메뉴 건너뛰기




Volumn 2017-October, Issue , 2017, Pages 4482-4490

Detail-Revealing Deep Video Super-Resolution

Author keywords

[No Author keywords available]

Indexed keywords

MOTION COMPENSATION; OPTICAL RESOLVING POWER;

EID: 85041893890     PISSN: 15505499     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2017.479     Document Type: Conference Paper
Times cited : (603)

References (32)
  • 3
    • 84906484697 scopus 로고    scopus 로고
    • Learning a deep convolutional network for image super-resolution
    • C. Dong, C. C. Loy, K. He, and X. Tang. Learning a deep convolutional network for image super-resolution. In ECCV, pages 184-199, 2014
    • (2014) ECCV , pp. 184-199
    • Dong, C.1    Loy, C.C.2    He, K.3    Tang, X.4
  • 4
    • 84990837045 scopus 로고    scopus 로고
    • Accelerating the superresolution convolutional neural network
    • Springer
    • C. Dong, C. C. Loy, and X. Tang. Accelerating the superresolution convolutional neural network. In ECCV, pages 391-407. Springer, 2016
    • (2016) ECCV , pp. 391-407
    • Dong, C.1    Loy, C.C.2    Tang, X.3
  • 5
    • 0035424287 scopus 로고    scopus 로고
    • A fast super-resolution reconstruction algorithm for pure translational motion and common space-invariant blur
    • M. Elad and Y. Hel-Or. A fast super-resolution reconstruction algorithm for pure translational motion and common space-invariant blur. IEEE Transactions on Image Processing, 10(8):1187-1193, 2001
    • (2001) IEEE Transactions on Image Processing , vol.10 , Issue.8 , pp. 1187-1193
    • Elad, M.1    Hel-Or, Y.2
  • 9
    • 84862277874 scopus 로고    scopus 로고
    • Understanding the difficulty of training deep feedforward neural networks
    • X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural networks. In Aistats, volume 9, pages 249-256, 2010
    • (2010) Aistats , vol.9 , pp. 249-256
    • Glorot, X.1    Bengio, Y.2
  • 10
    • 84965096967 scopus 로고    scopus 로고
    • Spatial transformer networks
    • M. Jaderberg, K. Simonyan, A. Zisserman, et al. Spatial transformer networks. In NIPS, pages 2017-2025, 2015
    • (2015) NIPS , pp. 2017-2025
    • Jaderberg, M.1    Simonyan, K.2    Zisserman, A.3
  • 11
    • 85019245160 scopus 로고    scopus 로고
    • Perceptual losses for real-time style transfer and super-resolution
    • J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for real-time style transfer and super-resolution. In ECCV, 2016
    • (2016) ECCV
    • Johnson, J.1    Alahi, A.2    Fei-Fei, L.3
  • 13
    • 84986301983 scopus 로고    scopus 로고
    • Warpnet: Weakly supervised matching for single-view reconstruction
    • A. Kanazawa, D. W. Jacobs, and M. Chandraker. Warpnet: Weakly supervised matching for single-view reconstruction. CVPR, 2016
    • (2016) CVPR
    • Kanazawa, A.1    Jacobs, D.W.2    Chandraker, M.3
  • 15
    • 84986325587 scopus 로고    scopus 로고
    • Accurate image superresolution using very deep convolutional networks
    • June
    • J. Kim, J. Kwon Lee, and K. Mu Lee. Accurate image superresolution using very deep convolutional networks. In CVPR, June 2016
    • (2016) CVPR
    • Kim, J.1    Kwon Lee, J.2    Mu Lee, K.3
  • 16
    • 84986253618 scopus 로고    scopus 로고
    • Deeply-recursive convolutional network for image super-resolution
    • June
    • J. Kim, J. Kwon Lee, and K. Mu Lee. Deeply-recursive convolutional network for image super-resolution. In CVPR, June 2016
    • (2016) CVPR
    • Kim, J.1    Kwon Lee, J.2    Mu Lee, K.3
  • 17
    • 85035229171 scopus 로고    scopus 로고
    • Adam: A method for stochastic optimization
    • D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In ICLR, 2014
    • (2014) ICLR
    • Kingma, D.P.1    Ba, J.2
  • 19
    • 84973904649 scopus 로고    scopus 로고
    • Video superresolution via deep draft-ensemble learning
    • R. Liao, X. Tao, R. Li, Z. Ma, and J. Jia. Video superresolution via deep draft-ensemble learning. In ICCV, pages 531-539, 2015
    • (2015) ICCV , pp. 531-539
    • Liao, R.1    Tao, X.2    Li, R.3    Ma, Z.4    Jia, J.5
  • 20
    • 80052876469 scopus 로고    scopus 로고
    • A Bayesian approach to adaptive video super resolution
    • IEEE
    • C. Liu and D. Sun. A bayesian approach to adaptive video super resolution. In CVPR, pages 209-216. IEEE, 2011
    • (2011) CVPR , pp. 209-216
    • Liu, C.1    Sun, D.2
  • 22
    • 84986260027 scopus 로고    scopus 로고
    • Efficient deep learning for stereo matching
    • W. Luo, A. G. Schwing, and R. Urtasun. Efficient deep learning for stereo matching. In CVPR, pages 5695-5703, 2016
    • (2016) CVPR , pp. 5695-5703
    • Luo, W.1    Schwing, A.G.2    Urtasun, R.3
  • 23
    • 84959250156 scopus 로고    scopus 로고
    • Handling motion blur in multi-frame super-resolution
    • Z. Ma, R. Liao, X. Tao, L. Xu, J. Jia, and E. Wu. Handling motion blur in multi-frame super-resolution. In CVPR, pages 5224-5232, 2015
    • (2015) CVPR , pp. 5224-5232
    • Ma, Z.1    Liao, R.2    Tao, X.3    Xu, L.4    Jia, J.5    Wu, E.6
  • 24
    • 85018922091 scopus 로고    scopus 로고
    • Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections
    • X. Mao, C. Shen, and Y.-B. Yang. Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections. In NIPS, pages 2802-2810, 2016
    • (2016) NIPS , pp. 2802-2810
    • Mao, X.1    Shen, C.2    Yang, Y.-B.3
  • 25
    • 84986301062 scopus 로고    scopus 로고
    • A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation
    • N. Mayer, E. Ilg, P. Hausser, P. Fischer, D. Cremers, A. Dosovitskiy, and T. Brox. A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation. In CVPR, 2016
    • (2016) CVPR
    • Mayer, N.1    Ilg, E.2    Hausser, P.3    Fischer, P.4    Cremers, D.5    Dosovitskiy, A.6    Brox, T.7
  • 26
    • 84986308391 scopus 로고    scopus 로고
    • Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network
    • W. Shi, J. Caballero, F. Huszar, J. Totz, A. P. Aitken, R. Bishop, D. Rueckert, and Z. Wang. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In CVPR, pages 1874-1883, 2016
    • (2016) CVPR , pp. 1874-1883
    • Shi, W.1    Caballero, J.2    Huszar, F.3    Totz, J.4    Aitken, A.P.5    Bishop, R.6    Rueckert, D.7    Wang, Z.8
  • 29
    • 84965121965 scopus 로고    scopus 로고
    • Convolutional lstm network: A machine learning approach for precipitation nowcasting
    • S. Xingjian, Z. Chen, H. Wang, D.-Y. Yeung, W.-k. Wong, and W.-c. Woo. Convolutional lstm network: A machine learning approach for precipitation nowcasting. In NIPS, pages 802-810, 2015
    • (2015) NIPS , pp. 802-810
    • Xingjian, S.1    Chen, Z.2    Wang, H.3    Yeung, D.-Y.4    Wong, W.-K.5    Woo, W.-C.6
  • 31
    • 84979924151 scopus 로고    scopus 로고
    • Stereo matching by training a convolutional neural network to compare image patches
    • J. Zbontar and Y. LeCun. Stereo matching by training a convolutional neural network to compare image patches. Journal of Machine Learning Research, 17:1-32, 2016
    • (2016) Journal of Machine Learning Research , vol.17 , pp. 1-32
    • Zbontar, J.1    LeCun, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.