-
2
-
-
85041921539
-
-
arXiv preprint arXiv:1611.05250
-
J. Caballero, C. Ledig, A. Aitken, A. Acosta, J. Totz, Z. Wang, and W. Shi. Real-time video super-resolution with spatio-temporal networks and motion compensation. arXiv preprint arXiv:1611.05250, 2016
-
(2016)
Real-time Video Super-resolution with Spatio-temporal Networks and Motion Compensation
-
-
Caballero, J.1
Ledig, C.2
Aitken, A.3
Acosta, A.4
Totz, J.5
Wang, Z.6
Shi, W.7
-
3
-
-
84906484697
-
Learning a deep convolutional network for image super-resolution
-
C. Dong, C. C. Loy, K. He, and X. Tang. Learning a deep convolutional network for image super-resolution. In ECCV, pages 184-199, 2014
-
(2014)
ECCV
, pp. 184-199
-
-
Dong, C.1
Loy, C.C.2
He, K.3
Tang, X.4
-
4
-
-
84990837045
-
Accelerating the superresolution convolutional neural network
-
Springer
-
C. Dong, C. C. Loy, and X. Tang. Accelerating the superresolution convolutional neural network. In ECCV, pages 391-407. Springer, 2016
-
(2016)
ECCV
, pp. 391-407
-
-
Dong, C.1
Loy, C.C.2
Tang, X.3
-
5
-
-
0035424287
-
A fast super-resolution reconstruction algorithm for pure translational motion and common space-invariant blur
-
M. Elad and Y. Hel-Or. A fast super-resolution reconstruction algorithm for pure translational motion and common space-invariant blur. IEEE Transactions on Image Processing, 10(8):1187-1193, 2001
-
(2001)
IEEE Transactions on Image Processing
, vol.10
, Issue.8
, pp. 1187-1193
-
-
Elad, M.1
Hel-Or, Y.2
-
7
-
-
4544374765
-
Fast and robust multiframe super resolution
-
S. Farsiu, M. D. Robinson, M. Elad, and P. Milanfar. Fast and robust multiframe super resolution. IEEE Transactions on Image Processing, 13(10):1327-1344, 2004
-
(2004)
IEEE Transactions on Image Processing
, vol.13
, Issue.10
, pp. 1327-1344
-
-
Farsiu, S.1
Robinson, M.D.2
Elad, M.3
Milanfar, P.4
-
8
-
-
84973904859
-
Flownet: Learning optical flow with convolutional networks
-
P. Fischer, A. Dosovitskiy, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov, P. van der Smagt, D. Cremers, and T. Brox. Flownet: Learning optical flow with convolutional networks. ICCV, 2015
-
(2015)
ICCV
-
-
Fischer, P.1
Dosovitskiy, A.2
Ilg, E.3
Hausser, P.4
Hazirbas, C.5
Golkov, V.6
Vander Smagt, P.7
Cremers, D.8
Brox, T.9
-
9
-
-
84862277874
-
Understanding the difficulty of training deep feedforward neural networks
-
X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural networks. In Aistats, volume 9, pages 249-256, 2010
-
(2010)
Aistats
, vol.9
, pp. 249-256
-
-
Glorot, X.1
Bengio, Y.2
-
11
-
-
85019245160
-
Perceptual losses for real-time style transfer and super-resolution
-
J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for real-time style transfer and super-resolution. In ECCV, 2016
-
(2016)
ECCV
-
-
Johnson, J.1
Alahi, A.2
Fei-Fei, L.3
-
12
-
-
84861312439
-
Trackinglearning detection
-
Z. Kalal, K. Mikolajczyk, and J. Matas. Trackinglearning detection. IEEE Trans. Pattern Anal. Mach. Intell., 34(7):1409-1422, 2012
-
(2012)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.34
, Issue.7
, pp. 1409-1422
-
-
Kalal, Z.1
Mikolajczyk, K.2
Matas, J.3
-
13
-
-
84986301983
-
Warpnet: Weakly supervised matching for single-view reconstruction
-
A. Kanazawa, D. W. Jacobs, and M. Chandraker. Warpnet: Weakly supervised matching for single-view reconstruction. CVPR, 2016
-
(2016)
CVPR
-
-
Kanazawa, A.1
Jacobs, D.W.2
Chandraker, M.3
-
14
-
-
85140805648
-
Video super-resolution with convolutional neural networks
-
A. Kappeler, S. Yoo, Q. Dai, and A. K. Katsaggelos. Video super-resolution with convolutional neural networks. IEEE Transactions on Computational Imaging, 2(2):109-122, 2016
-
(2016)
IEEE Transactions on Computational Imaging
, vol.2
, Issue.2
, pp. 109-122
-
-
Kappeler, A.1
Yoo, S.2
Dai, Q.3
Katsaggelos, A.K.4
-
15
-
-
84986325587
-
Accurate image superresolution using very deep convolutional networks
-
June
-
J. Kim, J. Kwon Lee, and K. Mu Lee. Accurate image superresolution using very deep convolutional networks. In CVPR, June 2016
-
(2016)
CVPR
-
-
Kim, J.1
Kwon Lee, J.2
Mu Lee, K.3
-
16
-
-
84986253618
-
Deeply-recursive convolutional network for image super-resolution
-
June
-
J. Kim, J. Kwon Lee, and K. Mu Lee. Deeply-recursive convolutional network for image super-resolution. In CVPR, June 2016
-
(2016)
CVPR
-
-
Kim, J.1
Kwon Lee, J.2
Mu Lee, K.3
-
17
-
-
85035229171
-
Adam: A method for stochastic optimization
-
D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In ICLR, 2014
-
(2014)
ICLR
-
-
Kingma, D.P.1
Ba, J.2
-
18
-
-
85019017178
-
-
arXiv preprint arXiv:1609.04802
-
C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi. Photo-realistic single image super-resolution using a generative adversarial network. arXiv preprint arXiv:1609.04802, 2016
-
(2016)
Photo-realistic Single Image Super-resolution Using A Generative Adversarial Network
-
-
Ledig, C.1
Theis, L.2
Huszar, F.3
Caballero, J.4
Aitken, A.5
Tejani, A.6
Totz, J.7
Wang, Z.8
Shi, W.9
-
19
-
-
84973904649
-
Video superresolution via deep draft-ensemble learning
-
R. Liao, X. Tao, R. Li, Z. Ma, and J. Jia. Video superresolution via deep draft-ensemble learning. In ICCV, pages 531-539, 2015
-
(2015)
ICCV
, pp. 531-539
-
-
Liao, R.1
Tao, X.2
Li, R.3
Ma, Z.4
Jia, J.5
-
20
-
-
80052876469
-
A Bayesian approach to adaptive video super resolution
-
IEEE
-
C. Liu and D. Sun. A bayesian approach to adaptive video super resolution. In CVPR, pages 209-216. IEEE, 2011
-
(2011)
CVPR
, pp. 209-216
-
-
Liu, C.1
Sun, D.2
-
22
-
-
84986260027
-
Efficient deep learning for stereo matching
-
W. Luo, A. G. Schwing, and R. Urtasun. Efficient deep learning for stereo matching. In CVPR, pages 5695-5703, 2016
-
(2016)
CVPR
, pp. 5695-5703
-
-
Luo, W.1
Schwing, A.G.2
Urtasun, R.3
-
23
-
-
84959250156
-
Handling motion blur in multi-frame super-resolution
-
Z. Ma, R. Liao, X. Tao, L. Xu, J. Jia, and E. Wu. Handling motion blur in multi-frame super-resolution. In CVPR, pages 5224-5232, 2015
-
(2015)
CVPR
, pp. 5224-5232
-
-
Ma, Z.1
Liao, R.2
Tao, X.3
Xu, L.4
Jia, J.5
Wu, E.6
-
24
-
-
85018922091
-
Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections
-
X. Mao, C. Shen, and Y.-B. Yang. Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections. In NIPS, pages 2802-2810, 2016
-
(2016)
NIPS
, pp. 2802-2810
-
-
Mao, X.1
Shen, C.2
Yang, Y.-B.3
-
25
-
-
84986301062
-
A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation
-
N. Mayer, E. Ilg, P. Hausser, P. Fischer, D. Cremers, A. Dosovitskiy, and T. Brox. A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation. In CVPR, 2016
-
(2016)
CVPR
-
-
Mayer, N.1
Ilg, E.2
Hausser, P.3
Fischer, P.4
Cremers, D.5
Dosovitskiy, A.6
Brox, T.7
-
26
-
-
84986308391
-
Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network
-
W. Shi, J. Caballero, F. Huszar, J. Totz, A. P. Aitken, R. Bishop, D. Rueckert, and Z. Wang. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In CVPR, pages 1874-1883, 2016
-
(2016)
CVPR
, pp. 1874-1883
-
-
Shi, W.1
Caballero, J.2
Huszar, F.3
Totz, J.4
Aitken, A.P.5
Bishop, R.6
Rueckert, D.7
Wang, Z.8
-
27
-
-
85030230841
-
-
arXiv preprint arXiv:1611.08387
-
S. Su, M. Delbracio, J. Wang, G. Sapiro, W. Heidrich, and O. Wang. Deep video deblurring. arXiv preprint arXiv:1611.08387, 2016
-
(2016)
Deep Video Deblurring
-
-
Su, S.1
Delbracio, M.2
Wang, J.3
Sapiro, G.4
Heidrich, W.5
Wang, O.6
-
28
-
-
69349102108
-
Superresolution without explicit subpixel motion estimation
-
H. Takeda, P. Milanfar, M. Protter, and M. Elad. Superresolution without explicit subpixel motion estimation. IEEE Transactions on Image Processing, 18(9):1958-1975, 2009
-
(2009)
IEEE Transactions on Image Processing
, vol.18
, Issue.9
, pp. 1958-1975
-
-
Takeda, H.1
Milanfar, P.2
Protter, M.3
Elad, M.4
-
29
-
-
84965121965
-
Convolutional lstm network: A machine learning approach for precipitation nowcasting
-
S. Xingjian, Z. Chen, H. Wang, D.-Y. Yeung, W.-k. Wong, and W.-c. Woo. Convolutional lstm network: A machine learning approach for precipitation nowcasting. In NIPS, pages 802-810, 2015
-
(2015)
NIPS
, pp. 802-810
-
-
Xingjian, S.1
Chen, Z.2
Wang, H.3
Yeung, D.-Y.4
Wong, W.-K.5
Woo, W.-C.6
-
31
-
-
84979924151
-
Stereo matching by training a convolutional neural network to compare image patches
-
J. Zbontar and Y. LeCun. Stereo matching by training a convolutional neural network to compare image patches. Journal of Machine Learning Research, 17:1-32, 2016
-
(2016)
Journal of Machine Learning Research
, vol.17
, pp. 1-32
-
-
Zbontar, J.1
LeCun, Y.2
|