-
1
-
-
84937522268
-
Going deeper with convolutions
-
C. Szegedy et al., "Going deeper with convolutions," in Proc. CVPR, 2015, pp. 1-9.
-
(2015)
Proc. CVPR
, pp. 1-9
-
-
Szegedy, C.1
-
2
-
-
84906484697
-
Learning a deep convolutional network for image super-resolution
-
C. Dong, C. C. Loy, K. He, and X. Tang, "Learning a deep convolutional network for image super-resolution," in Proc. ECCV, 2014, pp. 184-199.
-
(2014)
Proc. ECCV
, pp. 184-199
-
-
Dong, C.1
Loy, C.C.2
He, K.3
Tang, X.4
-
3
-
-
84973897612
-
Deep networks for image super-resolution with sparse prior
-
Z. Wang, D. Liu, J. Yang, W. Han, and T. Huang, "Deep networks for image super-resolution with sparse prior," in Proc. ICCV, 2015, pp. 370-378.
-
(2015)
Proc. ICCV
, pp. 370-378
-
-
Wang, Z.1
Liu, D.2
Yang, J.3
Han, W.4
Huang, T.5
-
4
-
-
84962128851
-
Image super-resolution using deep convolutional networks
-
Feb.
-
C. Dong, C. C. Loy, K. He, and X. Tang, "Image super-resolution using deep convolutional networks," IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, no. 2, pp. 295-307, Feb. 2015.
-
(2015)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.38
, Issue.2
, pp. 295-307
-
-
Dong, C.1
Loy, C.C.2
He, K.3
Tang, X.4
-
5
-
-
84986325587
-
Accurate image super-resolution using very deep convolutional networks
-
J. Kim, J. K. Lee, and K. M. Lee, "Accurate image super-resolution using very deep convolutional networks," in Proc. CVPR, 2016, pp. 1646-1654.
-
(2016)
Proc. CVPR
, pp. 1646-1654
-
-
Kim, J.1
Lee, J.K.2
Lee, K.M.3
-
6
-
-
84986253618
-
Deeply-recursive convolutional network for image super-resolution
-
J. Kim, J. K. Lee, and K. M. Lee, "Deeply-recursive convolutional network for image super-resolution," in Proc. CVPR, 2016, pp. 1637-1645.
-
(2016)
Proc. CVPR
, pp. 1637-1645
-
-
Kim, J.1
Lee, J.K.2
Lee, K.M.3
-
7
-
-
84986308391
-
Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network
-
W. Shi et al., "Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network," in Proc. CVPR, 2016, pp. 1874-1883.
-
(2016)
Proc. CVPR
, pp. 1874-1883
-
-
Shi, W.1
-
8
-
-
84990837045
-
Accelerating the super-resolution convolutional neural network
-
C. Dong, C. C. Loy, and X. Tang, "Accelerating the super-resolution convolutional neural network," in Proc. ECCV, 2016, pp. 391-407.
-
(2016)
Proc. ECCV
, pp. 391-407
-
-
Dong, C.1
Loy, C.C.2
Tang, X.3
-
9
-
-
85041899955
-
Deep Laplacian pyramid networks for fast and accurate super-resolution
-
W.-S. Lai, J.-B. Huang, N. Ahuja, and M.-H. Yang, "Deep Laplacian pyramid networks for fast and accurate super-resolution," in Proc. CVPR, 2017, pp. 5835-5843.
-
(2017)
Proc. CVPR
, pp. 5835-5843
-
-
Lai, W.-S.1
Huang, J.-B.2
Ahuja, N.3
Yang, M.-H.4
-
10
-
-
85041918798
-
Image super-resolution via deep recursive residual network
-
Y. Tai, J. Yang, and X. Liu, "Image super-resolution via deep recursive residual network," in Proc. CVPR, 2017, pp. 2790-2798.
-
(2017)
Proc. CVPR
, pp. 2790-2798
-
-
Tai, Y.1
Yang, J.2
Liu, X.3
-
11
-
-
79955142718
-
Variability of eye movements when viewing dynamic natural scenes
-
M. Dorr, T. Martinetz, K. R. Gegenfurtner, and E. Barth, "Variability of eye movements when viewing dynamic natural scenes," J. Vis., vol. 10, no. 10, p. 28, 2010.
-
(2010)
J. Vis.
, vol.10
, Issue.10
, pp. 28
-
-
Dorr, M.1
Martinetz, T.2
Gegenfurtner, K.R.3
Barth, E.4
-
12
-
-
4544374765
-
Fast and robust multiframe super resolution
-
Oct.
-
S. Farsiu, M. D. Robinson, M. Elad, and P. Milanfar, "Fast and robust multiframe super resolution," IEEE Trans. Image Process., vol. 13, no. 10, pp. 1327-1344, Oct. 2004.
-
(2004)
IEEE Trans. Image Process.
, vol.13
, Issue.10
, pp. 1327-1344
-
-
Farsiu, S.1
Robinson, M.D.2
Elad, M.3
Milanfar, P.4
-
13
-
-
69349102108
-
Super-resolution without explicit subpixel motion estimation
-
Sep.
-
H. Takeda, P. Milanfar, M. Protter, and M. Elad, "Super-resolution without explicit subpixel motion estimation," IEEE Trans. Image Process., vol. 18, no. 9, pp. 1958-1975, Sep. 2009.
-
(2009)
IEEE Trans. Image Process.
, vol.18
, Issue.9
, pp. 1958-1975
-
-
Takeda, H.1
Milanfar, P.2
Protter, M.3
Elad, M.4
-
14
-
-
77952633941
-
Maximum a posteriori video super-resolution using a new multichannel image prior
-
Jun.
-
S. P. Belekos, N. P. Galatsanos, and A. K. Katsaggelos, "Maximum a posteriori video super-resolution using a new multichannel image prior," IEEE Trans. Image Process., vol. 19, no. 6, pp. 1451-1464, Jun. 2010.
-
(2010)
IEEE Trans. Image Process.
, vol.19
, Issue.6
, pp. 1451-1464
-
-
Belekos, S.P.1
Galatsanos, N.P.2
Katsaggelos, A.K.3
-
15
-
-
84891593494
-
On Bayesian adaptive video super resolution
-
Feb.
-
C. Liu and D. Sun, "On Bayesian adaptive video super resolution," IEEE Trans. Pattern Anal. Mach. Intell., vol. 36, no. 2, pp. 346-360, Feb. 2014.
-
(2014)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.36
, Issue.2
, pp. 346-360
-
-
Liu, C.1
Sun, D.2
-
16
-
-
84959250156
-
Handling motion blur in multi-frame super-resolution
-
Z. Ma, R. Liao, X. Tao, L. Xu, J. Jia, and E. Wu, "Handling motion blur in multi-frame super-resolution," in Proc. CVPR, 2015, pp. 5224-5232.
-
(2015)
Proc. CVPR
, pp. 5224-5232
-
-
Ma, Z.1
Liao, R.2
Tao, X.3
Xu, L.4
Jia, J.5
Wu, E.6
-
17
-
-
84973904649
-
Video super-resolution via deep draft-ensemble learning
-
R. Liao, X. Tao, R. Li, Z. Ma, and J. Jia, "Video super-resolution via deep draft-ensemble learning," in Proc. CVPR, 2015, pp. 531-539.
-
(2015)
Proc. CVPR
, pp. 531-539
-
-
Liao, R.1
Tao, X.2
Li, R.3
Ma, Z.4
Jia, J.5
-
18
-
-
85015240385
-
Sparse representation-based multiple frame video super-resolution
-
Feb.
-
Q. Dai, S. Yoo, A. Kappeler, and A. K. Katsaggelos, "Sparse representation-based multiple frame video super-resolution," IEEE Trans. Image Process., vol. 26, no. 2, pp. 765-781, Feb. 2017.
-
(2017)
IEEE Trans. Image Process.
, vol.26
, Issue.2
, pp. 765-781
-
-
Dai, Q.1
Yoo, S.2
Kappeler, A.3
Katsaggelos, A.K.4
-
19
-
-
84965157764
-
Bidirectional recurrent convolutional networks for multi-frame super-resolution
-
Y. Huang, W. Wang, and L. Wang, "Bidirectional recurrent convolutional networks for multi-frame super-resolution," in Proc. NIPS, 2015, pp. 235-243.
-
(2015)
Proc. NIPS
, pp. 235-243
-
-
Huang, Y.1
Wang, W.2
Wang, L.3
-
20
-
-
85140805648
-
Video superresolution with convolutional neural networks
-
Jun.
-
A. Kappeler, S. Yoo, Q. Dai, and A. K. Katsaggelos, "Video superresolution with convolutional neural networks," IEEE Trans. Comput. Imag., vol. 2, no. 2, pp. 109-122, Jun. 2016.
-
(2016)
IEEE Trans. Comput. Imag.
, vol.2
, Issue.2
, pp. 109-122
-
-
Kappeler, A.1
Yoo, S.2
Dai, Q.3
Katsaggelos, A.K.4
-
21
-
-
84965096967
-
Spatial transformer networks
-
M. Jaderberg, K. Simonyan, A. Zisserman, and K. Kavukcuoglu, "Spatial transformer networks," in Proc. NIPS, 2015, pp. 2017-2025.
-
(2015)
Proc. NIPS
, pp. 2017-2025
-
-
Jaderberg, M.1
Simonyan, K.2
Zisserman, A.3
Kavukcuoglu, K.4
-
22
-
-
85041903214
-
Robust video super-resolution with learned temporal dynamics
-
D. Liu et al., "Robust video super-resolution with learned temporal dynamics," in Proc. ICCV, 2017, pp. 2526-2534.
-
(2017)
Proc. ICCV
, pp. 2526-2534
-
-
Liu, D.1
-
23
-
-
77952633044
-
Study of subjective and objective quality assessment of video
-
Jun.
-
K. Seshadrinathan, R. Soundararajan, A. C. Bovik, and L. K. Cormack, "Study of subjective and objective quality assessment of video," IEEE Trans. Image Process., vol. 19, no. 6, pp. 1427-1441, Jun. 2010.
-
(2010)
IEEE Trans. Image Process.
, vol.19
, Issue.6
, pp. 1427-1441
-
-
Seshadrinathan, K.1
Soundararajan, R.2
Bovik, A.C.3
Cormack, L.K.4
-
24
-
-
1942436689
-
Image quality assessment: From error visibility to structural similarity
-
Apr.
-
Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image quality assessment: From error visibility to structural similarity," IEEE Trans. Image Process., vol. 13, no. 4, pp. 600-612, Apr. 2004.
-
(2004)
IEEE Trans. Image Process.
, vol.13
, Issue.4
, pp. 600-612
-
-
Wang, Z.1
Bovik, A.C.2
Sheikh, H.R.3
Simoncelli, E.P.4
-
25
-
-
84971529522
-
Robust single image super-resolution via deep networks with sparse prior
-
Jul.
-
D. Liu, Z. Wang, B. Wen, J. Yang, W. Han, and T. S. Huang, "Robust single image super-resolution via deep networks with sparse prior," IEEE Trans. Image Process., vol. 25, no. 7, pp. 3194-3207, Jul. 2016.
-
(2016)
IEEE Trans. Image Process.
, vol.25
, Issue.7
, pp. 3194-3207
-
-
Liu, D.1
Wang, Z.2
Wen, B.3
Yang, J.4
Han, W.5
Huang, T.S.6
-
26
-
-
85016071159
-
Learning a mixture of deep networks for single image super-resolution
-
D. Liu, Z. Wang, N. Nasrabadi, and T. Huang, "Learning a mixture of deep networks for single image super-resolution," in Proc. ACCV, 2016, pp. 145-156.
-
(2016)
Proc. ACCV
, pp. 145-156
-
-
Liu, D.1
Wang, Z.2
Nasrabadi, N.3
Huang, T.4
-
27
-
-
85035231525
-
Photo-realistic single image super-resolution using a generative adversarial network
-
C. Ledig et al., "Photo-realistic single image super-resolution using a generative adversarial network," in Proc. CVPR, 2017, pp. 105-114.
-
(2017)
Proc. CVPR
, pp. 105-114
-
-
Ledig, C.1
-
28
-
-
85062859914
-
Image super-resolution via dual-state recurrent networks
-
W. Han, S. Chang, D. Liu, M. Yu, W. Michael, and T. S. Huang, "Image super-resolution via dual-state recurrent networks," in Proc. CVPR, 2018.
-
(2018)
Proc. CVPR
-
-
Han, W.1
Chang, S.2
Liu, D.3
Yu, M.4
Michael, W.5
Huang, T.S.6
-
29
-
-
85033234926
-
Video super-resolution based on spatial-temporal recurrent residual networks
-
Mar.
-
W. Yang, J. Feng, G. Xie, J. Liu, Z. Guo, and S. Yan, "Video super-resolution based on spatial-temporal recurrent residual networks," Comput. Vis. Image Understand., vol. 168, pp. 79-92, Mar. 2017.
-
(2017)
Comput. Vis. Image Understand.
, vol.168
, pp. 79-92
-
-
Yang, W.1
Feng, J.2
Xie, G.3
Liu, J.4
Guo, Z.5
Yan, S.6
-
30
-
-
85030236462
-
Real-time video super-resolution with spatiotemporal networks and motion compensation
-
Jul.
-
J. Caballero et al., "Real-time video super-resolution with spatiotemporal networks and motion compensation," in Proc. CVPR, Jul. 2017, pp. 2848-2857.
-
(2017)
Proc. CVPR
, pp. 2848-2857
-
-
Caballero, J.1
-
31
-
-
85041893890
-
Detail-revealing deep video super-resolution
-
Oct.
-
X. Tao, H. Gao, R. Liao, J. Wang, and J. Jia, "Detail-revealing deep video super-resolution," in Proc. ICCV, Oct. 2017, pp. 4482-4490.
-
(2017)
Proc. ICCV
, pp. 4482-4490
-
-
Tao, X.1
Gao, H.2
Liao, R.3
Wang, J.4
Jia, J.5
-
32
-
-
77956509090
-
Rectified linear units improve restricted boltzmann machines
-
V. Nair and G. E. Hinton, "Rectified linear units improve restricted boltzmann machines," in Proc. ICML, 2010, pp. 807-814.
-
(2010)
Proc. ICML
, pp. 807-814
-
-
Nair, V.1
Hinton, G.E.2
-
33
-
-
84937003233
-
MCL-V: A streaming video quality assessment database
-
Jul.
-
J. Y. Lin, R. Song, T. Liu, H. Wang, and C.-C. J. Kuo, "MCL-V: A streaming video quality assessment database," J. Vis. Commun. Image Represent., vol. 30, pp. 1-9, Jul. 2015.
-
(2015)
J. Vis. Commun. Image Represent.
, vol.30
, pp. 1-9
-
-
Lin, J.Y.1
Song, R.2
Liu, T.3
Wang, H.4
Kuo, C.-C.J.5
-
34
-
-
78650889108
-
Visual quality of current coding technologies at high definition IPTV bitrates
-
Oct.
-
C. Keimel, J. Habigt, T. Habigt, M. Rothbucher, and K. Diepold, "Visual quality of current coding technologies at high definition IPTV bitrates," in Proc. IEEE Int. Workshop Multimedia Signal Process. (MMSP), Oct. 2010, pp. 390-393.
-
(2010)
Proc. IEEE Int. Workshop Multimedia Signal Process. (MMSP)
, pp. 390-393
-
-
Keimel, C.1
Habigt, J.2
Habigt, T.3
Rothbucher, M.4
Diepold, K.5
-
35
-
-
77953616632
-
-
Ph.D. dissertation Massachusetts Inst. Technol., Cambridge, MA, USA
-
C. Liu, "Beyond pixels: Exploring new representations and applications for motion analysis," Ph.D. dissertation, Massachusetts Inst. Technol., Cambridge, MA, USA, 2009.
-
(2009)
Beyond Pixels: Exploring New Representations and Applications for Motion Analysis
-
-
Liu, C.1
-
36
-
-
76849101279
-
Motion tuned spatio-temporal quality assessment of natural videos
-
Feb.
-
K. Seshadrinathan and A. C. Bovik, "Motion tuned spatio-temporal quality assessment of natural videos," IEEE Trans. Image Process., vol. 19, no. 2, pp. 335-350, Feb. 2010.
-
(2010)
IEEE Trans. Image Process.
, vol.19
, Issue.2
, pp. 335-350
-
-
Seshadrinathan, K.1
Bovik, A.C.2
-
37
-
-
84977629569
-
Is image super-resolution helpful for other vision tasks?
-
D. Dai, Y. Wang, Y. Chen, and L. Van Gool, "Is image super-resolution helpful for other vision tasks?" in Proc. WACV, 2016, pp. 1-9.
-
(2016)
Proc. WACV
, pp. 1-9
-
-
Dai, D.1
Wang, Y.2
Chen, Y.3
Van Gool, L.4
-
38
-
-
84986331470
-
Studying very low resolution recognition using deep networks
-
Z. Wang, S. Chang, Y. Yang, D. Liu, and T. S. Huang, "Studying very low resolution recognition using deep networks," in Proc. CVPR, 2016, pp. 4792-4800.
-
(2016)
Proc. CVPR
, pp. 4792-4800
-
-
Wang, Z.1
Chang, S.2
Yang, Y.3
Liu, D.4
Huang, T.S.5
-
39
-
-
80052899838
-
Face recognition in unconstrained videos with matched background similarity
-
L. Wolf, T. Hassner, and I. Maoz, "Face recognition in unconstrained videos with matched background similarity," in Proc. CVPR, 2011, pp. 529-534.
-
(2011)
Proc. CVPR
, pp. 529-534
-
-
Wolf, L.1
Hassner, T.2
Maoz, I.3
-
40
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with deep convolutional neural networks," in Proc. NIPS, 2012, pp. 1097-1105.
-
(2012)
Proc. NIPS
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
|