-
1
-
-
84962128851
-
Image super-resolution using deep convolutional networks
-
Anon, Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38:2 (2016), 295–307.
-
(2016)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.38
, Issue.2
, pp. 295-307
-
-
Anon1
-
2
-
-
84899024949
-
Adaptive multi-column deep neural networks with application to robust image denoising
-
Agostinelli, F., Anderson, M.R., Lee, H., Adaptive multi-column deep neural networks with application to robust image denoising. Proc. Annual Conference on Neural Information Processing Systems, 2013, 1493–1501.
-
(2013)
Proc. Annual Conference on Neural Information Processing Systems
, pp. 1493-1501
-
-
Agostinelli, F.1
Anderson, M.R.2
Lee, H.3
-
3
-
-
33645831966
-
Multispectral image data fusion using {POCS} and super-resolution
-
Aguena, M.L., Mascarenhas, N.D., Multispectral image data fusion using {POCS} and super-resolution. Comput. Vision Image Understand. 102:2 (2006), 178–187.
-
(2006)
Comput. Vision Image Understand.
, vol.102
, Issue.2
, pp. 178-187
-
-
Aguena, M.L.1
Mascarenhas, N.D.2
-
5
-
-
85044081849
-
-
arXiv:1211.1544. Image denoising with multi-layer perceptrons, part 1: comparison with existing algorithms and with bounds. ArXiv preprint
-
Burger, H. C., Schuler, C. J., Harmeling, S., 2012a. Image denoising with multi-layer perceptrons, part 1: comparison with existing algorithms and with bounds. ArXiv preprint, arXiv:1211.1544.
-
(2012)
-
-
Burger, H.C.1
Schuler, C.J.2
Harmeling, S.3
-
6
-
-
85044090483
-
-
arXiv:1211.1552. Image denoising with multi-layer perceptrons, part 2: training trade-offs and analysis of their mechanisms. ArXiv preprint
-
Burger, H. C., Schuler, C. J., Harmeling, S., 2012b. Image denoising with multi-layer perceptrons, part 2: training trade-offs and analysis of their mechanisms. ArXiv preprint, arXiv:1211.1552.
-
(2012)
-
-
Burger, H.C.1
Schuler, C.J.2
Harmeling, S.3
-
7
-
-
5044219639
-
Super-resolution through neighbor embedding
-
I–I
-
Chang, H., Yeung, D.-Y., Xiong, Y., Super-resolution through neighbor embedding. Proc. IEEE Int'l Conf. Computer Vision and Pattern Recognition, vol. 1, 2004 I–I.
-
(2004)
Proc. IEEE Int'l Conf. Computer Vision and Pattern Recognition
, vol.1
-
-
Chang, H.1
Yeung, D.-Y.2
Xiong, Y.3
-
8
-
-
84950145705
-
Deep network cascade for image super-resolution
-
Cui, Z., Chang, H., Shan, S., Zhong, B., Chen, X., Deep network cascade for image super-resolution. Proc. IEEE European Conf. Computer Vision, 2014.
-
(2014)
Proc. IEEE European Conf. Computer Vision
-
-
Cui, Z.1
Chang, H.2
Shan, S.3
Zhong, B.4
Chen, X.5
-
9
-
-
84969191807
-
Image super-resolution using deep convolutional networks
-
Dong, C., Loy, C.C., He, K., Tang, X., Image super-resolution using deep convolutional networks. Proc. IEEE European Conf. Computer Vision, 2014.
-
(2014)
Proc. IEEE European Conf. Computer Vision
-
-
Dong, C.1
Loy, C.C.2
He, K.3
Tang, X.4
-
10
-
-
84863012902
-
Centralized sparse representation for image restoration
-
Dong, W., Zhang, L., Shi, G., Centralized sparse representation for image restoration. Proc. IEEE Int'l Conf. Computer Vision, 2013, 1259–1266.
-
(2013)
Proc. IEEE Int'l Conf. Computer Vision
, pp. 1259-1266
-
-
Dong, W.1
Zhang, L.2
Shi, G.3
-
11
-
-
4544374765
-
Fast and robust multiframe super resolution
-
Farsiu, S., Robinson, M.D., Elad, M., Milanfar, P., Fast and robust multiframe super resolution. IEEE Trans. Image Process. 13:10 (2004), 1327–1344.
-
(2004)
IEEE Trans. Image Process.
, vol.13
, Issue.10
, pp. 1327-1344
-
-
Farsiu, S.1
Robinson, M.D.2
Elad, M.3
Milanfar, P.4
-
12
-
-
34047142726
-
Optical flow based super-resolution: a probabilistic approach
-
Fransens, R., Strecha, C., Gool, L.V., Optical flow based super-resolution: a probabilistic approach. Comput. Vision Image Understand. 106:1 (2007), 106–115.
-
(2007)
Comput. Vision Image Understand.
, vol.106
, Issue.1
, pp. 106-115
-
-
Fransens, R.1
Strecha, C.2
Gool, L.V.3
-
13
-
-
0036500772
-
Example-based super-resolution
-
Freeman, W.T., Jones, T.R., Pasztor, E.C., Example-based super-resolution. IEEE Comput. Graph. Appl. 22 (2002), 56–65.
-
(2002)
IEEE Comput. Graph. Appl.
, vol.22
, pp. 56-65
-
-
Freeman, W.T.1
Jones, T.R.2
Pasztor, E.C.3
-
14
-
-
84986325538
-
Image style transfer using convolutional neural networks
-
Gatys, L.A., Ecker, A.S., Bethge, M., Image style transfer using convolutional neural networks. Proc. IEEE Int'l Conf. Computer Vision and Pattern Recognition, 2016, 2414–2423.
-
(2016)
Proc. IEEE Int'l Conf. Computer Vision and Pattern Recognition
, pp. 2414-2423
-
-
Gatys, L.A.1
Ecker, A.S.2
Bethge, M.3
-
15
-
-
32944471247
-
An image super-resolution algorithm for different error levels per frame
-
He, H., Kondi, L.P., An image super-resolution algorithm for different error levels per frame. IEEE Trans. Image Process. 15:3 (2006), 592–603.
-
(2006)
IEEE Trans. Image Process.
, vol.15
, Issue.3
, pp. 592-603
-
-
He, H.1
Kondi, L.P.2
-
16
-
-
84965157764
-
Bidirectional recurrent convolutional networks for multi-frame super-resolution
-
Huang, Y., Wang, W., Wang, L., Bidirectional recurrent convolutional networks for multi-frame super-resolution. Proc. Annual Conference on Neural Information Processing Systems, 2015, 235–243.
-
(2015)
Proc. Annual Conference on Neural Information Processing Systems
, pp. 235-243
-
-
Huang, Y.1
Wang, W.2
Wang, L.3
-
17
-
-
85042075744
-
Video super-resolution via bidirectional recurrent convolutional networks
-
1–1
-
Huang, Y., Wang, W., Wang, L., Video super-resolution via bidirectional recurrent convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell., PP(99), 2017 1–1.
-
(2017)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.PP
, Issue.99
-
-
Huang, Y.1
Wang, W.2
Wang, L.3
-
18
-
-
77958011399
-
Fusion of range and color images for denoising and resolution enhancement with a non-local filter
-
Huhle, B., Schairer, T., Jenke, P., Straer, W., Fusion of range and color images for denoising and resolution enhancement with a non-local filter. Comput. Vision Image Understand. 114:12 (2010), 1336–1345.
-
(2010)
Comput. Vision Image Understand.
, vol.114
, Issue.12
, pp. 1336-1345
-
-
Huhle, B.1
Schairer, T.2
Jenke, P.3
Straer, W.4
-
19
-
-
0026359271
-
Improving resolution by image registration
-
Irani, M., Peleg, S., Improving resolution by image registration. CVGIP: Graph. Models Image Process. 53:3 (1991), 231–239.
-
(1991)
CVGIP: Graph. Models Image Process.
, vol.53
, Issue.3
, pp. 231-239
-
-
Irani, M.1
Peleg, S.2
-
20
-
-
84964342343
-
Enhancement of dynamic depth scenes by upsampling for precise super-resolution (up-sr)
-
Spontaneous Facial Behaviour Analysis.
-
Ismaeil, K.A., Aouada, D., Mirbach, B., Ottersten, B., Enhancement of dynamic depth scenes by upsampling for precise super-resolution (up-sr). Comput. Vision Image Understand. 147 (2016), 38–49 Spontaneous Facial Behaviour Analysis.
-
(2016)
Comput. Vision Image Understand.
, vol.147
, pp. 38-49
-
-
Ismaeil, K.A.1
Aouada, D.2
Mirbach, B.3
Ottersten, B.4
-
21
-
-
78149296699
-
Natural image denoising with convolutional networks
-
Koller D. Schuurmans D. Bengio Y. Bottou L.
-
Jain, V., Seung, S., Natural image denoising with convolutional networks. Koller, D., Schuurmans, D., Bengio, Y., Bottou, L., (eds.) Proc. Annual Conference on Neural Information Processing Systems, 2009, 769–776.
-
(2009)
Proc. Annual Conference on Neural Information Processing Systems
, pp. 769-776
-
-
Jain, V.1
Seung, S.2
-
22
-
-
84913580146
-
Caffe:convolutional architecture for fast feature embedding
-
Jia, Y., Shelhamer, E., Donahue, J., et al. Caffe:convolutional architecture for fast feature embedding. ACM International Conference on Multimedia, 2014, 675–678.
-
(2014)
ACM International Conference on Multimedia
, pp. 675-678
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
-
23
-
-
27844439071
-
Simultaneous estimation of super-resolved depth map and intensity field using photometric cue
-
Joshi, M.V., Chaudhuri, S., Simultaneous estimation of super-resolved depth map and intensity field using photometric cue. Comput. Vision Image Understand. 101:1 (2006), 31–44.
-
(2006)
Comput. Vision Image Understand.
, vol.101
, Issue.1
, pp. 31-44
-
-
Joshi, M.V.1
Chaudhuri, S.2
-
24
-
-
84881034792
-
Multi-frame super-resolution algorithm for complex motion patterns
-
Kanaev, A.V., Miller, C.W., Multi-frame super-resolution algorithm for complex motion patterns. Opt. Express 21:17 (2013), 19850–19866.
-
(2013)
Opt. Express
, vol.21
, Issue.17
, pp. 19850-19866
-
-
Kanaev, A.V.1
Miller, C.W.2
-
25
-
-
84986325587
-
Accurate image super-resolution using very deep convolutional networks
-
Kim, J., Lee, J.K., Lee, K.M., Accurate image super-resolution using very deep convolutional networks. Proc. IEEE Int'l Conf. Computer Vision and Pattern Recognition, 2016, 1646–1654.
-
(2016)
Proc. IEEE Int'l Conf. Computer Vision and Pattern Recognition
, pp. 1646-1654
-
-
Kim, J.1
Lee, J.K.2
Lee, K.M.3
-
26
-
-
84986253618
-
Deeply-recursive convolutional network for image super-resolution
-
Kim, J., Lee, J.K., Lee, K.M., Deeply-recursive convolutional network for image super-resolution. Proc. IEEE Int'l Conf. Computer Vision and Pattern Recognition, 2016, 1637–1645, 10.1109/CVPR.2016.181.
-
(2016)
Proc. IEEE Int'l Conf. Computer Vision and Pattern Recognition
, pp. 1637-1645
-
-
Kim, J.1
Lee, J.K.2
Lee, K.M.3
-
27
-
-
85041899955
-
Deep laplacian pyramid networks for fast and accurate super-resolution
-
Lai, W.-S., Huang, J.-B., Ahuja, N., Yang, M.-H., Deep laplacian pyramid networks for fast and accurate super-resolution. IEEE Conf. Comput. Vis. Pattern Recognit, 2017.
-
(2017)
IEEE Conf. Comput. Vis. Pattern Recognit
-
-
Lai, W.-S.1
Huang, J.-B.2
Ahuja, N.3
Yang, M.-H.4
-
28
-
-
84973904649
-
Video super-resolution via deep draft-ensemble learning
-
Liao, R., Tao, X., Li, R., Ma, Z., Jia, J., Video super-resolution via deep draft-ensemble learning. Proc. IEEE Int'l Conf. Computer Vision, 2015, 531–539.
-
(2015)
Proc. IEEE Int'l Conf. Computer Vision
, pp. 531-539
-
-
Liao, R.1
Tao, X.2
Li, R.3
Ma, Z.4
Jia, J.5
-
29
-
-
84973904649
-
Video super-resolution via deep draft-ensemble learning
-
Liao, R., Tao, X., Li, R., Ma, Z., Jia, J., Video super-resolution via deep draft-ensemble learning. Proc. IEEE Int'l Conf. Computer Vision, 2015, 531–539.
-
(2015)
Proc. IEEE Int'l Conf. Computer Vision
, pp. 531-539
-
-
Liao, R.1
Tao, X.2
Li, R.3
Ma, Z.4
Jia, J.5
-
30
-
-
84891593494
-
On bayesian adaptive video super resolution
-
Liu, C., Sun, D., On bayesian adaptive video super resolution. IEEE Trans. Pattern Anal. Mach. Intell. 36:2 (2014), 346–360.
-
(2014)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.36
, Issue.2
, pp. 346-360
-
-
Liu, C.1
Sun, D.2
-
31
-
-
84891274311
-
Multiresolution imaging
-
Lu, X., Li, X., Multiresolution imaging. IEEE Trans. Cybern. 44:1 (2014), 149–160.
-
(2014)
IEEE Trans. Cybern.
, vol.44
, Issue.1
, pp. 149-160
-
-
Lu, X.1
Li, X.2
-
32
-
-
85010509972
-
Learning a no-reference quality metric for single-image super-resolution
-
Ma, C., Yang, C.-Y., Yang, X., Yang, M.-H., Learning a no-reference quality metric for single-image super-resolution. Comput. Vision Image Understand., 2017.
-
(2017)
Comput. Vision Image Understand.
-
-
Ma, C.1
Yang, C.-Y.2
Yang, X.3
Yang, M.-H.4
-
33
-
-
77952739016
-
Non-local sparse models for image restoration
-
Mairal, J., Bach, F., Ponce, J., Sapiro, G., Zisserman, A., Non-local sparse models for image restoration. Proc. IEEE Int'l Conf. Computer Vision, 2009, 2272–2279.
-
(2009)
Proc. IEEE Int'l Conf. Computer Vision
, pp. 2272-2279
-
-
Mairal, J.1
Bach, F.2
Ponce, J.3
Sapiro, G.4
Zisserman, A.5
-
34
-
-
55649094906
-
Image super-resolution by TV-regularization and bregman iteration
-
Marquina, A., Osher, S., Image super-resolution by TV-regularization and bregman iteration. J. Sci. Comput. 37:3 (2008), 367–382.
-
(2008)
J. Sci. Comput.
, vol.37
, Issue.3
, pp. 367-382
-
-
Marquina, A.1
Osher, S.2
-
35
-
-
84885377642
-
Feature-domain super-resolution for iris recognition
-
Nguyen, K., Fookes, C., Sridharan, S., Denman, S., Feature-domain super-resolution for iris recognition. Comput. Vision Image Understand. 117:10 (2013), 1526–1535.
-
(2013)
Comput. Vision Image Understand.
, vol.117
, Issue.10
, pp. 1526-1535
-
-
Nguyen, K.1
Fookes, C.2
Sridharan, S.3
Denman, S.4
-
36
-
-
70349203964
-
Region-based weighted-norm approach to video super-resolution with adaptive regularization
-
Omer, O.A., Tanaka, T., Region-based weighted-norm approach to video super-resolution with adaptive regularization. Proc. IEEE Int'l Conf. Acoustics, Speech, and Signal Processing, 2009, 833–836.
-
(2009)
Proc. IEEE Int'l Conf. Acoustics, Speech, and Signal Processing
, pp. 833-836
-
-
Omer, O.A.1
Tanaka, T.2
-
37
-
-
84973898084
-
Image super-resolution with fast approximate convolutional sparse coding
-
Osendorfer, C., Soyer, H., van der Smagt, P., Image super-resolution with fast approximate convolutional sparse coding. Neural Information Processing, 2014.
-
(2014)
Neural Information Processing
-
-
Osendorfer, C.1
Soyer, H.2
van der Smagt, P.3
-
38
-
-
58149144703
-
Generalizing the nonlocal-means to super-resolution reconstruction
-
Protter, M., Elad, M., Takeda, H., Milanfar, P., Generalizing the nonlocal-means to super-resolution reconstruction. IEEE Trans. Image Process. 18:1 (2009), 36–51.
-
(2009)
IEEE Trans. Image Process.
, vol.18
, Issue.1
, pp. 36-51
-
-
Protter, M.1
Elad, M.2
Takeda, H.3
Milanfar, P.4
-
39
-
-
44049111982
-
Nonlinear total variation based noise removal algorithms
-
Rudin, L.I., Osher, S., Fatemi, E., Nonlinear total variation based noise removal algorithms. Physica D 60 (1992), 259–268.
-
(1992)
Physica D
, vol.60
, pp. 259-268
-
-
Rudin, L.I.1
Osher, S.2
Fatemi, E.3
-
41
-
-
84976521325
-
Learning to Deblur
-
Schuler, C.J., Hirsch, M., Harmeling, S., Schölkopf, B., Learning to Deblur. IEEE Trans. Pattern Anal. Mach. Intell. 38:7 (2016), 1439–1451.
-
(2016)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.38
, Issue.7
, pp. 1439-1451
-
-
Schuler, C.J.1
Hirsch, M.2
Harmeling, S.3
Schölkopf, B.4
-
42
-
-
84939939912
-
Learning ramp transformation for single image super-resolution
-
Singh, A., Ahuja, N., Learning ramp transformation for single image super-resolution. Comput. Vision Image Understand. 135 (2015), 109–125.
-
(2015)
Comput. Vision Image Understand.
, vol.135
, pp. 109-125
-
-
Singh, A.1
Ahuja, N.2
-
43
-
-
79957490936
-
Gradient profile prior and its applications in image super-resolution and enhancement
-
Sun, J., Sun, J., Xu, Z., Shum, H.Y., Gradient profile prior and its applications in image super-resolution and enhancement. IEEE Trans. Image Process. 20:6 (2011), 1529–1542.
-
(2011)
IEEE Trans. Image Process.
, vol.20
, Issue.6
, pp. 1529-1542
-
-
Sun, J.1
Sun, J.2
Xu, Z.3
Shum, H.Y.4
-
44
-
-
69349102108
-
Super-resolution without explicit subpixel motion estimation
-
Takeda, H., Milanfar, P., Protter, M., Elad, M., Super-resolution without explicit subpixel motion estimation. IEEE Trans. Image Process. 18:9 (2009), 1958–1975.
-
(2009)
IEEE Trans. Image Process.
, vol.18
, Issue.9
, pp. 1958-1975
-
-
Takeda, H.1
Milanfar, P.2
Protter, M.3
Elad, M.4
-
45
-
-
69349102108
-
Super-resolution without explicit subpixel motion estimation
-
Takeda, H., Milanfar, P., Protter, M., Elad, M., Super-resolution without explicit subpixel motion estimation. IEEE Trans. Image Process. 18:9 (2009), 1958–1975.
-
(2009)
IEEE Trans. Image Process.
, vol.18
, Issue.9
, pp. 1958-1975
-
-
Takeda, H.1
Milanfar, P.2
Protter, M.3
Elad, M.4
-
46
-
-
84898792173
-
Anchored neighborhood regression for fast example-based super-resolution
-
Timofte, R., De, V., Van Gool, L., Anchored neighborhood regression for fast example-based super-resolution. Proc. IEEE Int'l Conf. Computer Vision, 2013.
-
(2013)
Proc. IEEE Int'l Conf. Computer Vision
-
-
Timofte, R.1
De, V.2
Van Gool, L.3
-
47
-
-
84964362868
-
A+: Adjusted anchored neighborhood regression for fast super-resolution
-
Timofte, R., De Smet, V., Van Gool, L., A+: Adjusted anchored neighborhood regression for fast super-resolution. Proc. IEEE Asia Conf. Computer Vision, 2014.
-
(2014)
Proc. IEEE Asia Conf. Computer Vision
-
-
Timofte, R.1
De Smet, V.2
Van Gool, L.3
-
48
-
-
84946887644
-
Semantic super-resolution: when and where is it useful?
-
Timofte, R., Smet, V.D., Gool, L.V., Semantic super-resolution: when and where is it useful?. Comput. Vision Image Understand. 142 (2016), 1–12.
-
(2016)
Comput. Vision Image Understand.
, vol.142
, pp. 1-12
-
-
Timofte, R.1
Smet, V.D.2
Gool, L.V.3
-
49
-
-
79551480483
-
Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
-
Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.-A., Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res, 2010.
-
(2010)
J. Mach. Learn. Res
-
-
Vincent, P.1
Larochelle, H.2
Lajoie, I.3
Bengio, Y.4
Manzagol, P.-A.5
-
50
-
-
84973897612
-
Deep networks for image super-resolution with sparse prior
-
Wang, Z., Liu, D., Yang, J., Han, W., Huang, T., Deep networks for image super-resolution with sparse prior. Proc. IEEE Int'l Conf. Computer Vision, 2015, 370–378.
-
(2015)
Proc. IEEE Int'l Conf. Computer Vision
, pp. 370-378
-
-
Wang, Z.1
Liu, D.2
Yang, J.3
Han, W.4
Huang, T.5
-
51
-
-
84973897612
-
Deep networks for image super-resolution with sparse prior
-
Wang, Z., Liu, D., Yang, J., Han, W., Huang, T., Deep networks for image super-resolution with sparse prior. Proc. IEEE Int'l Conf. Computer Vision, 2015, 370–378, 10.1109/ICCV.2015.50.
-
(2015)
Proc. IEEE Int'l Conf. Computer Vision
, pp. 370-378
-
-
Wang, Z.1
Liu, D.2
Yang, J.3
Han, W.4
Huang, T.5
-
52
-
-
84894362317
-
Single image super-resolution using self-similarity and generalized nonlocal mean
-
Wu, W., Zheng, C., Single image super-resolution using self-similarity and generalized nonlocal mean. IEEE International Conference of IEEE Region, 2013, 1–4.
-
(2013)
IEEE International Conference of IEEE Region
, pp. 1-4
-
-
Wu, W.1
Zheng, C.2
-
53
-
-
84877728447
-
Image denoising and inpainting with deep neural networks
-
Pereira F. Burges C.J.C. Bottou L. Weinberger K.Q.
-
Xie, J., Xu, L., Chen, E., Image denoising and inpainting with deep neural networks. Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q., (eds.) Proc. Annual Conference on Neural Information Processing Systems, 2012, 341–349.
-
(2012)
Proc. Annual Conference on Neural Information Processing Systems
, pp. 341-349
-
-
Xie, J.1
Xu, L.2
Chen, E.3
-
54
-
-
84937878882
-
Deep convolutional neural network for image deconvolution
-
Xu, L., Ren, J.S., Liu, C., Jia, J., Deep convolutional neural network for image deconvolution. Proc. Annual Conference on Neural Information Processing Systems, 2014, 1790–1798.
-
(2014)
Proc. Annual Conference on Neural Information Processing Systems
, pp. 1790-1798
-
-
Xu, L.1
Ren, J.S.2
Liu, C.3
Jia, J.4
-
55
-
-
84961678080
-
Automatic photo adjustment using deep neural networks
-
Yan, Z., Zhang, H., Wang, B., Paris, S., Yu, Y., Automatic photo adjustment using deep neural networks. ACM Trans. Graph. 35:2 (2016), 11:1–11:15.
-
(2016)
ACM Trans. Graph.
, vol.35
, Issue.2
, pp. 111-11:15
-
-
Yan, Z.1
Zhang, H.2
Wang, B.3
Paris, S.4
Yu, Y.5
-
56
-
-
78049312324
-
Image super-resolution via sparse representation
-
Yang, J.C., Wright, J., Huang, T.S., Ma, Y., Image super-resolution via sparse representation. IEEE Trans. Image Process. 19:11 (2010), 2861–2873.
-
(2010)
IEEE Trans. Image Process.
, vol.19
, Issue.11
, pp. 2861-2873
-
-
Yang, J.C.1
Wright, J.2
Huang, T.S.3
Ma, Y.4
-
57
-
-
85030245009
-
Deep edge guided recurrent residual learning for image super-resolution
-
Yang, W., Feng, J., Yang, J., et al. Deep edge guided recurrent residual learning for image super-resolution. IEEE Trans. Image Process. 26:12 (2017), 5895–5907.
-
(2017)
IEEE Trans. Image Process.
, vol.26
, Issue.12
, pp. 5895-5907
-
-
Yang, W.1
Feng, J.2
Yang, J.3
-
58
-
-
84921051339
-
Image super-resolution via 2d tensor regression learning
-
Yin, M., Gao, J., Cai, S., Image super-resolution via 2d tensor regression learning. Comput. Vision Image Understand. 132 (2015), 12–23.
-
(2015)
Comput. Vision Image Understand.
, vol.132
, pp. 12-23
-
-
Yin, M.1
Gao, J.2
Cai, S.3
-
59
-
-
84876218439
-
Regional spatially adaptive total variation super-resolution with spatial information filtering and clustering
-
Yuan, Q., Zhang, L., Shen, H., Regional spatially adaptive total variation super-resolution with spatial information filtering and clustering. IEEE Trans. Image Process. 22:6 (2013), 2327–2342.
-
(2013)
IEEE Trans. Image Process.
, vol.22
, Issue.6
, pp. 2327-2342
-
-
Yuan, Q.1
Zhang, L.2
Shen, H.3
-
60
-
-
85014431264
-
Coupled deep autoencoder for single image super-resolution
-
Zeng, K., Yu, J., Wang, R., Li, C., Tao, D., Coupled deep autoencoder for single image super-resolution. IEEE Trans.Cybern. PP:99 (2016), 1–11.
-
(2016)
IEEE Trans.Cybern.
, vol.PP
, Issue.99
, pp. 1-11
-
-
Zeng, K.1
Yu, J.2
Wang, R.3
Li, C.4
Tao, D.5
-
61
-
-
84884536129
-
Image and video restorations via nonlocal kernel regression
-
Zhang, H., Yang, J., Zhang, Y., Huang, T.S., Image and video restorations via nonlocal kernel regression. IEEE Trans. Cybern. 43:3 (2013), 1035–1046.
-
(2013)
IEEE Trans. Cybern.
, vol.43
, Issue.3
, pp. 1035-1046
-
-
Zhang, H.1
Yang, J.2
Zhang, Y.3
Huang, T.S.4
-
62
-
-
84928787312
-
Video super-resolution with registration-reliability regulation and adaptive total variation.
-
Zhang, X., Xiong, R., Ma, S., Li, G., Gao, W., Video super-resolution with registration-reliability regulation and adaptive total variation. J. Vis. Commun. Image Represent., 2015.
-
(2015)
J. Vis. Commun. Image Represent.
-
-
Zhang, X.1
Xiong, R.2
Ma, S.3
Li, G.4
Gao, W.5
-
63
-
-
3543067381
-
Is super-resolution with optical flow feasible?
-
Berlin, Heidelberg
-
Zhao, W., Sawhney, H., Is super-resolution with optical flow feasible?. Proc. IEEE European Conf. Computer Vision, 2002, Berlin, Heidelberg.
-
(2002)
Proc. IEEE European Conf. Computer Vision
-
-
Zhao, W.1
Sawhney, H.2
|