-
Nabeyama A, Leblond CP (1974) “Caveolated cells” characterized by deep surface invaginations and abundant filaments in mouse gastro-intestinal epithelia. Am J Anat 140:147–165.
-
(1974)
Am J Anat
, vol.140
, pp. 147-165
-
-
Nabeyama, A.1
Leblond, C.P.2
-
4
-
-
0026472468
-
Identification of brush cells in the alimentary and respiratory system by antibodies to villin and fimbrin
-
Höfer D, Drenckhahn D (1992) Identification of brush cells in the alimentary and respiratory system by antibodies to villin and fimbrin. Histochemistry 98:237–242.
-
(1992)
Histochemistry
, vol.98
, pp. 237-242
-
-
Höfer, D.1
Drenckhahn, D.2
-
5
-
-
0014315274
-
Fibrillovesicular cells in the fundic glands of the canine stomach: Evidence for a new cell type
-
Hammond JB, Ladeur L (1968) Fibrillovesicular cells in the fundic glands of the canine stomach: Evidence for a new cell type. Anat Rec 161:393–411.
-
(1968)
Anat Rec
, vol.161
, pp. 393-411
-
-
Hammond, J.B.1
Ladeur, L.2
-
6
-
-
84954286513
-
Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit
-
von Moltke J, Ji M, Liang HE, Locksley RM (2016) Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit. Nature 529:221–225.
-
(2016)
Nature
, vol.529
, pp. 221-225
-
-
Von Moltke, J.1
Ji, M.2
Liang, H.E.3
Locksley, R.M.4
-
7
-
-
84958767810
-
Tuft cells, taste-chemosensory cells, orchestrate parasite type 2 immunity in the gut
-
Howitt MR, et al. (2016) Tuft cells, taste-chemosensory cells, orchestrate parasite type 2 immunity in the gut. Science 351:1329–1333.
-
(2016)
Science
, vol.351
, pp. 1329-1333
-
-
Howitt, M.R.1
-
8
-
-
84954561117
-
Intestinal epithelial tuft cells initiate type 2 mucosal immunity to helminth parasites
-
Gerbe F, et al. (2016) Intestinal epithelial tuft cells initiate type 2 mucosal immunity to helminth parasites. Nature 529:226–230.
-
(2016)
Nature
, vol.529
, pp. 226-230
-
-
Gerbe, F.1
-
9
-
-
0032435564
-
From cytoskeleton to polarity and chemoreception in the gut epithelium
-
Höfer D, Jöns T, Kraemer J, Drenckhahn D (1998) From cytoskeleton to polarity and chemoreception in the gut epithelium. Ann N Y Acad Sci 859:75–84.
-
(1998)
Ann N Y Acad Sci
, vol.859
, pp. 75-84
-
-
Höfer, D.1
Jöns, T.2
Kraemer, J.3
Drenckhahn, D.4
-
10
-
-
33845865790
-
Taste-signaling proteins are coexpressed in solitary intestinal epithelial cells
-
Bezençon C, le Coutre J, Damak S (2007) Taste-signaling proteins are coexpressed in solitary intestinal epithelial cells. Chem Senses 32:41–49.
-
(2007)
Chem Senses
, vol.32
, pp. 41-49
-
-
Bezençon, C.1
Le Coutre, J.2
Damak, S.3
-
11
-
-
48249128056
-
Murine intestinal cells expressing Trpm5 are mostly brush cells and express markers of neuronal and inflammatory cells
-
Bezençon C, et al. (2008) Murine intestinal cells expressing Trpm5 are mostly brush cells and express markers of neuronal and inflammatory cells. J Comp Neurol 509: 514–525.
-
(2008)
J Comp Neurol
, vol.509
, pp. 514-525
-
-
Bezençon, C.1
-
12
-
-
67650948294
-
Release of endogenous opioids from duodenal enteroendocrine cells requires Trpm5
-
e2
-
Kokrashvili Z, et al. (2009) Release of endogenous opioids from duodenal enteroendocrine cells requires Trpm5. Gastroenterology 137:598–606.e2.
-
(2009)
Gastroenterology
, vol.137
, pp. 598-606
-
-
Kokrashvili, Z.1
-
13
-
-
0029908546
-
Taste receptor-like cells in the rat gut identified by expression of alpha-gustducin
-
Höfer D, Püschel B, Drenckhahn D (1996) Taste receptor-like cells in the rat gut identified by expression of alpha-gustducin. Proc Natl Acad Sci USA 93:6631–6634.
-
(1996)
Proc Natl Acad Sci USA
, vol.93
, pp. 6631-6634
-
-
Höfer, D.1
Püschel, B.2
Drenckhahn, D.3
-
14
-
-
0023959427
-
Nippostrongylus brasiliensis: Histochemical changes in the composition of mucins in goblet cells during infection in rats
-
Koninkx JF, Mirck MH, Hendriks HG, Mouwen JM, van Dijk JE (1988) Nippostrongylus brasiliensis: Histochemical changes in the composition of mucins in goblet cells during infection in rats. Exp Parasitol 65:84–90.
-
(1988)
Exp Parasitol
, vol.65
, pp. 84-90
-
-
Koninkx, J.F.1
Mirck, M.H.2
Hendriks, H.G.3
Mouwen, J.M.4
Van Dijk, J.E.5
-
15
-
-
0018353908
-
Immune regulation of intestinal goblet cell differentiation. Specific induction of nonspecific protection against helminths?
-
Miller HR, Nawa Y (1979) Immune regulation of intestinal goblet cell differentiation. Specific induction of nonspecific protection against helminths? Nouv Rev Fr Hematol 21:31–45.
-
(1979)
Nouv Rev Fr Hematol
, vol.21
, pp. 31-45
-
-
Miller, H.R.1
Nawa, Y.2
-
16
-
-
79960843030
-
Skn-1a (Pou2f3) specifies taste receptor cell lineage
-
Matsumoto I, Ohmoto M, Narukawa M, Yoshihara Y, Abe K (2011) Skn-1a (Pou2f3) specifies taste receptor cell lineage. Nat Neurosci 14:685–687.
-
(2011)
Nat Neurosci
, vol.14
, pp. 685-687
-
-
Matsumoto, I.1
Ohmoto, M.2
Narukawa, M.3
Yoshihara, Y.4
Abe, K.5
-
17
-
-
33645888708
-
Identification of an interleukin (IL)-25-dependent cell population that provides IL-4, IL-5, and IL-13 at the onset of helminth expulsion
-
Fallon PG, et al. (2006) Identification of an interleukin (IL)-25-dependent cell population that provides IL-4, IL-5, and IL-13 at the onset of helminth expulsion. J Exp Med 203:1105–1116.
-
(2006)
J Exp Med
, vol.203
, pp. 1105-1116
-
-
Fallon, P.G.1
-
18
-
-
18244405108
-
IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo
-
Fort MM, et al. (2001) IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo. Immunity 15:985–995.
-
(2001)
Immunity
, vol.15
, pp. 985-995
-
-
Fort, M.M.1
-
19
-
-
0036830145
-
A transient receptor potential channel expressed in taste receptor cells
-
Pérez CA, et al. (2002) A transient receptor potential channel expressed in taste receptor cells. Nat Neurosci 5:1169–1176.
-
(2002)
Nat Neurosci
, vol.5
, pp. 1169-1176
-
-
Pérez, C.A.1
-
20
-
-
0037423367
-
Coding of sweet, bitter, and umami tastes: Different receptor cells sharing similar signaling pathways
-
Zhang Y, et al. (2003) Coding of sweet, bitter, and umami tastes: Different receptor cells sharing similar signaling pathways. Cell 112:293–301.
-
(2003)
Cell
, vol.112
, pp. 293-301
-
-
Zhang, Y.1
-
21
-
-
2442649129
-
Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors
-
He W, et al. (2004) Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors. Nature 429:188–193.
-
(2004)
Nature
, vol.429
, pp. 188-193
-
-
He, W.1
-
22
-
-
0024110072
-
Metabolic studies of the protozoan parasite, Crithidia luciliae, using proton nuclear magnetic resonance spectroscopy
-
Gilroy FV, Edwards MR, Norton RS, O’Sullivan WJ (1988) Metabolic studies of the protozoan parasite, Crithidia luciliae, using proton nuclear magnetic resonance spectroscopy. Mol Biochem Parasitol 31:107–115.
-
(1988)
Mol Biochem Parasitol
, vol.31
, pp. 107-115
-
-
Gilroy, F.V.1
Edwards, M.R.2
Norton, R.S.3
O’Sullivan, W.J.4
-
23
-
-
84920621547
-
Gut microbiota-produced succinate promotes C. Difficile infection after antibiotic treatment or motility disturbance
-
Ferreyra JA, et al. (2014) Gut microbiota-produced succinate promotes C. difficile infection after antibiotic treatment or motility disturbance. Cell Host Microbe 16: 770–777.
-
(2014)
Cell Host Microbe
, vol.16
, pp. 770-777
-
-
Ferreyra, J.A.1
-
24
-
-
0036351880
-
Succinate accumulation in pig large intestine during antibiotic-associated diarrhea and the constitution of succinate-producing flora
-
Tsukahara T, Ushida K (2002) Succinate accumulation in pig large intestine during antibiotic-associated diarrhea and the constitution of succinate-producing flora. J Gen Appl Microbiol 48:143–154.
-
(2002)
J Gen Appl Microbiol
, vol.48
, pp. 143-154
-
-
Tsukahara, T.1
Ushida, K.2
-
25
-
-
34447095853
-
Succinate is a paracrine signal for liver damage
-
Correa PR, et al. (2007) Succinate is a paracrine signal for liver damage. J Hepatol 47: 262–269.
-
(2007)
J Hepatol
, vol.47
, pp. 262-269
-
-
Correa, P.R.1
-
26
-
-
46749087465
-
Succinate receptor GPR91 provides a direct link between high glucose levels and renin release in murine and rabbit kidney
-
Toma I, et al. (2008) Succinate receptor GPR91 provides a direct link between high glucose levels and renin release in murine and rabbit kidney. J Clin Invest 118: 2526–2534.
-
(2008)
J Clin Invest
, vol.118
, pp. 2526-2534
-
-
Toma, I.1
-
27
-
-
84911466192
-
Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS
-
Chouchani ET, et al. (2014) Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 515:431–435.
-
(2014)
Nature
, vol.515
, pp. 431-435
-
-
Chouchani, E.T.1
-
28
-
-
54549089749
-
Triggering the succinate receptor GPR91 on dendritic cells enhances immunity
-
Rubic T, et al. (2008) Triggering the succinate receptor GPR91 on dendritic cells enhances immunity. Nat Immunol 9:1261–1269.
-
(2008)
Nat Immunol
, vol.9
, pp. 1261-1269
-
-
Rubic, T.1
-
29
-
-
0015175267
-
Biochemical observations on adult Nippostrongylus brasiliensis
-
Saz DK, Bonner TP, Karlin M, Saz HJ (1971) Biochemical observations on adult Nippostrongylus brasiliensis. J Parasitol 57:1159–1162.
-
(1971)
J Parasitol
, vol.57
, pp. 1159-1162
-
-
Saz, D.K.1
Bonner, T.P.2
Karlin, M.3
Saz, H.J.4
-
30
-
-
85034439213
-
A single-cell survey of the small intestinal epithelium
-
Haber AL, et al. (2017) A single-cell survey of the small intestinal epithelium. Nature 551:333–339.
-
(2017)
Nature
, vol.551
, pp. 333-339
-
-
Haber, A.L.1
-
31
-
-
35548974423
-
Identification of stem cells in small intestine and colon by marker gene Lgr5
-
Barker N, et al. (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449:1003–1007.
-
(2007)
Nature
, vol.449
, pp. 1003-1007
-
-
Barker, N.1
-
32
-
-
70849127062
-
DCAMKL-1 expression identifies tuft cells rather than stem cells in the adult mouse intestinal epithelium
-
author reply 2180–2181
-
Gerbe F, Brulin B, Makrini L, Legraverend C, Jay P (2009) DCAMKL-1 expression identifies tuft cells rather than stem cells in the adult mouse intestinal epithelium. Gastroenterology 137:2179–2180; author reply 2180–2181.
-
(2009)
Gastroenterology
, vol.137
, pp. 2179-2180
-
-
Gerbe, F.1
Brulin, B.2
Makrini, L.3
Legraverend, C.4
Jay, P.5
-
33
-
-
77951817855
-
Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity
-
Neill DR, et al. (2010) Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 464:1367–1370.
-
(2010)
Nature
, vol.464
, pp. 1367-1370
-
-
Neill, D.R.1
-
34
-
-
0029957779
-
Transduction of bitter and sweet taste by gustducin
-
Wong GT, Gannon KS, Margolskee RF (1996) Transduction of bitter and sweet taste by gustducin. Nature 381:796–800.
-
(1996)
Nature
, vol.381
, pp. 796-800
-
-
Wong, G.T.1
Gannon, K.S.2
Margolskee, R.F.3
-
35
-
-
33645242533
-
Trpm5 null mice respond to bitter, sweet, and umami compounds
-
Damak S, et al. (2006) Trpm5 null mice respond to bitter, sweet, and umami compounds. Chem Senses 31:253–264.
-
(2006)
Chem Senses
, vol.31
, pp. 253-264
-
-
Damak, S.1
-
36
-
-
84987643693
-
GPR91 deficiency exacerbates allergic contact dermatitis while reducing arthritic disease in mice
-
Rubic-Schneider T, et al. (2017) GPR91 deficiency exacerbates allergic contact dermatitis while reducing arthritic disease in mice. Allergy 72:444–452.
-
(2017)
Allergy
, vol.72
, pp. 444-452
-
-
Rubic-Schneider, T.1
-
37
-
-
53549118277
-
The succinate receptor GPR91 in neurons has a major role in retinal angiogenesis
-
Sapieha P, et al. (2008) The succinate receptor GPR91 in neurons has a major role in retinal angiogenesis. Nat Med 14:1067–1076.
-
(2008)
Nat Med
, vol.14
, pp. 1067-1076
-
-
Sapieha, P.1
-
38
-
-
84928688491
-
Succinate causes pathological cardiomyocyte hypertrophy through GPR91 activation
-
Aguiar CJ, et al. (2014) Succinate causes pathological cardiomyocyte hypertrophy through GPR91 activation. Cell Commun Signal 12:78.
-
(2014)
Cell Commun Signal
, vol.12
, pp. 78
-
-
Aguiar, C.J.1
-
39
-
-
84936985287
-
Succinate causes α-SMA production through GPR91 activation in hepatic stellate cells
-
Li YH, Woo SH, Choi DH, Cho EH (2015) Succinate causes α-SMA production through GPR91 activation in hepatic stellate cells. Biochem Biophys Res Commun 463:853–858.
-
(2015)
Biochem Biophys Res Commun
, vol.463
, pp. 853-858
-
-
Li, Y.H.1
Woo, S.H.2
Choi, D.H.3
Cho, E.H.4
-
40
-
-
84876285741
-
Succinate is an inflammatory signal that induces IL-1β through HIF-1α
-
Tannahill GM, et al. (2013) Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 496:238–242.
-
(2013)
Nature
, vol.496
, pp. 238-242
-
-
Tannahill, G.M.1
-
41
-
-
84992327147
-
Microbiota-produced succinate improves glucose homeostasis via intestinal gluconeogenesis
-
De Vadder F, et al. (2016) Microbiota-produced succinate improves glucose homeostasis via intestinal gluconeogenesis. Cell Metab 24:151–157.
-
(2016)
Cell Metab
, vol.24
, pp. 151-157
-
-
De Vadder, F.1
-
42
-
-
80054925355
-
Eating for two: How metabolism establishes interspecies interactions in the gut
-
Fischbach MA, Sonnenburg JL (2011) Eating for two: How metabolism establishes interspecies interactions in the gut. Cell Host Microbe 10:336–347.
-
(2011)
Cell Host Microbe
, vol.10
, pp. 336-347
-
-
Fischbach, M.A.1
Sonnenburg, J.L.2
-
43
-
-
0041806520
-
Solitary chemoreceptor cells in the nasal cavity serve as sentinels of respiration
-
Finger TE, et al. (2003) Solitary chemoreceptor cells in the nasal cavity serve as sentinels of respiration. Proc Natl Acad Sci USA 100:8981–8986.
-
(2003)
Proc Natl Acad Sci USA
, vol.100
, pp. 8981-8986
-
-
Finger, T.E.1
-
44
-
-
0000878507
-
Electron microscopy of the tracheal ciliated mucosa in rat
-
Rhodin J, Dalhamn T (1956) Electron microscopy of the tracheal ciliated mucosa in rat. Z Zellforsch Mikrosk Anat 44:345–412.
-
(1956)
Z Zellforsch Mikrosk Anat
, vol.44
, pp. 345-412
-
-
Rhodin, J.1
Dalhamn, T.2
-
45
-
-
77649260272
-
Nasal chemosensory cells use bitter taste signaling to detect irritants and bacterial signals
-
Tizzano M, et al. (2010) Nasal chemosensory cells use bitter taste signaling to detect irritants and bacterial signals. Proc Natl Acad Sci USA 107:3210–3215.
-
(2010)
Proc Natl Acad Sci USA
, vol.107
, pp. 3210-3215
-
-
Tizzano, M.1
-
46
-
-
84868610108
-
T2R38 taste receptor polymorphisms underlie susceptibility to upper respiratory infection
-
Lee RJ, et al. (2012) T2R38 taste receptor polymorphisms underlie susceptibility to upper respiratory infection. J Clin Invest 122:4145–4159.
-
(2012)
J Clin Invest
, vol.122
, pp. 4145-4159
-
-
Lee, R.J.1
-
47
-
-
84893403953
-
High-fat diet reduces the formation of butyrate, but increases succinate, inflammation, liver fat and cholesterol in rats, while dietary fibre counteracts these effects
-
Jakobsdottir G, Xu J, Molin G, Ahrné S, Nyman M (2013) High-fat diet reduces the formation of butyrate, but increases succinate, inflammation, liver fat and cholesterol in rats, while dietary fibre counteracts these effects. PLoS One 8:e80476.
-
(2013)
PLoS One
, vol.8
-
-
Jakobsdottir, G.1
Xu, J.2
Molin, G.3
Ahrné, S.4
Nyman, M.5
-
48
-
-
84888346690
-
Cutting edge: IL-25 elicits innate lymphoid type 2 and type II NKT cells that regulate obesity in mice
-
Hams E, Locksley RM, McKenzie AN, Fallon PG (2013) Cutting edge: IL-25 elicits innate lymphoid type 2 and type II NKT cells that regulate obesity in mice. J Immunol 191: 5349–5353.
-
(2013)
J Immunol
, vol.191
, pp. 5349-5353
-
-
Hams, E.1
Locksley, R.M.2
McKenzie, A.N.3
Fallon, P.G.4
-
49
-
-
84876468494
-
Complex interactions among diet, gastrointestinal transit, and gut microbiota in humanized mice
-
Kashyap PC, et al. (2013) Complex interactions among diet, gastrointestinal transit, and gut microbiota in humanized mice. Gastroenterology 144:967–977.
-
(2013)
Gastroenterology
, vol.144
, pp. 967-977
-
-
Kashyap, P.C.1
-
50
-
-
84864345639
-
New paradigms in type 2 immunity
-
Pulendran B, Artis D (2012) New paradigms in type 2 immunity. Science 337:431–435.
-
(2012)
Science
, vol.337
, pp. 431-435
-
-
Pulendran, B.1
Artis, D.2
-
51
-
-
84992514307
-
Microbiota-regulated IL-25 increases eosinophil number to provide protection during Clostridium difficile infection
-
Buonomo EL, et al. (2016) Microbiota-regulated IL-25 increases eosinophil number to provide protection during Clostridium difficile infection. Cell Rep 16:432–443.
-
(2016)
Cell Rep
, vol.16
, pp. 432-443
-
-
Buonomo, E.L.1
|