메뉴 건너뛰기




Volumn 286, Issue , 2018, Pages 179-192

A study on combining dynamic selection and data preprocessing for imbalance learning

Author keywords

Dynamic ensemble selection; Ensemble of classifiers; Imbalanced learning; Multi class imbalance; Preprocessing; SMOTE

Indexed keywords

COMPUTER APPLICATIONS; NEURAL NETWORKS;

EID: 85042400496     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2018.01.060     Document Type: Article
Times cited : (103)

References (74)
  • 1
    • 68549133155 scopus 로고    scopus 로고
    • Learning from imbalanced data
    • He, H., Garcia, E., Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21:9 (2009), 1263–1284.
    • (2009) IEEE Trans. Knowl. Data Eng. , vol.21 , Issue.9 , pp. 1263-1284
    • He, H.1    Garcia, E.2
  • 3
    • 84878915608 scopus 로고    scopus 로고
    • Effective detection of sophisticated online banking fraud on extremely imbalanced data
    • Wei, W., Li, J., Cao, L., Ou, Y., Chen, J., Effective detection of sophisticated online banking fraud on extremely imbalanced data. World Wide Web 16:4 (2013), 449–475.
    • (2013) World Wide Web , vol.16 , Issue.4 , pp. 449-475
    • Wei, W.1    Li, J.2    Cao, L.3    Ou, Y.4    Chen, J.5
  • 4
    • 16644402628 scopus 로고    scopus 로고
    • Feature selection for text categorization on imbalanced data
    • Zheng, Z., Wu, X., Srihari, R., Feature selection for text categorization on imbalanced data. SIGKDD Explor. Newsl. 6:1 (2004), 80–89.
    • (2004) SIGKDD Explor. Newsl. , vol.6 , Issue.1 , pp. 80-89
    • Zheng, Z.1    Wu, X.2    Srihari, R.3
  • 5
    • 84866546295 scopus 로고    scopus 로고
    • Synthetic pattern generation for imbalanced learning in image retrieval
    • Piras, L., Giacinto, G., Synthetic pattern generation for imbalanced learning in image retrieval. Pattern Recognit. Lett. 33:16 (2012), 2198–2205.
    • (2012) Pattern Recognit. Lett. , vol.33 , Issue.16 , pp. 2198-2205
    • Piras, L.1    Giacinto, G.2
  • 6
    • 84885955704 scopus 로고    scopus 로고
    • A critical assessment of imbalanced class distribution problem: the case of predicting freshmen student attrition
    • Thammasiri, D., Delen, D., Meesad, P., Kasap, N., A critical assessment of imbalanced class distribution problem: the case of predicting freshmen student attrition. Expert Syst. Appl. 41:2 (2014), 321–330.
    • (2014) Expert Syst. Appl. , vol.41 , Issue.2 , pp. 321-330
    • Thammasiri, D.1    Delen, D.2    Meesad, P.3    Kasap, N.4
  • 11
    • 85084100875 scopus 로고    scopus 로고
    • Imbalanced Learning: Foundations, Algorithms, and Applications
    • first edn. Wiley-IEEE Press
    • He, H., Ma, Y., Imbalanced Learning: Foundations, Algorithms, and Applications. first edn., 2013, Wiley-IEEE Press.
    • (2013)
    • He, H.1    Ma, Y.2
  • 12
    • 84983748443 scopus 로고    scopus 로고
    • A survey of predictive modeling on imbalanced domains
    • Branco, P., Torgo, L., Ribeiro, R.P., A survey of predictive modeling on imbalanced domains. ACM Comput. Surv. 49:2 (2016), 31:1–31:50.
    • (2016) ACM Comput. Surv. , vol.49 , Issue.2 , pp. 311-31:50
    • Branco, P.1    Torgo, L.2    Ribeiro, R.P.3
  • 13
    • 84862515469 scopus 로고    scopus 로고
    • A review on ensembles for the class imbalance problem: Bagging-, boosting-, and hybrid-based approaches
    • Galar, M., Fernández, A., Barrenechea, E., Bustince, H., Herrera, F., A review on ensembles for the class imbalance problem: Bagging-, boosting-, and hybrid-based approaches. Trans. Sys. Man Cyber Part C 42:4 (2012), 463–484.
    • (2012) Trans. Sys. Man Cyber Part C , vol.42 , Issue.4 , pp. 463-484
    • Galar, M.1    Fernández, A.2    Barrenechea, E.3    Bustince, H.4    Herrera, F.5
  • 14
    • 85043605198 scopus 로고    scopus 로고
    • Learning from imbalanced data: open challenges and future directions
    • Krawczyk, B., Learning from imbalanced data: open challenges and future directions. Prog. Artif. Intell. 5:4 (2016), 221–232.
    • (2016) Prog. Artif. Intell. , vol.5 , Issue.4 , pp. 221-232
    • Krawczyk, B.1
  • 15
    • 84942249246 scopus 로고    scopus 로고
    • Class imbalance revisited: a new experimental setup to assess the performance of treatment methods
    • Prati, R.C., Batista, G.E.A.P.A., Silva, D.F., Class imbalance revisited: a new experimental setup to assess the performance of treatment methods. Knowl. Inf. Syst. 45:1 (2015), 247–270.
    • (2015) Knowl. Inf. Syst. , vol.45 , Issue.1 , pp. 247-270
    • Prati, R.C.1    Batista, G.E.A.P.A.2    Silva, D.F.3
  • 16
    • 50549093573 scopus 로고    scopus 로고
    • On the k-nn performance in a challenging scenario of imbalance and overlapping
    • García, V., Mollineda, R.A., Sánchez, J.S., On the k-nn performance in a challenging scenario of imbalance and overlapping. Pattern Anal. Appl. 11:3–4 (2008), 269–280.
    • (2008) Pattern Anal. Appl. , vol.11 , Issue.3-4 , pp. 269-280
    • García, V.1    Mollineda, R.A.2    Sánchez, J.S.3
  • 17
    • 84958581866 scopus 로고    scopus 로고
    • Knn-based dynamic query-driven sample rescaling strategy for class imbalance learning
    • Hu, J., Li, Y., Yan, W.-X., Yang, J.-Y., Shen, H.-B., Yu, D.-J., Knn-based dynamic query-driven sample rescaling strategy for class imbalance learning. Neurocomputing 191 (2016), 363–373 https://doi.org/10.1016/j.neucom.2016.01.043.
    • (2016) Neurocomputing , vol.191 , pp. 363-373
    • Hu, J.1    Li, Y.2    Yan, W.-X.3    Yang, J.-Y.4    Shen, H.-B.5    Yu, D.-J.6
  • 18
    • 77953089698 scopus 로고    scopus 로고
    • FSVM-CIL: fuzzy support vector machines for class imbalance learning
    • Batuwita, R., Palade, V., FSVM-CIL: fuzzy support vector machines for class imbalance learning. IEEE Trans. Fuzzy Syst. 18:3 (2010), 558–571, 10.1109/TFUZZ.2010.2042721.
    • (2010) IEEE Trans. Fuzzy Syst. , vol.18 , Issue.3 , pp. 558-571
    • Batuwita, R.1    Palade, V.2
  • 20
    • 80052394779 scopus 로고    scopus 로고
    • On the effectiveness of preprocessing methods when dealing with different levels of class imbalance
    • García, V., Sánchez, J.S., Mollineda, R.A., On the effectiveness of preprocessing methods when dealing with different levels of class imbalance. Know. Based Syst. 25:1 (2012), 13–21.
    • (2012) Know. Based Syst. , vol.25 , Issue.1 , pp. 13-21
    • García, V.1    Sánchez, J.S.2    Mollineda, R.A.3
  • 22
    • 27144531570 scopus 로고    scopus 로고
    • A study of the behavior of several methods for balancing machine learning training data
    • Batista, G.E.A.P.A., Prati, R.C., Monard, M.C., A study of the behavior of several methods for balancing machine learning training data. SIGKDD Explor. Newsl. 6:1 (2004), 20–29.
    • (2004) SIGKDD Explor. Newsl. , vol.6 , Issue.1 , pp. 20-29
    • Batista, G.E.A.P.A.1    Prati, R.C.2    Monard, M.C.3
  • 23
    • 84876114113 scopus 로고    scopus 로고
    • Novel cost-sensitive approach to improve the multilayer perceptron performance on imbalanced data
    • Castro, C.L., Braga, A.P., Novel cost-sensitive approach to improve the multilayer perceptron performance on imbalanced data. IEEE Trans. Neural Netw. Learn. Syst. 24:6 (2013), 888–899.
    • (2013) IEEE Trans. Neural Netw. Learn. Syst. , vol.24 , Issue.6 , pp. 888-899
    • Castro, C.L.1    Braga, A.P.2
  • 25
    • 34547673383 scopus 로고    scopus 로고
    • Cost-sensitive boosting for classification of imbalanced data
    • Sun, Y., Kamel, M.S., Wong, A.K., Wang, Y., Cost-sensitive boosting for classification of imbalanced data. Pattern Recognit. 40:12 (2007), 3358–3378.
    • (2007) Pattern Recognit. , vol.40 , Issue.12 , pp. 3358-3378
    • Sun, Y.1    Kamel, M.S.2    Wong, A.K.3    Wang, Y.4
  • 26
    • 84926402173 scopus 로고    scopus 로고
    • Combining Pattern Classifiers: Methods and Algorithms
    • second edn. Wiley Publishing
    • Kuncheva, L.I., Combining Pattern Classifiers: Methods and Algorithms. second edn., 2014, Wiley Publishing.
    • (2014)
    • Kuncheva, L.I.1
  • 30
    • 77957793322 scopus 로고    scopus 로고
    • RAMOBoost: ranked minority oversampling in boosting
    • Chen, S., He, H., Garcia, E.A., RAMOBoost: ranked minority oversampling in boosting. Trans. Neur. Netw. 21:10 (2010), 1624–1642.
    • (2010) Trans. Neur. Netw. , vol.21 , Issue.10 , pp. 1624-1642
    • Chen, S.1    He, H.2    Garcia, E.A.3
  • 31
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L., Bagging predictors. Mach. Learn. 24:2 (1996), 123–140.
    • (1996) Mach. Learn. , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 33
    • 84941559528 scopus 로고    scopus 로고
    • Diversity techniques improve the performance of the best imbalance learning ensembles
    • Díez-Pastor, J.F., Rodríguez, J.J., García-Osorio, C.I., Kuncheva, L.I., Diversity techniques improve the performance of the best imbalance learning ensembles. Inf. Sci. 325 (2015), 98–117.
    • (2015) Inf. Sci. , vol.325 , pp. 98-117
    • Díez-Pastor, J.F.1    Rodríguez, J.J.2    García-Osorio, C.I.3    Kuncheva, L.I.4
  • 34
    • 84922643075 scopus 로고    scopus 로고
    • Neighbourhood sampling in bagging for imbalanced data
    • Błaszczyński, J., Stefanowski, J., Neighbourhood sampling in bagging for imbalanced data. Neurocomputing 150, Part B (2015), 529–542.
    • (2015) Neurocomputing , vol.150 Part B , pp. 529-542
    • Błaszczyński, J.1    Stefanowski, J.2
  • 35
    • 84994162829 scopus 로고    scopus 로고
    • Meta-learning recommendation of default size of classifier pool for meta-des
    • Roy, A., Cruz, R.M.O., Sabourin, R., Cavalcanti, G.D.C., Meta-learning recommendation of default size of classifier pool for meta-des. Neurocomputing 216 (2016), 351–362.
    • (2016) Neurocomputing , vol.216 , pp. 351-362
    • Roy, A.1    Cruz, R.M.O.2    Sabourin, R.3    Cavalcanti, G.D.C.4
  • 36
    • 84904400137 scopus 로고    scopus 로고
    • Dynamic selection of classifiers - a comprehensive review
    • Britto, A.S., Sabourin, R., Oliveira, L.E.S., Dynamic selection of classifiers - a comprehensive review. Pattern Recognit. 47:11 (2014), 3665–3680.
    • (2014) Pattern Recognit. , vol.47 , Issue.11 , pp. 3665-3680
    • Britto, A.S.1    Sabourin, R.2    Oliveira, L.E.S.3
  • 37
    • 85029576522 scopus 로고    scopus 로고
    • Dynamic classifier selection: Recent advances and perspectives
    • Cruz, R.M., Sabourin, R., Cavalcanti, G.D., Dynamic classifier selection: Recent advances and perspectives. Inf. Fus. 41 (2018), 195–216.
    • (2018) Inf. Fus. , vol.41 , pp. 195-216
    • Cruz, R.M.1    Sabourin, R.2    Cavalcanti, G.D.3
  • 39
    • 38349135448 scopus 로고    scopus 로고
    • From dynamic classifier selection to dynamic ensemble selection
    • Ko, A., Sabourin, R., Britto, J.A., From dynamic classifier selection to dynamic ensemble selection. Pattern Recognit. 41:5 (2008), 1718–1731.
    • (2008) Pattern Recognit. , vol.41 , Issue.5 , pp. 1718-1731
    • Ko, A.1    Sabourin, R.2    Britto, J.A.3
  • 40
    • 84874022028 scopus 로고    scopus 로고
    • Dynamic selection approaches for multiple classifier systems
    • Cavalin, P.R., Sabourin, R., Suen, C.Y., Dynamic selection approaches for multiple classifier systems. Neural Comput. Appl. 22:3–4 (2013), 673–688.
    • (2013) Neural Comput. Appl. , vol.22 , Issue.3-4 , pp. 673-688
    • Cavalin, P.R.1    Sabourin, R.2    Suen, C.Y.3
  • 41
    • 84921697002 scopus 로고    scopus 로고
    • META-DES: a dynamic ensemble selection framework using meta-learning
    • Cruz, R.M.O., Sabourin, R., Cavalcanti, G.D.C., Ren, T.I., META-DES: a dynamic ensemble selection framework using meta-learning. Pattern Recognit. 48:5 (2015), 1925–1935.
    • (2015) Pattern Recognit. , vol.48 , Issue.5 , pp. 1925-1935
    • Cruz, R.M.O.1    Sabourin, R.2    Cavalcanti, G.D.C.3    Ren, T.I.4
  • 42
    • 80255137251 scopus 로고    scopus 로고
    • Dynamic classifier ensemble model for customer classification with imbalanced class distribution
    • Xiao, J., Xie, L., He, C., Jiang, X., Dynamic classifier ensemble model for customer classification with imbalanced class distribution. Expert Syst. Appl. 39:3 (2012), 3668–3675.
    • (2012) Expert Syst. Appl. , vol.39 , Issue.3 , pp. 3668-3675
    • Xiao, J.1    Xie, L.2    He, C.3    Jiang, X.4
  • 44
    • 84861630536 scopus 로고    scopus 로고
    • Logid: An adaptive framework combining local and global incremental learning for dynamic selection of ensembles of HMMs
    • Cavalin, P.R., Sabourin, R., Suen, C.Y., Logid: An adaptive framework combining local and global incremental learning for dynamic selection of ensembles of HMMs. Pattern Recognit. 45:9 (2012), 3544–3556.
    • (2012) Pattern Recognit. , vol.45 , Issue.9 , pp. 3544-3556
    • Cavalin, P.R.1    Sabourin, R.2    Suen, C.Y.3
  • 47
    • 0036472946 scopus 로고    scopus 로고
    • A theoretical study on six classifier fusion strategies
    • Kuncheva, L.I., A theoretical study on six classifier fusion strategies. IEEE Trans. Pattern Anal. Mach. Intell. 24:2 (2002), 281–286.
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell. , vol.24 , Issue.2 , pp. 281-286
    • Kuncheva, L.I.1
  • 48
    • 85015884532 scopus 로고    scopus 로고
    • META-DES.ORACLE: Meta-learning and feature selection for dynamic ensemble selection
    • Cruz, R.M.O., Sabourin, R., Cavalcanti, G.D.C., META-DES.ORACLE: Meta-learning and feature selection for dynamic ensemble selection. Inf. Fusion 38 (2017), 84–103.
    • (2017) Inf. Fusion , vol.38 , pp. 84-103
    • Cruz, R.M.O.1    Sabourin, R.2    Cavalcanti, G.D.C.3
  • 49
    • 85029592677 scopus 로고    scopus 로고
    • A DEEP analysis of the META-DES framework for dynamic selection of ensemble of classifiers
    • abs/1509.00825
    • Cruz, R.M.O., Sabourin, R., Cavalcanti, G.D.C., A DEEP analysis of the META-DES framework for dynamic selection of ensemble of classifiers. CoRR, 2015 abs/1509.00825.
    • (2015) CoRR
    • Cruz, R.M.O.1    Sabourin, R.2    Cavalcanti, G.D.C.3
  • 50
    • 84978902248 scopus 로고    scopus 로고
    • Prototype selection for dynamic classifier and ensemble selection
    • Cruz, R.M.O., Sabourin, R., Cavalcanti, G.D.C., Prototype selection for dynamic classifier and ensemble selection. Neural Comput. Appl. 29:2 (2018), 447–457.
    • (2018) Neural Comput. Appl. , vol.29 , Issue.2 , pp. 447-457
    • Cruz, R.M.O.1    Sabourin, R.2    Cavalcanti, G.D.C.3
  • 57
    • 85009962818 scopus 로고    scopus 로고
    • Data Mining: Practical Machine Learning Tools and Techniques
    • fourth Morgan Kaufmann Burlington, MA
    • Witten, I.H., Frank, E., Hall, M.A., Pal, C.J., Data Mining: Practical Machine Learning Tools and Techniques. fourth, 2016, Morgan Kaufmann, Burlington, MA.
    • (2016)
    • Witten, I.H.1    Frank, E.2    Hall, M.A.3    Pal, C.J.4
  • 59
    • 0003500248 scopus 로고
    • C4.5: Programs for Machine Learning
    • Morgan Kaufmann Publishers Inc. San Francisco, CA, USA
    • Quinlan, J.R., C4.5: Programs for Machine Learning. 1993, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.
    • (1993)
    • Quinlan, J.R.1
  • 60
    • 68549121111 scopus 로고    scopus 로고
    • C4.5 and imbalanced data sets: investigating the effect of sampling method, probabilistic estimate, and decision tree structure
    • Chawla, N.V., C4.5 and imbalanced data sets: investigating the effect of sampling method, probabilistic estimate, and decision tree structure. Proceedings of the ICML Workshop on Class Imbalances, 2003.
    • (2003) Proceedings of the ICML Workshop on Class Imbalances
    • Chawla, N.V.1
  • 61
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • Fawcett, T., An introduction to ROC analysis. Pattern Recognit. Lett. 27:8 (2006), 861–874.
    • (2006) Pattern Recognit. Lett. , vol.27 , Issue.8 , pp. 861-874
    • Fawcett, T.1
  • 62
    • 0004217877 scopus 로고
    • Information Retrieval
    • second Butterworth-Heinemann Newton, MA, USA
    • Rijsbergen, C.J.V., Information Retrieval. second, 1979, Butterworth-Heinemann, Newton, MA, USA.
    • (1979)
    • Rijsbergen, C.J.V.1
  • 65
    • 46849096083 scopus 로고    scopus 로고
    • A study of the behaviour of linguistic fuzzy rule based classification systems in the framework of imbalanced data-sets
    • Fernández, A., García, S., del Jesus, M.J., Herrera, F., A study of the behaviour of linguistic fuzzy rule based classification systems in the framework of imbalanced data-sets. Fuzzy Sets Syst. 159:18 (2008), 2378–2398.
    • (2008) Fuzzy Sets Syst. , vol.159 , Issue.18 , pp. 2378-2398
    • Fernández, A.1    García, S.2    del Jesus, M.J.3    Herrera, F.4
  • 66
    • 0001750957 scopus 로고
    • Approximations of the critical region of the fbietkan statistic
    • Iman, R.L., Davenport, J.M., Approximations of the critical region of the fbietkan statistic. Commun. Stat. Theory Methods 9:6 (1980), 571–595.
    • (1980) Commun. Stat. Theory Methods , vol.9 , Issue.6 , pp. 571-595
    • Iman, R.L.1    Davenport, J.M.2
  • 67
    • 77549084648 scopus 로고    scopus 로고
    • Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power
    • García, S., Fernández, A., Luengo, J., Herrera, F., Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power. Inf. Sci. 180:10 (2010), 2044–2064.
    • (2010) Inf. Sci. , vol.180 , Issue.10 , pp. 2044-2064
    • García, S.1    Fernández, A.2    Luengo, J.3    Herrera, F.4
  • 68
    • 21144459575 scopus 로고
    • On a monotonicity problem in step-down multiple test procedures
    • Finner, H., On a monotonicity problem in step-down multiple test procedures. J. Am. Stat. Assoc. 88:423 (1993), 920–923.
    • (1993) J. Am. Stat. Assoc. , vol.88 , Issue.423 , pp. 920-923
    • Finner, H.1
  • 69
    • 29144474463 scopus 로고    scopus 로고
    • An experimental bias-variance analysis of svm ensembles based on resampling techniques
    • Valentini, G., An experimental bias-variance analysis of svm ensembles based on resampling techniques. IEEE Trans. Sys. Man Cybern. Part B Cybern. 35:6 (2005), 1252–1271.
    • (2005) IEEE Trans. Sys. Man Cybern. Part B Cybern. , vol.35 , Issue.6 , pp. 1252-1271
    • Valentini, G.1
  • 70
    • 84961631662 scopus 로고    scopus 로고
    • To combat multi-class imbalanced problems by means of over-sampling techniques
    • Abdi, L., Hashemi, S., To combat multi-class imbalanced problems by means of over-sampling techniques. IEEE Trans. Knowl. Data Eng. 28:1 (2016), 238–251.
    • (2016) IEEE Trans. Knowl. Data Eng. , vol.28 , Issue.1 , pp. 238-251
    • Abdi, L.1    Hashemi, S.2
  • 71
    • 84947127879 scopus 로고    scopus 로고
    • To combat multi-class imbalanced problems by means of over-sampling and boosting techniques
    • Abdi, L., Hashemi, S., To combat multi-class imbalanced problems by means of over-sampling and boosting techniques. Soft Comput. 19:12 (2015), 3369–3385.
    • (2015) Soft Comput. , vol.19 , Issue.12 , pp. 3369-3385
    • Abdi, L.1    Hashemi, S.2
  • 72
    • 84874667219 scopus 로고    scopus 로고
    • Analysing the classification of imbalanced data-sets with multiple classes: Binarization techniques and ad-hoc approaches
    • Fernández, A., López, V., Galar, M., Del Jesus, M.J., Herrera, F., Analysing the classification of imbalanced data-sets with multiple classes: Binarization techniques and ad-hoc approaches. Knowl. Based Syst. 42 (2013), 97–110.
    • (2013) Knowl. Based Syst. , vol.42 , pp. 97-110
    • Fernández, A.1    López, V.2    Galar, M.3    Del Jesus, M.J.4    Herrera, F.5
  • 73
    • 79953050208 scopus 로고    scopus 로고
    • A dynamic over-sampling procedure based on sensitivity for multi-class problems
    • Fernández-Navarro, F., Hervás-Martínez, C., Gutiérrez, P.A., A dynamic over-sampling procedure based on sensitivity for multi-class problems. Pattern Recognit. 44:8 (2011), 1821–1833.
    • (2011) Pattern Recognit. , vol.44 , Issue.8 , pp. 1821-1833
    • Fernández-Navarro, F.1    Hervás-Martínez, C.2    Gutiérrez, P.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.