-
1
-
-
67749112023
-
Deconvolution of blood microarray data identifies cellular activation patterns in systemic lupus erythematosus
-
ABBAS, A. R., WOLSLEGEL, K., SESHASAYEE, D., MODRUSAN, Z. and CLARK, H. F. (2009). Deconvolution of blood microarray data identifies cellular activation patterns in systemic lupus erythematosus. PLoS ONE 4 e6098.
-
(2009)
Plos ONE
, vol.4
-
-
Abbas, A.R.1
Wolslegel, K.2
Seshasayee, D.3
Modrusan, Z.4
Clark, H.F.5
-
4
-
-
84887109584
-
Accounting for technical noise in single-cell RNA-seq experiments. Nat
-
BRENNECKE, P., ANDERS, S., KIM, J. K., KOŁODZIEJCZYK, A. A., ZHANG, X., PROSERPIO, V., BAYING, B., BENES, V., TEICHMANN, S. A., MARIONI, J. C. et al. (2013). Accounting for technical noise in single-cell RNA-seq experiments. Nat. Methods 10 1093–1095.
-
(2013)
Methods
, vol.10
, pp. 1093-1095
-
-
Brennecke, P.1
Anders, S.2
Kim, J.K.3
Zhang, A.A.4
Proserpio, X.5
Baying, V.6
Benes, B.7
Teichmann, V.8
Marioni, S.A.J.C.9
-
5
-
-
84952674076
-
Human cerebral organoids recapitulate gene expression programs of fetal neocortex development
-
CAMP, J. G., BADSHA, F., FLORIO, M., KANTON, S., GERBER, T., WILSCHBRÄUNINGER, M., LEWITUS, E., SYKES, A., HEVERS, W., LANCASTER, M. et al. (2015). Human cerebral organoids recapitulate gene expression programs of fetal neocortex development. Proc. Natl. Acad. Sci. USA 112 15672–15677.
-
(2015)
Proc. Natl. Acad. Sci. USA
, vol.112
, pp. 15672-15677
-
-
Camp, J.G.1
Badsha, F.2
Florio, M.3
Kanton, S.4
Gerber, T.5
Wilschbräuninger, M.6
Lewitus, E.7
Sykes, A.8
Hevers, W.9
Lancaster, M.10
-
6
-
-
84937730674
-
Explaining the Gibbs sampler
-
MR1183069
-
CASELLA, G. and GEORGE, E. I. (1992). Explaining the Gibbs sampler. Amer. Statist. 46 167–174. MR1183069
-
(1992)
Amer. Statist.
, vol.46
, pp. 167-174
-
-
Casella, G.1
George, E.I.2
-
7
-
-
0002629270
-
Maximum likelihood from incomplete data via the EM algorithm
-
With discussion. MR0501537
-
DEMPSTER, A. P., LAIRD, N. M. and RUBIN, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Statist. Soc. Ser. B 39 1–38. With discussion. MR0501537
-
(1977)
J. Roy. Statist. Soc. Ser. B
, vol.39
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
9
-
-
85044210504
-
Online but accurate inference for latent variable models with local Gibbs sampling
-
DUPUY, C. and BACH, F. (2016). Online but accurate inference for latent variable models with local Gibbs sampling. J. Mach. Learn. Res. 1.
-
(2016)
J. Mach. Learn. Res
, vol.1
-
-
Dupuy, C.1
Bach, F.2
-
10
-
-
84922311090
-
Combinatorial labeling of single cells for gene expression cytometry
-
FAN, H. C., FU, G. K. and FODOR, S. P. A. (2015). Combinatorial labeling of single cells for gene expression cytometry. Science 347 1258367.
-
(2015)
Science
, vol.347
-
-
Fan, H.C.1
Fu, G.K.2
Fodor, S.P.A.3
-
11
-
-
84951574149
-
MAST: A flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data
-
FINAK, G., MCDAVID, A., YAJIMA, M., DENG, J., GERSUK, V., SHALEK, A. K., SLICHTER, C. K., MILLER, H. W., MCELRATH, M. J., PRLIC, M., LINSLEY, P. S. and GOT-TARDO, R. (2015). MAST: A flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol. 16 278.
-
(2015)
Genome Biol
, vol.16
, pp. 278
-
-
Finak, G.1
McDavid, A.2
Yajima, M.3
Deng, J.4
Gersukshalek, V.5
Slichter, A.K.C.K.6
Miller7
McElrath, H.W.M.J.8
Prlic, M.9
Linsley, P.S.10
Got-Tardo, R.11
-
12
-
-
84988697987
-
Gene expression elucidates functional impact of polygenic risk for schizophrenia
-
FROMER, M., ROUSSOS, P., SIEBERTS, S. K., JOHNSON, J. S., KAVANAGH, D. H., PERUMAL, T. M., RUDERFER, D. M., OH, E. C., TOPOL, A. ET AL. (2016). Gene expression elucidates functional impact of polygenic risk for schizophrenia. Nat. Neurosci. 19 1442–1453.
-
(2016)
Nat. Neurosci.
, vol.19
, pp. 1442-1453
-
-
Fromer, M.1
Roussos, P.2
Sieberts, S.K.3
Johnson, J.S.4
Kavanagh, D.H.5
Perumal, T.M.6
Ruderfer, D.M.7
Oh, E.C.8
Topol, A.E.A.9
-
13
-
-
84860370062
-
Semi-supervised nonnegative matrix factorization for gene expression deconvolution: A case study
-
GAUJOUX, R. and SEOIGHE, C. (2012). Semi-supervised nonnegative matrix factorization for gene expression deconvolution: A case study. Infect. Genet. Evol. 12 913–921.
-
(2012)
Infect. Genet. Evol
, vol.12
, pp. 913-921
-
-
Gaujoux, R.1
Seoighe, C.2
-
14
-
-
84950453304
-
Sampling-based approaches to calculating marginal densities
-
MR1141740
-
GELFAND, A. E. and SMITH, A. F. M. (1990). Sampling-based approaches to calculating marginal densities. J. Amer. Statist. Assoc. 85 398–409. MR1141740
-
(1990)
J. Amer. Statist. Assoc.
, vol.85
, pp. 398-409
-
-
Gelfand, A.E.1
Smith, A.F.M.2
-
15
-
-
0021518209
-
Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images
-
GEMAN, S. and GEMAN, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6 721–741.
-
(1984)
IEEE Trans. Pattern Anal. Mach. Intell.
, Issue.6
, pp. 721-741
-
-
Geman, S.1
Geman, D.2
-
17
-
-
84941201582
-
Single-cell messenger RNA sequencing reveals rare intestinal cell types
-
GRÜN, D., LYUBIMOVA, A., KESTER, L., WIEBRANDS, K., BASAK, O., SASAKI, N., CLEVERS, H. and VAN OUDENAARDEN, A. (2015). Single-cell messenger RNA sequencing reveals rare intestinal cell types. Nature 525 251–255.
-
(2015)
Nature
, vol.525
, pp. 251-255
-
-
Grün, D.1
Lyubimova, A.2
Kester, L.3
Wiebrands, K.4
Basak, O.5
Sasaki, N.6
Clevers, H.7
van Oudenaarden, A.8
-
18
-
-
84878682420
-
The genotype-tissue expression (GTEx) project
-
GTEX CONSORTIUM (2013). The genotype-tissue expression (GTEx) project. Nat. Genet. 45 580–585.
-
(2013)
Nat. Genet.
, vol.45
, pp. 580-585
-
-
-
19
-
-
85027696020
-
A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications
-
HAQUE, A., ENGEL, J., TEICHMANN, S. A. and LÖNNBERG, T. (2017). A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications. Gen. Med. 9 75.
-
(2017)
Gen. Med.
, vol.9
, Issue.75
-
-
Haque, A.1
Engel, J.2
Teichmann, S.A.3
Lönnberg, T.4
-
20
-
-
85013628374
-
Diverse non-genetic, allele-specific expression effects shape genetic architecture at the cellular level in the mammalian brain
-
HUANG, W.-C., FERRIS, E., CHENG, T., HÖRNDLI, C. S., GLEASON, K., TAMMINGA, C., WAG-NER, J. D., BOUCHER, K. M., CHRISTIAN, J. L. and GREGG, C. (2017a). Diverse non-genetic, allele-specific expression effects shape genetic architecture at the cellular level in the mammalian brain. Neuron 93 1094–1109.e7.
-
(2017)
Neuron
, vol.93
-
-
Huang, W.-C.1
Ferris, E.2
Cheng, T.3
Hörndli, C.S.4
Gleason, K.5
Tamminga, C.6
Wag-Ner, J.D.7
Boucher, K.M.8
Christian, J.L.9
Gregg, C.10
-
21
-
-
85029229611
-
Gene expression recovery for single cell RNA sequencing
-
HUANG, M., WANG, J., TORRE, E., DUECK, H., SHAFFER, S., BONASIO, R., MURRAY, J., RAJ, A., LI, M. and ZHANG, N. R. (2017b). Gene expression recovery for single cell RNA sequencing. BioRxiv. DOI: 10.1101/138677.
-
(2017)
Biorxiv
-
-
Huang, M.1
Wang, J.2
Torre, E.3
Dueck, H.4
Shaffer, S.5
Bonasio, R.6
Murray, J.7
Raj, A.8
Li, M.9
Zhang, N.R.10
-
22
-
-
0033225865
-
An introduction to variational methods for graphical models
-
JORDAN, M. I., GHAHRAMANI, Z., JAAKKOLA, T. S. and SAUL, L. K. (1999). An introduction to variational methods for graphical models. Mach. Learn. 37 183–233.
-
(1999)
Mach. Learn.
, vol.37
, pp. 183-233
-
-
Jordan, M.I.1
Ghahramani, Z.2
Jaakkola, T.S.3
Saul, L.K.4
-
23
-
-
80054993342
-
Spatio-temporal transcriptome of the human brain
-
KANG, H. J., KAWASAWA, Y. I., CHENG, F., ZHU, Y., XU, X., LI, M., SOUSA, A. M., PLETIKOS, M., MEYER, K. A., SEDMAK, G. et al. (2011). Spatio-temporal transcriptome of the human brain. Nature 478 483–489.
-
(2011)
Nature
, vol.478
, pp. 483-489
-
-
Kang, H.J.1
Kawasawa, Y.I.2
Cheng, F.3
Zhu, Y.4
Xu, X.5
Li, M.6
Sousa, A.M.7
Pletikos, M.8
Meyer, K.A.9
Sedmak, G.10
-
24
-
-
84903574951
-
Bayesian approach to single-cell differential expression analysis
-
KHARCHENKO, P. V., SILBERSTEIN, L. and SCADDEN, D. T. (2014). Bayesian approach to single-cell differential expression analysis. Nat. Methods 11 740–742.
-
(2014)
Nat. Methods
, vol.11
, pp. 740-742
-
-
Kharchenko, P.V.1
Silberstein, L.2
Scadden, D.T.3
-
25
-
-
84929687805
-
The technology and biology of single-cell RNA sequencing
-
KOLODZIEJCZYK, A. A., KIM, J. K., SVENSSON, V., MARIONI, J. C. and TEICHMANN, S. A. (2015). The technology and biology of single-cell RNA sequencing. Mol. Cell 58 610–620.
-
(2015)
Mol. Cell
, vol.58
, pp. 610-620
-
-
Kolodziejczyk, A.A.1
Kim, J.K.2
Svensson, V.3
Marioni, J.C.4
Teichmann, S.A.5
-
26
-
-
0001093042
-
Algorithms for non-negative matrix factorization
-
MIT Press, Cambridge, MA
-
LEE, D. D. and SEUNG, H. S. (2000). Algorithms for non-negative matrix factorization. In Advances in Neural Information Processing Systems 13 556–562. MIT Press, Cambridge, MA.
-
(2000)
Advances in Neural Information Processing Systems
, vol.13
, pp. 556-562
-
-
Lee, D.D.1
Seung, H.S.2
-
27
-
-
85016502564
-
CIDR: Ultrafast and accurate clustering through imputation for single-cell RNA-seq data
-
LIN, P., TROUP, M. and HO, J. W. K. (2017). CIDR: Ultrafast and accurate clustering through imputation for single-cell RNA-seq data. Genome Biol. 18 59.
-
(2017)
Genome Biol
, vol.18
, pp. 59
-
-
Lin, P.1
Troup, M.2
Ho, J.W.K.3
-
28
-
-
84928927858
-
Robust enumeration of cell subsets from tissue expression profiles
-
NEWMAN, A. M., LIU, C. L., GREEN, M. R., GENTLES, A. J., FENG, W., XU, Y., HOANG, C. D., DIEHN, M. and ALIZADEH, A. A. (2015). Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 12 453–457.
-
(2015)
Nat. Methods
, vol.12
, pp. 453-457
-
-
Newman, A.M.1
Liu, C.L.2
Green, M.R.3
Gentles, A.J.4
Feng, W.5
Xu, Y.6
Hoang, C.D.7
Diehn, M.8
Alizadeh, A.A.9
-
29
-
-
84885753889
-
Using variability in gene expression as a tool for studying gene regulation
-
PADOVANMERHAR, O. and RAJ, A. (2013). Using variability in gene expression as a tool for studying gene regulation. Wiley Interdiscip. Rev., Syst. Biol. Med. 5 751–759.
-
(2013)
Wiley Interdiscip. Rev., Syst. Biol. Med.
, vol.5
, pp. 751-759
-
-
Padovanmerhar, O.1
Raj, A.2
-
30
-
-
84955706109
-
ZIFA: Dimensionality reduction for zero-inflated single-cell gene expression analysis
-
PIERSON, E. and YAU, C. (2015). ZIFA: Dimensionality reduction for zero-inflated single-cell gene expression analysis. Genome Biol. 16 241.
-
(2015)
Genome Biol
, vol.16
, pp. 241
-
-
Pierson, E.1
Yau, C.2
-
31
-
-
84884917671
-
Bayesian inference for logistic models using Pólya–gamma latent variables
-
MR3174712
-
POLSON, N. G., SCOTT, J. G. and WINDLE, J. (2013). Bayesian inference for logistic models using Pólya–gamma latent variables. J. Amer. Statist. Assoc. 108 1339–1349. MR3174712
-
(2013)
J. Amer. Statist. Assoc.
, vol.108
, pp. 1339-1349
-
-
Polson, N.G.1
Scott, J.G.2
Windle, J.3
-
33
-
-
77249157887
-
Biomarker discovery in heterogeneous tissue samples-taking the in-silico deconfounding approach
-
REPSILBER, D., KERN, S., TELAAR, A., WALZL, G., BLACK, G. F., SELBIG, J., PARIDA, S. K., KAUFMANN, S. H. E. and JACOBSEN, M. (2010). Biomarker discovery in heterogeneous tissue samples-taking the in-silico deconfounding approach. BMC Bioinform. 11 27.
-
(2010)
BMC Bioinform
, vol.11
, pp. 27
-
-
Repsilber, D.1
Kern, S.2
Telaar, A.3
Walzl, G.4
Black, G.F.5
Selbig, J.6
Parida, S.K.7
Kaufmann, S.H.E.8
Jacobsen, M.9
-
34
-
-
84929151009
-
Spatial reconstruction of single-cell gene expression data
-
SATIJA, R., FARRELL, J. A., GENNERT, D., SCHIER, A. F. and REGEV, A. (2015). Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33 495–502.
-
(2015)
Nat. Biotechnol.
, vol.33
, pp. 495-502
-
-
Satija, R.1
Farrell, J.A.2
Gennert, D.3
Schier, A.F.4
Regev, A.5
-
35
-
-
77951634577
-
Cell type-specific gene expression differences in complex tissues
-
SHE-NORR, S. S., TIBSHIRANI, R., KHATRI, P., BODIAN, D. L., STAEDTLER, F., PERRY, N. M., HASTIE, T., SARWAL, M. M., DAVIS, M. M. and BUTTE, A. J. (2010). Cell type-specific gene expression differences in complex tissues. Nat. Methods 7 287–289.
-
(2010)
Nat. Methods
, vol.7
, pp. 287-289
-
-
She-Norr, S.S.1
Tibshirani, R.2
Khatri, P.3
Bodian, D.L.4
Staedtler, F.5
Perry, N.M.6
Hastie, T.7
Sarwal, M.M.8
Davis, M.M.9
Butte, A.J.10
-
36
-
-
84876555679
-
Allen brain atlas: An integrated spatio-temporal portal for exploring the central nervous system
-
SUNKIN, S. M., NG, L., LAU, C., DOLBEARE, T., GILBERT, T. L., THOMPSON, C. L., HAWRY-LYCZ, M. and DANG, C. (2013). Allen brain atlas: An integrated spatio-temporal portal for exploring the central nervous system. Nucleic Acids Res. 41 D996–D1008.
-
(2013)
Nucleic Acids Res
, vol.41
, pp. DD996-D1008
-
-
Sunkinnglaudolbearegilbert, S.M.L.C.T.T.L.1
Thompson, C.L.2
Hawry-Lycz, M.3
Dang, C.4
-
37
-
-
84900873950
-
The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells
-
TRAPNELL, C., CACCHIARELLI, D., GRIMSBY, J., POKHAREL, P., LI, S., MORSE, M., LENNON, N. J., LIVAK, K. J., MIKKELSEN, T. S. and RINN, J. L. (2014). The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32 381–386.
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 381-386
-
-
Trapnell, C.1
Cacchiarelli, D.2
Grimsby, J.3
Pokharel, P.4
Li, S.5
Morse, M.6
Lennon, N.J.7
Livak, K.J.8
Mikkelsen, T.S.9
Rinn, J.L.10
-
39
-
-
84962861088
-
Beyond comparisons of means: Understanding changes in gene expression at the single-cell level
-
VALLEJOS, C. A., RICHARDSON, S. and MARIONI, J. C. (2016). Beyond comparisons of means: Understanding changes in gene expression at the single-cell level. Genome Biol. 17 1.
-
(2016)
Genome Biol.
, vol.17
, pp. 1
-
-
Vallejos, C.A.1
Richardson, S.2
Marioni, J.C.3
-
40
-
-
85021816036
-
Normalizing single-cell RNA sequencing data: Challenges and opportunities
-
VALLEJOS, C. A., RISSO, D., SCIALDONE, A., DUDOIT, S. and MARIONI, J. C. (2017). Normalizing single-cell RNA sequencing data: Challenges and opportunities. Nat. Methods 14 565–571.
-
(2017)
Nat. Methods
, vol.14
, pp. 565-571
-
-
Vallejos, C.A.1
Risso, D.2
Scialdone, A.3
Dudoit, S.4
Marioni, J.C.5
-
41
-
-
84984845042
-
Beta-Poisson model for single-cell RNA-seq data analyses
-
VU, T. N., WILLS, Q. F., KALARI, K. R., NIU, N., WANG, L., RANTALAINEN, M. and PAWI-TAN, Y. (2016). Beta-Poisson model for single-cell RNA-seq data analyses. Bioinformatics 32 2128–35.
-
(2016)
Bioinformatics
, vol.32
, pp. 2128-2135
-
-
Vu1
Wills, T.N.Q.F.2
Kalariniuwangrantalainen, K.R.N.L.M.3
Pawi-Tan, Y.4
-
42
-
-
65749118363
-
Graphical models, exponential families, and variational inference
-
WAINWRIGHT, M. J. and JORDAN, M. I. (2008). Graphical models, exponential families, and variational inference. Foundations and Trends® in Machine Learning 1 1–305.
-
(2008)
Foundations and Trends® in Machine Learning
, vol.1
, pp. 1-305
-
-
Wainwright, M.J.1
Jordan, M.I.2
-
43
-
-
84874608326
-
Digital sorting of complex tissues for cell type-specific gene expression profiles
-
ZHONG, Y., WAN, Y.-W., PANG, K., CHOW, L. M. and LIU, Z. (2013). Digital sorting of complex tissues for cell type-specific gene expression profiles. BMC Bioinform. 14 1.
-
(2013)
BMC Bioinform
, vol.14
, Issue.1
-
-
Zhong, Y.1
Wan, Y.-W.2
Pang, K.3
Chow, L.M.4
Liu, Z.5
-
44
-
-
85044199072
-
-
ZHU, L., LEI, J., DEVLIN, B. and ROEDER, K. (2018). Supplement to “A unified statistical framework for single cell and bulk RNA sequencing data.” DOI:10.1214/17AOAS1110SUPP.
-
(2018)
Supplement to “A Unified Statistical Framework for Single Cell and Bulk RNA Sequencing Data
-
-
Zhu, L.1
Lei, J.2
Devlin, B.3
Roeder, K.4
|