메뉴 건너뛰기




Volumn 168, Issue , 2018, Pages 79-92

Video super-resolution based on spatial-temporal recurrent residual networks

Author keywords

Inter frame motion context; Intra frame redundancy; Spatial residue; Temporal residue; Video super resolution

Indexed keywords

CONVOLUTIONAL NEURAL NETWORKS; OPTICAL RESOLVING POWER; REDUNDANCY; SIGNAL RECEIVERS;

EID: 85033234926     PISSN: 10773142     EISSN: 1090235X     Source Type: Journal    
DOI: 10.1016/j.cviu.2017.09.002     Document Type: Article
Times cited : (57)

References (63)
  • 1
    • 84962128851 scopus 로고    scopus 로고
    • Image super-resolution using deep convolutional networks
    • Anon, Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38:2 (2016), 295–307.
    • (2016) IEEE Trans. Pattern Anal. Mach. Intell. , vol.38 , Issue.2 , pp. 295-307
    • Anon1
  • 3
    • 33645831966 scopus 로고    scopus 로고
    • Multispectral image data fusion using {POCS} and super-resolution
    • Aguena, M.L., Mascarenhas, N.D., Multispectral image data fusion using {POCS} and super-resolution. Comput. Vision Image Understand. 102:2 (2006), 178–187.
    • (2006) Comput. Vision Image Understand. , vol.102 , Issue.2 , pp. 178-187
    • Aguena, M.L.1    Mascarenhas, N.D.2
  • 5
    • 85044081849 scopus 로고    scopus 로고
    • arXiv:1211.1544. Image denoising with multi-layer perceptrons, part 1: comparison with existing algorithms and with bounds. ArXiv preprint
    • Burger, H. C., Schuler, C. J., Harmeling, S., 2012a. Image denoising with multi-layer perceptrons, part 1: comparison with existing algorithms and with bounds. ArXiv preprint, arXiv:1211.1544.
    • (2012)
    • Burger, H.C.1    Schuler, C.J.2    Harmeling, S.3
  • 6
    • 85044090483 scopus 로고    scopus 로고
    • arXiv:1211.1552. Image denoising with multi-layer perceptrons, part 2: training trade-offs and analysis of their mechanisms. ArXiv preprint
    • Burger, H. C., Schuler, C. J., Harmeling, S., 2012b. Image denoising with multi-layer perceptrons, part 2: training trade-offs and analysis of their mechanisms. ArXiv preprint, arXiv:1211.1552.
    • (2012)
    • Burger, H.C.1    Schuler, C.J.2    Harmeling, S.3
  • 12
    • 34047142726 scopus 로고    scopus 로고
    • Optical flow based super-resolution: a probabilistic approach
    • Fransens, R., Strecha, C., Gool, L.V., Optical flow based super-resolution: a probabilistic approach. Comput. Vision Image Understand. 106:1 (2007), 106–115.
    • (2007) Comput. Vision Image Understand. , vol.106 , Issue.1 , pp. 106-115
    • Fransens, R.1    Strecha, C.2    Gool, L.V.3
  • 15
    • 32944471247 scopus 로고    scopus 로고
    • An image super-resolution algorithm for different error levels per frame
    • He, H., Kondi, L.P., An image super-resolution algorithm for different error levels per frame. IEEE Trans. Image Process. 15:3 (2006), 592–603.
    • (2006) IEEE Trans. Image Process. , vol.15 , Issue.3 , pp. 592-603
    • He, H.1    Kondi, L.P.2
  • 17
    • 85042075744 scopus 로고    scopus 로고
    • Video super-resolution via bidirectional recurrent convolutional networks
    • 1–1
    • Huang, Y., Wang, W., Wang, L., Video super-resolution via bidirectional recurrent convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell., PP(99), 2017 1–1.
    • (2017) IEEE Trans. Pattern Anal. Mach. Intell. , vol.PP , Issue.99
    • Huang, Y.1    Wang, W.2    Wang, L.3
  • 18
    • 77958011399 scopus 로고    scopus 로고
    • Fusion of range and color images for denoising and resolution enhancement with a non-local filter
    • Huhle, B., Schairer, T., Jenke, P., Straer, W., Fusion of range and color images for denoising and resolution enhancement with a non-local filter. Comput. Vision Image Understand. 114:12 (2010), 1336–1345.
    • (2010) Comput. Vision Image Understand. , vol.114 , Issue.12 , pp. 1336-1345
    • Huhle, B.1    Schairer, T.2    Jenke, P.3    Straer, W.4
  • 19
    • 0026359271 scopus 로고
    • Improving resolution by image registration
    • Irani, M., Peleg, S., Improving resolution by image registration. CVGIP: Graph. Models Image Process. 53:3 (1991), 231–239.
    • (1991) CVGIP: Graph. Models Image Process. , vol.53 , Issue.3 , pp. 231-239
    • Irani, M.1    Peleg, S.2
  • 20
    • 84964342343 scopus 로고    scopus 로고
    • Enhancement of dynamic depth scenes by upsampling for precise super-resolution (up-sr)
    • Spontaneous Facial Behaviour Analysis.
    • Ismaeil, K.A., Aouada, D., Mirbach, B., Ottersten, B., Enhancement of dynamic depth scenes by upsampling for precise super-resolution (up-sr). Comput. Vision Image Understand. 147 (2016), 38–49 Spontaneous Facial Behaviour Analysis.
    • (2016) Comput. Vision Image Understand. , vol.147 , pp. 38-49
    • Ismaeil, K.A.1    Aouada, D.2    Mirbach, B.3    Ottersten, B.4
  • 21
    • 78149296699 scopus 로고    scopus 로고
    • Natural image denoising with convolutional networks
    • Koller D. Schuurmans D. Bengio Y. Bottou L.
    • Jain, V., Seung, S., Natural image denoising with convolutional networks. Koller, D., Schuurmans, D., Bengio, Y., Bottou, L., (eds.) Proc. Annual Conference on Neural Information Processing Systems, 2009, 769–776.
    • (2009) Proc. Annual Conference on Neural Information Processing Systems , pp. 769-776
    • Jain, V.1    Seung, S.2
  • 23
    • 27844439071 scopus 로고    scopus 로고
    • Simultaneous estimation of super-resolved depth map and intensity field using photometric cue
    • Joshi, M.V., Chaudhuri, S., Simultaneous estimation of super-resolved depth map and intensity field using photometric cue. Comput. Vision Image Understand. 101:1 (2006), 31–44.
    • (2006) Comput. Vision Image Understand. , vol.101 , Issue.1 , pp. 31-44
    • Joshi, M.V.1    Chaudhuri, S.2
  • 24
    • 84881034792 scopus 로고    scopus 로고
    • Multi-frame super-resolution algorithm for complex motion patterns
    • Kanaev, A.V., Miller, C.W., Multi-frame super-resolution algorithm for complex motion patterns. Opt. Express 21:17 (2013), 19850–19866.
    • (2013) Opt. Express , vol.21 , Issue.17 , pp. 19850-19866
    • Kanaev, A.V.1    Miller, C.W.2
  • 30
    • 84891593494 scopus 로고    scopus 로고
    • On bayesian adaptive video super resolution
    • Liu, C., Sun, D., On bayesian adaptive video super resolution. IEEE Trans. Pattern Anal. Mach. Intell. 36:2 (2014), 346–360.
    • (2014) IEEE Trans. Pattern Anal. Mach. Intell. , vol.36 , Issue.2 , pp. 346-360
    • Liu, C.1    Sun, D.2
  • 31
    • 84891274311 scopus 로고    scopus 로고
    • Multiresolution imaging
    • Lu, X., Li, X., Multiresolution imaging. IEEE Trans. Cybern. 44:1 (2014), 149–160.
    • (2014) IEEE Trans. Cybern. , vol.44 , Issue.1 , pp. 149-160
    • Lu, X.1    Li, X.2
  • 34
    • 55649094906 scopus 로고    scopus 로고
    • Image super-resolution by TV-regularization and bregman iteration
    • Marquina, A., Osher, S., Image super-resolution by TV-regularization and bregman iteration. J. Sci. Comput. 37:3 (2008), 367–382.
    • (2008) J. Sci. Comput. , vol.37 , Issue.3 , pp. 367-382
    • Marquina, A.1    Osher, S.2
  • 38
    • 58149144703 scopus 로고    scopus 로고
    • Generalizing the nonlocal-means to super-resolution reconstruction
    • Protter, M., Elad, M., Takeda, H., Milanfar, P., Generalizing the nonlocal-means to super-resolution reconstruction. IEEE Trans. Image Process. 18:1 (2009), 36–51.
    • (2009) IEEE Trans. Image Process. , vol.18 , Issue.1 , pp. 36-51
    • Protter, M.1    Elad, M.2    Takeda, H.3    Milanfar, P.4
  • 39
    • 44049111982 scopus 로고
    • Nonlinear total variation based noise removal algorithms
    • Rudin, L.I., Osher, S., Fatemi, E., Nonlinear total variation based noise removal algorithms. Physica D 60 (1992), 259–268.
    • (1992) Physica D , vol.60 , pp. 259-268
    • Rudin, L.I.1    Osher, S.2    Fatemi, E.3
  • 42
    • 84939939912 scopus 로고    scopus 로고
    • Learning ramp transformation for single image super-resolution
    • Singh, A., Ahuja, N., Learning ramp transformation for single image super-resolution. Comput. Vision Image Understand. 135 (2015), 109–125.
    • (2015) Comput. Vision Image Understand. , vol.135 , pp. 109-125
    • Singh, A.1    Ahuja, N.2
  • 43
    • 79957490936 scopus 로고    scopus 로고
    • Gradient profile prior and its applications in image super-resolution and enhancement
    • Sun, J., Sun, J., Xu, Z., Shum, H.Y., Gradient profile prior and its applications in image super-resolution and enhancement. IEEE Trans. Image Process. 20:6 (2011), 1529–1542.
    • (2011) IEEE Trans. Image Process. , vol.20 , Issue.6 , pp. 1529-1542
    • Sun, J.1    Sun, J.2    Xu, Z.3    Shum, H.Y.4
  • 44
    • 69349102108 scopus 로고    scopus 로고
    • Super-resolution without explicit subpixel motion estimation
    • Takeda, H., Milanfar, P., Protter, M., Elad, M., Super-resolution without explicit subpixel motion estimation. IEEE Trans. Image Process. 18:9 (2009), 1958–1975.
    • (2009) IEEE Trans. Image Process. , vol.18 , Issue.9 , pp. 1958-1975
    • Takeda, H.1    Milanfar, P.2    Protter, M.3    Elad, M.4
  • 45
    • 69349102108 scopus 로고    scopus 로고
    • Super-resolution without explicit subpixel motion estimation
    • Takeda, H., Milanfar, P., Protter, M., Elad, M., Super-resolution without explicit subpixel motion estimation. IEEE Trans. Image Process. 18:9 (2009), 1958–1975.
    • (2009) IEEE Trans. Image Process. , vol.18 , Issue.9 , pp. 1958-1975
    • Takeda, H.1    Milanfar, P.2    Protter, M.3    Elad, M.4
  • 49
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
    • Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.-A., Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res, 2010.
    • (2010) J. Mach. Learn. Res
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.-A.5
  • 52
    • 84894362317 scopus 로고    scopus 로고
    • Single image super-resolution using self-similarity and generalized nonlocal mean
    • Wu, W., Zheng, C., Single image super-resolution using self-similarity and generalized nonlocal mean. IEEE International Conference of IEEE Region, 2013, 1–4.
    • (2013) IEEE International Conference of IEEE Region , pp. 1-4
    • Wu, W.1    Zheng, C.2
  • 53
    • 84877728447 scopus 로고    scopus 로고
    • Image denoising and inpainting with deep neural networks
    • Pereira F. Burges C.J.C. Bottou L. Weinberger K.Q.
    • Xie, J., Xu, L., Chen, E., Image denoising and inpainting with deep neural networks. Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q., (eds.) Proc. Annual Conference on Neural Information Processing Systems, 2012, 341–349.
    • (2012) Proc. Annual Conference on Neural Information Processing Systems , pp. 341-349
    • Xie, J.1    Xu, L.2    Chen, E.3
  • 55
    • 84961678080 scopus 로고    scopus 로고
    • Automatic photo adjustment using deep neural networks
    • Yan, Z., Zhang, H., Wang, B., Paris, S., Yu, Y., Automatic photo adjustment using deep neural networks. ACM Trans. Graph. 35:2 (2016), 11:1–11:15.
    • (2016) ACM Trans. Graph. , vol.35 , Issue.2 , pp. 111-11:15
    • Yan, Z.1    Zhang, H.2    Wang, B.3    Paris, S.4    Yu, Y.5
  • 56
    • 78049312324 scopus 로고    scopus 로고
    • Image super-resolution via sparse representation
    • Yang, J.C., Wright, J., Huang, T.S., Ma, Y., Image super-resolution via sparse representation. IEEE Trans. Image Process. 19:11 (2010), 2861–2873.
    • (2010) IEEE Trans. Image Process. , vol.19 , Issue.11 , pp. 2861-2873
    • Yang, J.C.1    Wright, J.2    Huang, T.S.3    Ma, Y.4
  • 57
    • 85030245009 scopus 로고    scopus 로고
    • Deep edge guided recurrent residual learning for image super-resolution
    • Yang, W., Feng, J., Yang, J., et al. Deep edge guided recurrent residual learning for image super-resolution. IEEE Trans. Image Process. 26:12 (2017), 5895–5907.
    • (2017) IEEE Trans. Image Process. , vol.26 , Issue.12 , pp. 5895-5907
    • Yang, W.1    Feng, J.2    Yang, J.3
  • 58
    • 84921051339 scopus 로고    scopus 로고
    • Image super-resolution via 2d tensor regression learning
    • Yin, M., Gao, J., Cai, S., Image super-resolution via 2d tensor regression learning. Comput. Vision Image Understand. 132 (2015), 12–23.
    • (2015) Comput. Vision Image Understand. , vol.132 , pp. 12-23
    • Yin, M.1    Gao, J.2    Cai, S.3
  • 59
    • 84876218439 scopus 로고    scopus 로고
    • Regional spatially adaptive total variation super-resolution with spatial information filtering and clustering
    • Yuan, Q., Zhang, L., Shen, H., Regional spatially adaptive total variation super-resolution with spatial information filtering and clustering. IEEE Trans. Image Process. 22:6 (2013), 2327–2342.
    • (2013) IEEE Trans. Image Process. , vol.22 , Issue.6 , pp. 2327-2342
    • Yuan, Q.1    Zhang, L.2    Shen, H.3
  • 60
    • 85014431264 scopus 로고    scopus 로고
    • Coupled deep autoencoder for single image super-resolution
    • Zeng, K., Yu, J., Wang, R., Li, C., Tao, D., Coupled deep autoencoder for single image super-resolution. IEEE Trans.Cybern. PP:99 (2016), 1–11.
    • (2016) IEEE Trans.Cybern. , vol.PP , Issue.99 , pp. 1-11
    • Zeng, K.1    Yu, J.2    Wang, R.3    Li, C.4    Tao, D.5
  • 61
    • 84884536129 scopus 로고    scopus 로고
    • Image and video restorations via nonlocal kernel regression
    • Zhang, H., Yang, J., Zhang, Y., Huang, T.S., Image and video restorations via nonlocal kernel regression. IEEE Trans. Cybern. 43:3 (2013), 1035–1046.
    • (2013) IEEE Trans. Cybern. , vol.43 , Issue.3 , pp. 1035-1046
    • Zhang, H.1    Yang, J.2    Zhang, Y.3    Huang, T.S.4
  • 62
    • 84928787312 scopus 로고    scopus 로고
    • Video super-resolution with registration-reliability regulation and adaptive total variation.
    • Zhang, X., Xiong, R., Ma, S., Li, G., Gao, W., Video super-resolution with registration-reliability regulation and adaptive total variation. J. Vis. Commun. Image Represent., 2015.
    • (2015) J. Vis. Commun. Image Represent.
    • Zhang, X.1    Xiong, R.2    Ma, S.3    Li, G.4    Gao, W.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.