메뉴 건너뛰기




Volumn 12, Issue 1, 2018, Pages 609-632

A unified statistical framework for single cell and bulk rna sequencing data

Author keywords

EM algorithm; Empirical Bayes; Gibbs sampling; Hierarchical model; Single cell RNA sequencing

Indexed keywords


EID: 85044199072     PISSN: 19326157     EISSN: 19417330     Source Type: Journal    
DOI: 10.1214/17-AOAS1110     Document Type: Article
Times cited : (57)

References (44)
  • 1
    • 67749112023 scopus 로고    scopus 로고
    • Deconvolution of blood microarray data identifies cellular activation patterns in systemic lupus erythematosus
    • ABBAS, A. R., WOLSLEGEL, K., SESHASAYEE, D., MODRUSAN, Z. and CLARK, H. F. (2009). Deconvolution of blood microarray data identifies cellular activation patterns in systemic lupus erythematosus. PLoS ONE 4 e6098.
    • (2009) Plos ONE , vol.4
    • Abbas, A.R.1    Wolslegel, K.2    Seshasayee, D.3    Modrusan, Z.4    Clark, H.F.5
  • 2
    • 85023644081 scopus 로고    scopus 로고
    • Variational inference: A review for statisticians
    • MR3671776
    • BLEI, D. M., KUCUKELBIR, A. and MCAULIFFE, J. D. (2017). Variational inference: A review for statisticians. J. Amer. Statist. Assoc. 112 859–877. MR3671776
    • (2017) J. Amer. Statist. Assoc. , vol.112 , pp. 859-877
    • Blei, D.M.1    Kucukelbir, A.2    McAuliffe, J.D.3
  • 6
    • 84937730674 scopus 로고
    • Explaining the Gibbs sampler
    • MR1183069
    • CASELLA, G. and GEORGE, E. I. (1992). Explaining the Gibbs sampler. Amer. Statist. 46 167–174. MR1183069
    • (1992) Amer. Statist. , vol.46 , pp. 167-174
    • Casella, G.1    George, E.I.2
  • 7
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • With discussion. MR0501537
    • DEMPSTER, A. P., LAIRD, N. M. and RUBIN, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Statist. Soc. Ser. B 39 1–38. With discussion. MR0501537
    • (1977) J. Roy. Statist. Soc. Ser. B , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 9
    • 85044210504 scopus 로고    scopus 로고
    • Online but accurate inference for latent variable models with local Gibbs sampling
    • DUPUY, C. and BACH, F. (2016). Online but accurate inference for latent variable models with local Gibbs sampling. J. Mach. Learn. Res. 1.
    • (2016) J. Mach. Learn. Res , vol.1
    • Dupuy, C.1    Bach, F.2
  • 10
    • 84922311090 scopus 로고    scopus 로고
    • Combinatorial labeling of single cells for gene expression cytometry
    • FAN, H. C., FU, G. K. and FODOR, S. P. A. (2015). Combinatorial labeling of single cells for gene expression cytometry. Science 347 1258367.
    • (2015) Science , vol.347
    • Fan, H.C.1    Fu, G.K.2    Fodor, S.P.A.3
  • 13
    • 84860370062 scopus 로고    scopus 로고
    • Semi-supervised nonnegative matrix factorization for gene expression deconvolution: A case study
    • GAUJOUX, R. and SEOIGHE, C. (2012). Semi-supervised nonnegative matrix factorization for gene expression deconvolution: A case study. Infect. Genet. Evol. 12 913–921.
    • (2012) Infect. Genet. Evol , vol.12 , pp. 913-921
    • Gaujoux, R.1    Seoighe, C.2
  • 14
    • 84950453304 scopus 로고
    • Sampling-based approaches to calculating marginal densities
    • MR1141740
    • GELFAND, A. E. and SMITH, A. F. M. (1990). Sampling-based approaches to calculating marginal densities. J. Amer. Statist. Assoc. 85 398–409. MR1141740
    • (1990) J. Amer. Statist. Assoc. , vol.85 , pp. 398-409
    • Gelfand, A.E.1    Smith, A.F.M.2
  • 15
    • 0021518209 scopus 로고
    • Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images
    • GEMAN, S. and GEMAN, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6 721–741.
    • (1984) IEEE Trans. Pattern Anal. Mach. Intell. , Issue.6 , pp. 721-741
    • Geman, S.1    Geman, D.2
  • 18
    • 84878682420 scopus 로고    scopus 로고
    • The genotype-tissue expression (GTEx) project
    • GTEX CONSORTIUM (2013). The genotype-tissue expression (GTEx) project. Nat. Genet. 45 580–585.
    • (2013) Nat. Genet. , vol.45 , pp. 580-585
  • 19
    • 85027696020 scopus 로고    scopus 로고
    • A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications
    • HAQUE, A., ENGEL, J., TEICHMANN, S. A. and LÖNNBERG, T. (2017). A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications. Gen. Med. 9 75.
    • (2017) Gen. Med. , vol.9 , Issue.75
    • Haque, A.1    Engel, J.2    Teichmann, S.A.3    Lönnberg, T.4
  • 22
    • 0033225865 scopus 로고    scopus 로고
    • An introduction to variational methods for graphical models
    • JORDAN, M. I., GHAHRAMANI, Z., JAAKKOLA, T. S. and SAUL, L. K. (1999). An introduction to variational methods for graphical models. Mach. Learn. 37 183–233.
    • (1999) Mach. Learn. , vol.37 , pp. 183-233
    • Jordan, M.I.1    Ghahramani, Z.2    Jaakkola, T.S.3    Saul, L.K.4
  • 24
    • 84903574951 scopus 로고    scopus 로고
    • Bayesian approach to single-cell differential expression analysis
    • KHARCHENKO, P. V., SILBERSTEIN, L. and SCADDEN, D. T. (2014). Bayesian approach to single-cell differential expression analysis. Nat. Methods 11 740–742.
    • (2014) Nat. Methods , vol.11 , pp. 740-742
    • Kharchenko, P.V.1    Silberstein, L.2    Scadden, D.T.3
  • 26
    • 0001093042 scopus 로고    scopus 로고
    • Algorithms for non-negative matrix factorization
    • MIT Press, Cambridge, MA
    • LEE, D. D. and SEUNG, H. S. (2000). Algorithms for non-negative matrix factorization. In Advances in Neural Information Processing Systems 13 556–562. MIT Press, Cambridge, MA.
    • (2000) Advances in Neural Information Processing Systems , vol.13 , pp. 556-562
    • Lee, D.D.1    Seung, H.S.2
  • 27
    • 85016502564 scopus 로고    scopus 로고
    • CIDR: Ultrafast and accurate clustering through imputation for single-cell RNA-seq data
    • LIN, P., TROUP, M. and HO, J. W. K. (2017). CIDR: Ultrafast and accurate clustering through imputation for single-cell RNA-seq data. Genome Biol. 18 59.
    • (2017) Genome Biol , vol.18 , pp. 59
    • Lin, P.1    Troup, M.2    Ho, J.W.K.3
  • 29
    • 84885753889 scopus 로고    scopus 로고
    • Using variability in gene expression as a tool for studying gene regulation
    • PADOVANMERHAR, O. and RAJ, A. (2013). Using variability in gene expression as a tool for studying gene regulation. Wiley Interdiscip. Rev., Syst. Biol. Med. 5 751–759.
    • (2013) Wiley Interdiscip. Rev., Syst. Biol. Med. , vol.5 , pp. 751-759
    • Padovanmerhar, O.1    Raj, A.2
  • 30
    • 84955706109 scopus 로고    scopus 로고
    • ZIFA: Dimensionality reduction for zero-inflated single-cell gene expression analysis
    • PIERSON, E. and YAU, C. (2015). ZIFA: Dimensionality reduction for zero-inflated single-cell gene expression analysis. Genome Biol. 16 241.
    • (2015) Genome Biol , vol.16 , pp. 241
    • Pierson, E.1    Yau, C.2
  • 31
    • 84884917671 scopus 로고    scopus 로고
    • Bayesian inference for logistic models using Pólya–gamma latent variables
    • MR3174712
    • POLSON, N. G., SCOTT, J. G. and WINDLE, J. (2013). Bayesian inference for logistic models using Pólya–gamma latent variables. J. Amer. Statist. Assoc. 108 1339–1349. MR3174712
    • (2013) J. Amer. Statist. Assoc. , vol.108 , pp. 1339-1349
    • Polson, N.G.1    Scott, J.G.2    Windle, J.3
  • 36
    • 84876555679 scopus 로고    scopus 로고
    • Allen brain atlas: An integrated spatio-temporal portal for exploring the central nervous system
    • SUNKIN, S. M., NG, L., LAU, C., DOLBEARE, T., GILBERT, T. L., THOMPSON, C. L., HAWRY-LYCZ, M. and DANG, C. (2013). Allen brain atlas: An integrated spatio-temporal portal for exploring the central nervous system. Nucleic Acids Res. 41 D996–D1008.
    • (2013) Nucleic Acids Res , vol.41 , pp. DD996-D1008
    • Sunkinnglaudolbearegilbert, S.M.L.C.T.T.L.1    Thompson, C.L.2    Hawry-Lycz, M.3    Dang, C.4
  • 38
  • 39
    • 84962861088 scopus 로고    scopus 로고
    • Beyond comparisons of means: Understanding changes in gene expression at the single-cell level
    • VALLEJOS, C. A., RICHARDSON, S. and MARIONI, J. C. (2016). Beyond comparisons of means: Understanding changes in gene expression at the single-cell level. Genome Biol. 17 1.
    • (2016) Genome Biol. , vol.17 , pp. 1
    • Vallejos, C.A.1    Richardson, S.2    Marioni, J.C.3
  • 40
    • 85021816036 scopus 로고    scopus 로고
    • Normalizing single-cell RNA sequencing data: Challenges and opportunities
    • VALLEJOS, C. A., RISSO, D., SCIALDONE, A., DUDOIT, S. and MARIONI, J. C. (2017). Normalizing single-cell RNA sequencing data: Challenges and opportunities. Nat. Methods 14 565–571.
    • (2017) Nat. Methods , vol.14 , pp. 565-571
    • Vallejos, C.A.1    Risso, D.2    Scialdone, A.3    Dudoit, S.4    Marioni, J.C.5
  • 43
    • 84874608326 scopus 로고    scopus 로고
    • Digital sorting of complex tissues for cell type-specific gene expression profiles
    • ZHONG, Y., WAN, Y.-W., PANG, K., CHOW, L. M. and LIU, Z. (2013). Digital sorting of complex tissues for cell type-specific gene expression profiles. BMC Bioinform. 14 1.
    • (2013) BMC Bioinform , vol.14 , Issue.1
    • Zhong, Y.1    Wan, Y.-W.2    Pang, K.3    Chow, L.M.4    Liu, Z.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.