메뉴 건너뛰기




Volumn 27, Issue 7, 2018, Pages 3432-3445

Learning Temporal Dynamics for Video Super-Resolution: A Deep Learning Approach

Author keywords

deep learning; deep neural networks; Super resolution

Indexed keywords

ADAPTIVE OPTICS; ADAPTIVE SYSTEMS; ALIGNMENT; DEEP LEARNING; DEEP NEURAL NETWORKS; DYNAMICS; IMAGE RESOLUTION; LEARNING SYSTEMS; MOTION COMPENSATION; NEURAL NETWORKS; OPTICAL RESOLVING POWER;

EID: 85044722702     PISSN: 10577149     EISSN: None     Source Type: Journal    
DOI: 10.1109/TIP.2018.2820807     Document Type: Article
Times cited : (95)

References (40)
  • 1
    • 84937522268 scopus 로고    scopus 로고
    • Going deeper with convolutions
    • C. Szegedy et al., "Going deeper with convolutions," in Proc. CVPR, 2015, pp. 1-9.
    • (2015) Proc. CVPR , pp. 1-9
    • Szegedy, C.1
  • 2
    • 84906484697 scopus 로고    scopus 로고
    • Learning a deep convolutional network for image super-resolution
    • C. Dong, C. C. Loy, K. He, and X. Tang, "Learning a deep convolutional network for image super-resolution," in Proc. ECCV, 2014, pp. 184-199.
    • (2014) Proc. ECCV , pp. 184-199
    • Dong, C.1    Loy, C.C.2    He, K.3    Tang, X.4
  • 3
    • 84973897612 scopus 로고    scopus 로고
    • Deep networks for image super-resolution with sparse prior
    • Z. Wang, D. Liu, J. Yang, W. Han, and T. Huang, "Deep networks for image super-resolution with sparse prior," in Proc. ICCV, 2015, pp. 370-378.
    • (2015) Proc. ICCV , pp. 370-378
    • Wang, Z.1    Liu, D.2    Yang, J.3    Han, W.4    Huang, T.5
  • 4
    • 84962128851 scopus 로고    scopus 로고
    • Image super-resolution using deep convolutional networks
    • Feb.
    • C. Dong, C. C. Loy, K. He, and X. Tang, "Image super-resolution using deep convolutional networks," IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, no. 2, pp. 295-307, Feb. 2015.
    • (2015) IEEE Trans. Pattern Anal. Mach. Intell. , vol.38 , Issue.2 , pp. 295-307
    • Dong, C.1    Loy, C.C.2    He, K.3    Tang, X.4
  • 5
    • 84986325587 scopus 로고    scopus 로고
    • Accurate image super-resolution using very deep convolutional networks
    • J. Kim, J. K. Lee, and K. M. Lee, "Accurate image super-resolution using very deep convolutional networks," in Proc. CVPR, 2016, pp. 1646-1654.
    • (2016) Proc. CVPR , pp. 1646-1654
    • Kim, J.1    Lee, J.K.2    Lee, K.M.3
  • 6
    • 84986253618 scopus 로고    scopus 로고
    • Deeply-recursive convolutional network for image super-resolution
    • J. Kim, J. K. Lee, and K. M. Lee, "Deeply-recursive convolutional network for image super-resolution," in Proc. CVPR, 2016, pp. 1637-1645.
    • (2016) Proc. CVPR , pp. 1637-1645
    • Kim, J.1    Lee, J.K.2    Lee, K.M.3
  • 7
    • 84986308391 scopus 로고    scopus 로고
    • Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network
    • W. Shi et al., "Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network," in Proc. CVPR, 2016, pp. 1874-1883.
    • (2016) Proc. CVPR , pp. 1874-1883
    • Shi, W.1
  • 8
    • 84990837045 scopus 로고    scopus 로고
    • Accelerating the super-resolution convolutional neural network
    • C. Dong, C. C. Loy, and X. Tang, "Accelerating the super-resolution convolutional neural network," in Proc. ECCV, 2016, pp. 391-407.
    • (2016) Proc. ECCV , pp. 391-407
    • Dong, C.1    Loy, C.C.2    Tang, X.3
  • 9
    • 85041899955 scopus 로고    scopus 로고
    • Deep Laplacian pyramid networks for fast and accurate super-resolution
    • W.-S. Lai, J.-B. Huang, N. Ahuja, and M.-H. Yang, "Deep Laplacian pyramid networks for fast and accurate super-resolution," in Proc. CVPR, 2017, pp. 5835-5843.
    • (2017) Proc. CVPR , pp. 5835-5843
    • Lai, W.-S.1    Huang, J.-B.2    Ahuja, N.3    Yang, M.-H.4
  • 10
    • 85041918798 scopus 로고    scopus 로고
    • Image super-resolution via deep recursive residual network
    • Y. Tai, J. Yang, and X. Liu, "Image super-resolution via deep recursive residual network," in Proc. CVPR, 2017, pp. 2790-2798.
    • (2017) Proc. CVPR , pp. 2790-2798
    • Tai, Y.1    Yang, J.2    Liu, X.3
  • 11
    • 79955142718 scopus 로고    scopus 로고
    • Variability of eye movements when viewing dynamic natural scenes
    • M. Dorr, T. Martinetz, K. R. Gegenfurtner, and E. Barth, "Variability of eye movements when viewing dynamic natural scenes," J. Vis., vol. 10, no. 10, p. 28, 2010.
    • (2010) J. Vis. , vol.10 , Issue.10 , pp. 28
    • Dorr, M.1    Martinetz, T.2    Gegenfurtner, K.R.3    Barth, E.4
  • 13
    • 69349102108 scopus 로고    scopus 로고
    • Super-resolution without explicit subpixel motion estimation
    • Sep.
    • H. Takeda, P. Milanfar, M. Protter, and M. Elad, "Super-resolution without explicit subpixel motion estimation," IEEE Trans. Image Process., vol. 18, no. 9, pp. 1958-1975, Sep. 2009.
    • (2009) IEEE Trans. Image Process. , vol.18 , Issue.9 , pp. 1958-1975
    • Takeda, H.1    Milanfar, P.2    Protter, M.3    Elad, M.4
  • 14
    • 77952633941 scopus 로고    scopus 로고
    • Maximum a posteriori video super-resolution using a new multichannel image prior
    • Jun.
    • S. P. Belekos, N. P. Galatsanos, and A. K. Katsaggelos, "Maximum a posteriori video super-resolution using a new multichannel image prior," IEEE Trans. Image Process., vol. 19, no. 6, pp. 1451-1464, Jun. 2010.
    • (2010) IEEE Trans. Image Process. , vol.19 , Issue.6 , pp. 1451-1464
    • Belekos, S.P.1    Galatsanos, N.P.2    Katsaggelos, A.K.3
  • 15
    • 84891593494 scopus 로고    scopus 로고
    • On Bayesian adaptive video super resolution
    • Feb.
    • C. Liu and D. Sun, "On Bayesian adaptive video super resolution," IEEE Trans. Pattern Anal. Mach. Intell., vol. 36, no. 2, pp. 346-360, Feb. 2014.
    • (2014) IEEE Trans. Pattern Anal. Mach. Intell. , vol.36 , Issue.2 , pp. 346-360
    • Liu, C.1    Sun, D.2
  • 16
    • 84959250156 scopus 로고    scopus 로고
    • Handling motion blur in multi-frame super-resolution
    • Z. Ma, R. Liao, X. Tao, L. Xu, J. Jia, and E. Wu, "Handling motion blur in multi-frame super-resolution," in Proc. CVPR, 2015, pp. 5224-5232.
    • (2015) Proc. CVPR , pp. 5224-5232
    • Ma, Z.1    Liao, R.2    Tao, X.3    Xu, L.4    Jia, J.5    Wu, E.6
  • 17
    • 84973904649 scopus 로고    scopus 로고
    • Video super-resolution via deep draft-ensemble learning
    • R. Liao, X. Tao, R. Li, Z. Ma, and J. Jia, "Video super-resolution via deep draft-ensemble learning," in Proc. CVPR, 2015, pp. 531-539.
    • (2015) Proc. CVPR , pp. 531-539
    • Liao, R.1    Tao, X.2    Li, R.3    Ma, Z.4    Jia, J.5
  • 18
    • 85015240385 scopus 로고    scopus 로고
    • Sparse representation-based multiple frame video super-resolution
    • Feb.
    • Q. Dai, S. Yoo, A. Kappeler, and A. K. Katsaggelos, "Sparse representation-based multiple frame video super-resolution," IEEE Trans. Image Process., vol. 26, no. 2, pp. 765-781, Feb. 2017.
    • (2017) IEEE Trans. Image Process. , vol.26 , Issue.2 , pp. 765-781
    • Dai, Q.1    Yoo, S.2    Kappeler, A.3    Katsaggelos, A.K.4
  • 19
    • 84965157764 scopus 로고    scopus 로고
    • Bidirectional recurrent convolutional networks for multi-frame super-resolution
    • Y. Huang, W. Wang, and L. Wang, "Bidirectional recurrent convolutional networks for multi-frame super-resolution," in Proc. NIPS, 2015, pp. 235-243.
    • (2015) Proc. NIPS , pp. 235-243
    • Huang, Y.1    Wang, W.2    Wang, L.3
  • 20
    • 85140805648 scopus 로고    scopus 로고
    • Video superresolution with convolutional neural networks
    • Jun.
    • A. Kappeler, S. Yoo, Q. Dai, and A. K. Katsaggelos, "Video superresolution with convolutional neural networks," IEEE Trans. Comput. Imag., vol. 2, no. 2, pp. 109-122, Jun. 2016.
    • (2016) IEEE Trans. Comput. Imag. , vol.2 , Issue.2 , pp. 109-122
    • Kappeler, A.1    Yoo, S.2    Dai, Q.3    Katsaggelos, A.K.4
  • 22
    • 85041903214 scopus 로고    scopus 로고
    • Robust video super-resolution with learned temporal dynamics
    • D. Liu et al., "Robust video super-resolution with learned temporal dynamics," in Proc. ICCV, 2017, pp. 2526-2534.
    • (2017) Proc. ICCV , pp. 2526-2534
    • Liu, D.1
  • 24
    • 1942436689 scopus 로고    scopus 로고
    • Image quality assessment: From error visibility to structural similarity
    • Apr.
    • Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image quality assessment: From error visibility to structural similarity," IEEE Trans. Image Process., vol. 13, no. 4, pp. 600-612, Apr. 2004.
    • (2004) IEEE Trans. Image Process. , vol.13 , Issue.4 , pp. 600-612
    • Wang, Z.1    Bovik, A.C.2    Sheikh, H.R.3    Simoncelli, E.P.4
  • 25
    • 84971529522 scopus 로고    scopus 로고
    • Robust single image super-resolution via deep networks with sparse prior
    • Jul.
    • D. Liu, Z. Wang, B. Wen, J. Yang, W. Han, and T. S. Huang, "Robust single image super-resolution via deep networks with sparse prior," IEEE Trans. Image Process., vol. 25, no. 7, pp. 3194-3207, Jul. 2016.
    • (2016) IEEE Trans. Image Process. , vol.25 , Issue.7 , pp. 3194-3207
    • Liu, D.1    Wang, Z.2    Wen, B.3    Yang, J.4    Han, W.5    Huang, T.S.6
  • 26
    • 85016071159 scopus 로고    scopus 로고
    • Learning a mixture of deep networks for single image super-resolution
    • D. Liu, Z. Wang, N. Nasrabadi, and T. Huang, "Learning a mixture of deep networks for single image super-resolution," in Proc. ACCV, 2016, pp. 145-156.
    • (2016) Proc. ACCV , pp. 145-156
    • Liu, D.1    Wang, Z.2    Nasrabadi, N.3    Huang, T.4
  • 27
    • 85035231525 scopus 로고    scopus 로고
    • Photo-realistic single image super-resolution using a generative adversarial network
    • C. Ledig et al., "Photo-realistic single image super-resolution using a generative adversarial network," in Proc. CVPR, 2017, pp. 105-114.
    • (2017) Proc. CVPR , pp. 105-114
    • Ledig, C.1
  • 29
    • 85033234926 scopus 로고    scopus 로고
    • Video super-resolution based on spatial-temporal recurrent residual networks
    • Mar.
    • W. Yang, J. Feng, G. Xie, J. Liu, Z. Guo, and S. Yan, "Video super-resolution based on spatial-temporal recurrent residual networks," Comput. Vis. Image Understand., vol. 168, pp. 79-92, Mar. 2017.
    • (2017) Comput. Vis. Image Understand. , vol.168 , pp. 79-92
    • Yang, W.1    Feng, J.2    Xie, G.3    Liu, J.4    Guo, Z.5    Yan, S.6
  • 30
    • 85030236462 scopus 로고    scopus 로고
    • Real-time video super-resolution with spatiotemporal networks and motion compensation
    • Jul.
    • J. Caballero et al., "Real-time video super-resolution with spatiotemporal networks and motion compensation," in Proc. CVPR, Jul. 2017, pp. 2848-2857.
    • (2017) Proc. CVPR , pp. 2848-2857
    • Caballero, J.1
  • 31
    • 85041893890 scopus 로고    scopus 로고
    • Detail-revealing deep video super-resolution
    • Oct.
    • X. Tao, H. Gao, R. Liao, J. Wang, and J. Jia, "Detail-revealing deep video super-resolution," in Proc. ICCV, Oct. 2017, pp. 4482-4490.
    • (2017) Proc. ICCV , pp. 4482-4490
    • Tao, X.1    Gao, H.2    Liao, R.3    Wang, J.4    Jia, J.5
  • 32
    • 77956509090 scopus 로고    scopus 로고
    • Rectified linear units improve restricted boltzmann machines
    • V. Nair and G. E. Hinton, "Rectified linear units improve restricted boltzmann machines," in Proc. ICML, 2010, pp. 807-814.
    • (2010) Proc. ICML , pp. 807-814
    • Nair, V.1    Hinton, G.E.2
  • 36
    • 76849101279 scopus 로고    scopus 로고
    • Motion tuned spatio-temporal quality assessment of natural videos
    • Feb.
    • K. Seshadrinathan and A. C. Bovik, "Motion tuned spatio-temporal quality assessment of natural videos," IEEE Trans. Image Process., vol. 19, no. 2, pp. 335-350, Feb. 2010.
    • (2010) IEEE Trans. Image Process. , vol.19 , Issue.2 , pp. 335-350
    • Seshadrinathan, K.1    Bovik, A.C.2
  • 37
    • 84977629569 scopus 로고    scopus 로고
    • Is image super-resolution helpful for other vision tasks?
    • D. Dai, Y. Wang, Y. Chen, and L. Van Gool, "Is image super-resolution helpful for other vision tasks?" in Proc. WACV, 2016, pp. 1-9.
    • (2016) Proc. WACV , pp. 1-9
    • Dai, D.1    Wang, Y.2    Chen, Y.3    Van Gool, L.4
  • 38
    • 84986331470 scopus 로고    scopus 로고
    • Studying very low resolution recognition using deep networks
    • Z. Wang, S. Chang, Y. Yang, D. Liu, and T. S. Huang, "Studying very low resolution recognition using deep networks," in Proc. CVPR, 2016, pp. 4792-4800.
    • (2016) Proc. CVPR , pp. 4792-4800
    • Wang, Z.1    Chang, S.2    Yang, Y.3    Liu, D.4    Huang, T.S.5
  • 39
    • 80052899838 scopus 로고    scopus 로고
    • Face recognition in unconstrained videos with matched background similarity
    • L. Wolf, T. Hassner, and I. Maoz, "Face recognition in unconstrained videos with matched background similarity," in Proc. CVPR, 2011, pp. 529-534.
    • (2011) Proc. CVPR , pp. 529-534
    • Wolf, L.1    Hassner, T.2    Maoz, I.3
  • 40
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with deep convolutional neural networks," in Proc. NIPS, 2012, pp. 1097-1105.
    • (2012) Proc. NIPS , pp. 1097-1105
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.