-
1
-
-
68549133155
-
Learning from imbalanced data
-
He, H., Garcia, E., Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21:9 (2009), 1263–1284.
-
(2009)
IEEE Trans. Knowl. Data Eng.
, vol.21
, Issue.9
, pp. 1263-1284
-
-
He, H.1
Garcia, E.2
-
2
-
-
22944452794
-
Applying support vector machines to imbalanced datasets
-
Springer Berlin Heidelberg Berlin, Heidelberg
-
Akbani, R., Kwek, S., Japkowicz, N., Applying support vector machines to imbalanced datasets. Proceedings of the European Conference on Machine Learning (ECML), Pisa, Italy, 2004, Springer Berlin Heidelberg, Berlin, Heidelberg, 39–50.
-
(2004)
Proceedings of the European Conference on Machine Learning (ECML), Pisa, Italy
, pp. 39-50
-
-
Akbani, R.1
Kwek, S.2
Japkowicz, N.3
-
3
-
-
84878915608
-
Effective detection of sophisticated online banking fraud on extremely imbalanced data
-
Wei, W., Li, J., Cao, L., Ou, Y., Chen, J., Effective detection of sophisticated online banking fraud on extremely imbalanced data. World Wide Web 16:4 (2013), 449–475.
-
(2013)
World Wide Web
, vol.16
, Issue.4
, pp. 449-475
-
-
Wei, W.1
Li, J.2
Cao, L.3
Ou, Y.4
Chen, J.5
-
4
-
-
16644402628
-
Feature selection for text categorization on imbalanced data
-
Zheng, Z., Wu, X., Srihari, R., Feature selection for text categorization on imbalanced data. SIGKDD Explor. Newsl. 6:1 (2004), 80–89.
-
(2004)
SIGKDD Explor. Newsl.
, vol.6
, Issue.1
, pp. 80-89
-
-
Zheng, Z.1
Wu, X.2
Srihari, R.3
-
5
-
-
84866546295
-
Synthetic pattern generation for imbalanced learning in image retrieval
-
Piras, L., Giacinto, G., Synthetic pattern generation for imbalanced learning in image retrieval. Pattern Recognit. Lett. 33:16 (2012), 2198–2205.
-
(2012)
Pattern Recognit. Lett.
, vol.33
, Issue.16
, pp. 2198-2205
-
-
Piras, L.1
Giacinto, G.2
-
6
-
-
84885955704
-
A critical assessment of imbalanced class distribution problem: the case of predicting freshmen student attrition
-
Thammasiri, D., Delen, D., Meesad, P., Kasap, N., A critical assessment of imbalanced class distribution problem: the case of predicting freshmen student attrition. Expert Syst. Appl. 41:2 (2014), 321–330.
-
(2014)
Expert Syst. Appl.
, vol.41
, Issue.2
, pp. 321-330
-
-
Thammasiri, D.1
Delen, D.2
Meesad, P.3
Kasap, N.4
-
7
-
-
84936948351
-
Classifying imbalanced data streams via dynamic feature group weighting with importance sampling
-
Wu, K., Edwards, A., Fan, W., Gao, J., Zhang, K., Classifying imbalanced data streams via dynamic feature group weighting with importance sampling. Proceedings of the 2014 SIAM International Conference on Data Mining, Philadelphia, Pennsylvania, USA, 2014, 722–730.
-
(2014)
Proceedings of the 2014 SIAM International Conference on Data Mining, Philadelphia, Pennsylvania, USA
, pp. 722-730
-
-
Wu, K.1
Edwards, A.2
Fan, W.3
Gao, J.4
Zhang, K.5
-
8
-
-
85006136656
-
Dealing with multiple classes in online class imbalance learning
-
Wang, S., Minku, L.L., Yao, X., Dealing with multiple classes in online class imbalance learning. Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, (IJCAI), New York, NY, USA, 2016, 2118–2124.
-
(2016)
Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, (IJCAI), New York, NY, USA
, pp. 2118-2124
-
-
Wang, S.1
Minku, L.L.2
Yao, X.3
-
9
-
-
83655189796
-
Dealing with concept drift and class imbalance in multi-label stream classification
-
Xioufis, E.S., Spiliopoulou, M., Tsoumakas, G., Vlahavas, I.P., Dealing with concept drift and class imbalance in multi-label stream classification. Proceedings of the 22nd International Joint Conference on Artificial Intelligence, (IJCAI), Barcelona, Catalonia, Spain, 2011, 1583–1588.
-
(2011)
Proceedings of the 22nd International Joint Conference on Artificial Intelligence, (IJCAI), Barcelona, Catalonia, Spain
, pp. 1583-1588
-
-
Xioufis, E.S.1
Spiliopoulou, M.2
Tsoumakas, G.3
Vlahavas, I.P.4
-
10
-
-
70449457525
-
SERA: selectively recursive approach towards nonstationary imbalanced stream data mining
-
Chen, S., He, H., SERA: selectively recursive approach towards nonstationary imbalanced stream data mining. Proceedings of the International Joint Conference on Neural Networks, (IJCNN), Atlanta, Georgia, USA, 2009, 522–529.
-
(2009)
Proceedings of the International Joint Conference on Neural Networks, (IJCNN), Atlanta, Georgia, USA
, pp. 522-529
-
-
Chen, S.1
He, H.2
-
11
-
-
85084100875
-
Imbalanced Learning: Foundations, Algorithms, and Applications
-
first edn. Wiley-IEEE Press
-
He, H., Ma, Y., Imbalanced Learning: Foundations, Algorithms, and Applications. first edn., 2013, Wiley-IEEE Press.
-
(2013)
-
-
He, H.1
Ma, Y.2
-
12
-
-
84983748443
-
A survey of predictive modeling on imbalanced domains
-
Branco, P., Torgo, L., Ribeiro, R.P., A survey of predictive modeling on imbalanced domains. ACM Comput. Surv. 49:2 (2016), 31:1–31:50.
-
(2016)
ACM Comput. Surv.
, vol.49
, Issue.2
, pp. 311-31:50
-
-
Branco, P.1
Torgo, L.2
Ribeiro, R.P.3
-
13
-
-
84862515469
-
A review on ensembles for the class imbalance problem: Bagging-, boosting-, and hybrid-based approaches
-
Galar, M., Fernández, A., Barrenechea, E., Bustince, H., Herrera, F., A review on ensembles for the class imbalance problem: Bagging-, boosting-, and hybrid-based approaches. Trans. Sys. Man Cyber Part C 42:4 (2012), 463–484.
-
(2012)
Trans. Sys. Man Cyber Part C
, vol.42
, Issue.4
, pp. 463-484
-
-
Galar, M.1
Fernández, A.2
Barrenechea, E.3
Bustince, H.4
Herrera, F.5
-
14
-
-
85043605198
-
Learning from imbalanced data: open challenges and future directions
-
Krawczyk, B., Learning from imbalanced data: open challenges and future directions. Prog. Artif. Intell. 5:4 (2016), 221–232.
-
(2016)
Prog. Artif. Intell.
, vol.5
, Issue.4
, pp. 221-232
-
-
Krawczyk, B.1
-
15
-
-
84942249246
-
Class imbalance revisited: a new experimental setup to assess the performance of treatment methods
-
Prati, R.C., Batista, G.E.A.P.A., Silva, D.F., Class imbalance revisited: a new experimental setup to assess the performance of treatment methods. Knowl. Inf. Syst. 45:1 (2015), 247–270.
-
(2015)
Knowl. Inf. Syst.
, vol.45
, Issue.1
, pp. 247-270
-
-
Prati, R.C.1
Batista, G.E.A.P.A.2
Silva, D.F.3
-
16
-
-
50549093573
-
On the k-nn performance in a challenging scenario of imbalance and overlapping
-
García, V., Mollineda, R.A., Sánchez, J.S., On the k-nn performance in a challenging scenario of imbalance and overlapping. Pattern Anal. Appl. 11:3–4 (2008), 269–280.
-
(2008)
Pattern Anal. Appl.
, vol.11
, Issue.3-4
, pp. 269-280
-
-
García, V.1
Mollineda, R.A.2
Sánchez, J.S.3
-
17
-
-
84958581866
-
Knn-based dynamic query-driven sample rescaling strategy for class imbalance learning
-
Hu, J., Li, Y., Yan, W.-X., Yang, J.-Y., Shen, H.-B., Yu, D.-J., Knn-based dynamic query-driven sample rescaling strategy for class imbalance learning. Neurocomputing 191 (2016), 363–373 https://doi.org/10.1016/j.neucom.2016.01.043.
-
(2016)
Neurocomputing
, vol.191
, pp. 363-373
-
-
Hu, J.1
Li, Y.2
Yan, W.-X.3
Yang, J.-Y.4
Shen, H.-B.5
Yu, D.-J.6
-
18
-
-
77953089698
-
FSVM-CIL: fuzzy support vector machines for class imbalance learning
-
Batuwita, R., Palade, V., FSVM-CIL: fuzzy support vector machines for class imbalance learning. IEEE Trans. Fuzzy Syst. 18:3 (2010), 558–571, 10.1109/TFUZZ.2010.2042721.
-
(2010)
IEEE Trans. Fuzzy Syst.
, vol.18
, Issue.3
, pp. 558-571
-
-
Batuwita, R.1
Palade, V.2
-
19
-
-
84856621489
-
Hellinger distance decision trees are robust and skew-insensitive
-
Cieslak, D.A., Hoens, T.R., Chawla, N.V., Kegelmeyer, W.P., Hellinger distance decision trees are robust and skew-insensitive. Data Mining Knowl. Discov. 24:1 (2012), 136–158.
-
(2012)
Data Mining Knowl. Discov.
, vol.24
, Issue.1
, pp. 136-158
-
-
Cieslak, D.A.1
Hoens, T.R.2
Chawla, N.V.3
Kegelmeyer, W.P.4
-
20
-
-
80052394779
-
On the effectiveness of preprocessing methods when dealing with different levels of class imbalance
-
García, V., Sánchez, J.S., Mollineda, R.A., On the effectiveness of preprocessing methods when dealing with different levels of class imbalance. Know. Based Syst. 25:1 (2012), 13–21.
-
(2012)
Know. Based Syst.
, vol.25
, Issue.1
, pp. 13-21
-
-
García, V.1
Sánchez, J.S.2
Mollineda, R.A.3
-
21
-
-
0346586663
-
Smote: Synthetic minority over-sampling technique
-
Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P., Smote: Synthetic minority over-sampling technique. J. Artif. Int. Res. 16:1 (2002), 321–357.
-
(2002)
J. Artif. Int. Res.
, vol.16
, Issue.1
, pp. 321-357
-
-
Chawla, N.V.1
Bowyer, K.W.2
Hall, L.O.3
Kegelmeyer, W.P.4
-
22
-
-
27144531570
-
A study of the behavior of several methods for balancing machine learning training data
-
Batista, G.E.A.P.A., Prati, R.C., Monard, M.C., A study of the behavior of several methods for balancing machine learning training data. SIGKDD Explor. Newsl. 6:1 (2004), 20–29.
-
(2004)
SIGKDD Explor. Newsl.
, vol.6
, Issue.1
, pp. 20-29
-
-
Batista, G.E.A.P.A.1
Prati, R.C.2
Monard, M.C.3
-
23
-
-
84876114113
-
Novel cost-sensitive approach to improve the multilayer perceptron performance on imbalanced data
-
Castro, C.L., Braga, A.P., Novel cost-sensitive approach to improve the multilayer perceptron performance on imbalanced data. IEEE Trans. Neural Netw. Learn. Syst. 24:6 (2013), 888–899.
-
(2013)
IEEE Trans. Neural Netw. Learn. Syst.
, vol.24
, Issue.6
, pp. 888-899
-
-
Castro, C.L.1
Braga, A.P.2
-
24
-
-
38049120179
-
Improving the performance of the rbf neural networks trained with imbalanced samples
-
Springer Berlin, Heidelberg San Sebastián, Spain
-
Alejo, R., García, V., Sotoca, J.M., Mollineda, R.A., Sánchez, J.S., Improving the performance of the rbf neural networks trained with imbalanced samples. Proceedings of the International Work-Conference on Artificial Neural Networks, (IWANN), 2007, Springer Berlin, Heidelberg, San Sebastián, Spain, 162–169, 10.1007/978-3-540-73007-1_20.
-
(2007)
Proceedings of the International Work-Conference on Artificial Neural Networks, (IWANN)
, pp. 162-169
-
-
Alejo, R.1
García, V.2
Sotoca, J.M.3
Mollineda, R.A.4
Sánchez, J.S.5
-
25
-
-
34547673383
-
Cost-sensitive boosting for classification of imbalanced data
-
Sun, Y., Kamel, M.S., Wong, A.K., Wang, Y., Cost-sensitive boosting for classification of imbalanced data. Pattern Recognit. 40:12 (2007), 3358–3378.
-
(2007)
Pattern Recognit.
, vol.40
, Issue.12
, pp. 3358-3378
-
-
Sun, Y.1
Kamel, M.S.2
Wong, A.K.3
Wang, Y.4
-
26
-
-
84926402173
-
Combining Pattern Classifiers: Methods and Algorithms
-
second edn. Wiley Publishing
-
Kuncheva, L.I., Combining Pattern Classifiers: Methods and Algorithms. second edn., 2014, Wiley Publishing.
-
(2014)
-
-
Kuncheva, L.I.1
-
27
-
-
9444297357
-
SMOTEBoost: improving prediction of the minority class in boosting
-
Springer Berlin, Heidelberg
-
Chawla, N.V., Lazarevic, A., Hall, L.O., Bowyer, K.W., SMOTEBoost: improving prediction of the minority class in boosting. Proceedings of the European Conference on Principles and Practice of Knowledge Discovery in Databases, 2003, Springer, Berlin, Heidelberg, 107–119.
-
(2003)
Proceedings of the European Conference on Principles and Practice of Knowledge Discovery in Databases
, pp. 107-119
-
-
Chawla, N.V.1
Lazarevic, A.2
Hall, L.O.3
Bowyer, K.W.4
-
28
-
-
0002978642
-
Experiments with a new boosting algorithm
-
Morgan Kaufmann
-
Freund, Y., Schapire, R.E., Experiments with a new boosting algorithm. Proceedings of the Thirteenth International Conference on Machine Learning (ICML), 1996, Morgan Kaufmann, 148–156.
-
(1996)
Proceedings of the Thirteenth International Conference on Machine Learning (ICML)
, pp. 148-156
-
-
Freund, Y.1
Schapire, R.E.2
-
29
-
-
72949118881
-
RUSBoost: a hybrid approach to alleviating class imbalance
-
Seiffert, C., Khoshgoftaar, T.M., Van Hulse, J., Napolitano, A., RUSBoost: a hybrid approach to alleviating class imbalance. Trans. Sys. Man Cyber. Part A 40:1 (2010), 185–197.
-
(2010)
Trans. Sys. Man Cyber. Part A
, vol.40
, Issue.1
, pp. 185-197
-
-
Seiffert, C.1
Khoshgoftaar, T.M.2
Van Hulse, J.3
Napolitano, A.4
-
30
-
-
77957793322
-
RAMOBoost: ranked minority oversampling in boosting
-
Chen, S., He, H., Garcia, E.A., RAMOBoost: ranked minority oversampling in boosting. Trans. Neur. Netw. 21:10 (2010), 1624–1642.
-
(2010)
Trans. Neur. Netw.
, vol.21
, Issue.10
, pp. 1624-1642
-
-
Chen, S.1
He, H.2
Garcia, E.A.3
-
31
-
-
0030211964
-
Bagging predictors
-
Breiman, L., Bagging predictors. Mach. Learn. 24:2 (1996), 123–140.
-
(1996)
Mach. Learn.
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
33
-
-
84941559528
-
Diversity techniques improve the performance of the best imbalance learning ensembles
-
Díez-Pastor, J.F., Rodríguez, J.J., García-Osorio, C.I., Kuncheva, L.I., Diversity techniques improve the performance of the best imbalance learning ensembles. Inf. Sci. 325 (2015), 98–117.
-
(2015)
Inf. Sci.
, vol.325
, pp. 98-117
-
-
Díez-Pastor, J.F.1
Rodríguez, J.J.2
García-Osorio, C.I.3
Kuncheva, L.I.4
-
34
-
-
84922643075
-
Neighbourhood sampling in bagging for imbalanced data
-
Błaszczyński, J., Stefanowski, J., Neighbourhood sampling in bagging for imbalanced data. Neurocomputing 150, Part B (2015), 529–542.
-
(2015)
Neurocomputing
, vol.150 Part B
, pp. 529-542
-
-
Błaszczyński, J.1
Stefanowski, J.2
-
35
-
-
84994162829
-
Meta-learning recommendation of default size of classifier pool for meta-des
-
Roy, A., Cruz, R.M.O., Sabourin, R., Cavalcanti, G.D.C., Meta-learning recommendation of default size of classifier pool for meta-des. Neurocomputing 216 (2016), 351–362.
-
(2016)
Neurocomputing
, vol.216
, pp. 351-362
-
-
Roy, A.1
Cruz, R.M.O.2
Sabourin, R.3
Cavalcanti, G.D.C.4
-
36
-
-
84904400137
-
Dynamic selection of classifiers - a comprehensive review
-
Britto, A.S., Sabourin, R., Oliveira, L.E.S., Dynamic selection of classifiers - a comprehensive review. Pattern Recognit. 47:11 (2014), 3665–3680.
-
(2014)
Pattern Recognit.
, vol.47
, Issue.11
, pp. 3665-3680
-
-
Britto, A.S.1
Sabourin, R.2
Oliveira, L.E.S.3
-
37
-
-
85029576522
-
Dynamic classifier selection: Recent advances and perspectives
-
Cruz, R.M., Sabourin, R., Cavalcanti, G.D., Dynamic classifier selection: Recent advances and perspectives. Inf. Fus. 41 (2018), 195–216.
-
(2018)
Inf. Fus.
, vol.41
, pp. 195-216
-
-
Cruz, R.M.1
Sabourin, R.2
Cavalcanti, G.D.3
-
38
-
-
0031121318
-
Combination of multiple classifiers using local accuracy estimates
-
Woods, K., Kegelmeyer, W.P., Bowyer, K., Combination of multiple classifiers using local accuracy estimates. IEEE Trans. Pattern Anal. Mach. Intell. 19:4 (1997), 405–410.
-
(1997)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.19
, Issue.4
, pp. 405-410
-
-
Woods, K.1
Kegelmeyer, W.P.2
Bowyer, K.3
-
39
-
-
38349135448
-
From dynamic classifier selection to dynamic ensemble selection
-
Ko, A., Sabourin, R., Britto, J.A., From dynamic classifier selection to dynamic ensemble selection. Pattern Recognit. 41:5 (2008), 1718–1731.
-
(2008)
Pattern Recognit.
, vol.41
, Issue.5
, pp. 1718-1731
-
-
Ko, A.1
Sabourin, R.2
Britto, J.A.3
-
40
-
-
84874022028
-
Dynamic selection approaches for multiple classifier systems
-
Cavalin, P.R., Sabourin, R., Suen, C.Y., Dynamic selection approaches for multiple classifier systems. Neural Comput. Appl. 22:3–4 (2013), 673–688.
-
(2013)
Neural Comput. Appl.
, vol.22
, Issue.3-4
, pp. 673-688
-
-
Cavalin, P.R.1
Sabourin, R.2
Suen, C.Y.3
-
41
-
-
84921697002
-
META-DES: a dynamic ensemble selection framework using meta-learning
-
Cruz, R.M.O., Sabourin, R., Cavalcanti, G.D.C., Ren, T.I., META-DES: a dynamic ensemble selection framework using meta-learning. Pattern Recognit. 48:5 (2015), 1925–1935.
-
(2015)
Pattern Recognit.
, vol.48
, Issue.5
, pp. 1925-1935
-
-
Cruz, R.M.O.1
Sabourin, R.2
Cavalcanti, G.D.C.3
Ren, T.I.4
-
42
-
-
80255137251
-
Dynamic classifier ensemble model for customer classification with imbalanced class distribution
-
Xiao, J., Xie, L., He, C., Jiang, X., Dynamic classifier ensemble model for customer classification with imbalanced class distribution. Expert Syst. Appl. 39:3 (2012), 3668–3675.
-
(2012)
Expert Syst. Appl.
, vol.39
, Issue.3
, pp. 3668-3675
-
-
Xiao, J.1
Xie, L.2
He, C.3
Jiang, X.4
-
43
-
-
0010947411
-
Classifier combination for hand-printed digit recognition
-
Sabourin, M., Mitiche, A., Thomas, D., Nagy, G., Classifier combination for hand-printed digit recognition. Proceedings of the 2nd International Conference on Document Analysis and Recognition, 1993, 163–166.
-
(1993)
Proceedings of the 2nd International Conference on Document Analysis and Recognition
, pp. 163-166
-
-
Sabourin, M.1
Mitiche, A.2
Thomas, D.3
Nagy, G.4
-
44
-
-
84861630536
-
Logid: An adaptive framework combining local and global incremental learning for dynamic selection of ensembles of HMMs
-
Cavalin, P.R., Sabourin, R., Suen, C.Y., Logid: An adaptive framework combining local and global incremental learning for dynamic selection of ensembles of HMMs. Pattern Recognit. 45:9 (2012), 3544–3556.
-
(2012)
Pattern Recognit.
, vol.45
, Issue.9
, pp. 3544-3556
-
-
Cavalin, P.R.1
Sabourin, R.2
Suen, C.Y.3
-
45
-
-
84951036269
-
META-DES.H: A dynamic ensemble selection technique using meta-learning and a dynamic weighting approach
-
Cruz, R.M.O., Sabourin, R., Cavalcanti, G.D.C., META-DES.H: A dynamic ensemble selection technique using meta-learning and a dynamic weighting approach. Proceedings of the International Joint Conference on Neural Networks (IJCNN), Killarney, Ireland, 2015, 1–8.
-
(2015)
Proceedings of the International Joint Conference on Neural Networks (IJCNN), Killarney, Ireland
, pp. 1-8
-
-
Cruz, R.M.O.1
Sabourin, R.2
Cavalcanti, G.D.C.3
-
46
-
-
85019076662
-
Meta-regression based pool size prediction scheme for dynamic selection of classifiers
-
IEEE
-
Roy, A., Cruz, R.M.O., Sabourin, R., Cavalcanti, G.D.C., Meta-regression based pool size prediction scheme for dynamic selection of classifiers. Proceedings of the 23rd International Conference on Pattern Recognition (ICPR), 2016, IEEE, 211–216.
-
(2016)
Proceedings of the 23rd International Conference on Pattern Recognition (ICPR)
, pp. 211-216
-
-
Roy, A.1
Cruz, R.M.O.2
Sabourin, R.3
Cavalcanti, G.D.C.4
-
47
-
-
0036472946
-
A theoretical study on six classifier fusion strategies
-
Kuncheva, L.I., A theoretical study on six classifier fusion strategies. IEEE Trans. Pattern Anal. Mach. Intell. 24:2 (2002), 281–286.
-
(2002)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.24
, Issue.2
, pp. 281-286
-
-
Kuncheva, L.I.1
-
48
-
-
85015884532
-
META-DES.ORACLE: Meta-learning and feature selection for dynamic ensemble selection
-
Cruz, R.M.O., Sabourin, R., Cavalcanti, G.D.C., META-DES.ORACLE: Meta-learning and feature selection for dynamic ensemble selection. Inf. Fusion 38 (2017), 84–103.
-
(2017)
Inf. Fusion
, vol.38
, pp. 84-103
-
-
Cruz, R.M.O.1
Sabourin, R.2
Cavalcanti, G.D.C.3
-
49
-
-
85029592677
-
A DEEP analysis of the META-DES framework for dynamic selection of ensemble of classifiers
-
abs/1509.00825
-
Cruz, R.M.O., Sabourin, R., Cavalcanti, G.D.C., A DEEP analysis of the META-DES framework for dynamic selection of ensemble of classifiers. CoRR, 2015 abs/1509.00825.
-
(2015)
CoRR
-
-
Cruz, R.M.O.1
Sabourin, R.2
Cavalcanti, G.D.C.3
-
50
-
-
84978902248
-
Prototype selection for dynamic classifier and ensemble selection
-
Cruz, R.M.O., Sabourin, R., Cavalcanti, G.D.C., Prototype selection for dynamic classifier and ensemble selection. Neural Comput. Appl. 29:2 (2018), 447–457.
-
(2018)
Neural Comput. Appl.
, vol.29
, Issue.2
, pp. 447-457
-
-
Cruz, R.M.O.1
Sabourin, R.2
Cavalcanti, G.D.C.3
-
51
-
-
33749245586
-
Cost-sensitive learning by cost-proportionate example weighting
-
IEEE Computer Society Washington, DC, USA
-
Zadrozny, B., Langford, J., Abe, N., Cost-sensitive learning by cost-proportionate example weighting. Proceedings of the Third IEEE International Conference on Data Mining (ICDM), 2003, IEEE Computer Society, Washington, DC, USA, 435–442.
-
(2003)
Proceedings of the Third IEEE International Conference on Data Mining (ICDM)
, pp. 435-442
-
-
Zadrozny, B.1
Langford, J.2
Abe, N.3
-
52
-
-
0348222721
-
New applications of ensembles of classifiers
-
Barandela, R., Valdovinos, R., Sánchez, J., New applications of ensembles of classifiers. Pattern Anal. Appl. 6:3 (2003), 245–256.
-
(2003)
Pattern Anal. Appl.
, vol.6
, Issue.3
, pp. 245-256
-
-
Barandela, R.1
Valdovinos, R.2
Sánchez, J.3
-
53
-
-
27144501672
-
Borderline-smote: A new over-sampling method in imbalanced data sets learning
-
Springer-Verlag Berlin, Heidelberg
-
Han, H., Wang, W.-Y., Mao, B.-H., Borderline-smote: A new over-sampling method in imbalanced data sets learning. Proceedings of the International Conference on Advances in Intelligent Computing - Volume Part I (ICIC), 2005, Springer-Verlag, Berlin, Heidelberg, 878–887.
-
(2005)
Proceedings of the International Conference on Advances in Intelligent Computing - Volume Part I (ICIC)
, pp. 878-887
-
-
Han, H.1
Wang, W.-Y.2
Mao, B.-H.3
-
54
-
-
67650694660
-
Safe-level-smote: Safe-level-synthetic minority over-sampling technique for handling the class imbalanced problem
-
Springer-Verlag Berlin, Heidelberg
-
Bunkhumpornpat, C., Sinapiromsaran, K., Lursinsap, C., Safe-level-smote: Safe-level-synthetic minority over-sampling technique for handling the class imbalanced problem. Proceedings of the Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining (PAKDD), 2009, Springer-Verlag, Berlin, Heidelberg, 475–482.
-
(2009)
Proceedings of the Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining (PAKDD)
, pp. 475-482
-
-
Bunkhumpornpat, C.1
Sinapiromsaran, K.2
Lursinsap, C.3
-
55
-
-
56349089205
-
Adasyn: adaptive synthetic sampling approach for imbalanced learning
-
He, H., Bai, Y., Garcia, E., Li, S., Adasyn: adaptive synthetic sampling approach for imbalanced learning. Proceedings of the International Joint Conference on Neural Networks, 2008, 1322–1328, 10.1109/IJCNN.2008.4633969.
-
(2008)
Proceedings of the International Joint Conference on Neural Networks
, pp. 1322-1328
-
-
He, H.1
Bai, Y.2
Garcia, E.3
Li, S.4
-
56
-
-
84937523920
-
Random balance: ensembles of variable priors classifiers for imbalanced data
-
Díez-Pastor, J.F., Rodríguez, J.J., García-Osorio, C.I., Kuncheva, L.I., Random balance: ensembles of variable priors classifiers for imbalanced data. Knowl. Based Syst. 85 (2015), 96–111.
-
(2015)
Knowl. Based Syst.
, vol.85
, pp. 96-111
-
-
Díez-Pastor, J.F.1
Rodríguez, J.J.2
García-Osorio, C.I.3
Kuncheva, L.I.4
-
57
-
-
85009962818
-
Data Mining: Practical Machine Learning Tools and Techniques
-
fourth Morgan Kaufmann Burlington, MA
-
Witten, I.H., Frank, E., Hall, M.A., Pal, C.J., Data Mining: Practical Machine Learning Tools and Techniques. fourth, 2016, Morgan Kaufmann, Burlington, MA.
-
(2016)
-
-
Witten, I.H.1
Frank, E.2
Hall, M.A.3
Pal, C.J.4
-
58
-
-
33750095186
-
Rotation forest: A new classifier ensemble method
-
Rodriguez, J.J., Kuncheva, L.I., Alonso, C.J., Rotation forest: A new classifier ensemble method. IEEE Trans. Pattern Anal. Mach. Intell. 28:10 (2006), 1619–1630.
-
(2006)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.28
, Issue.10
, pp. 1619-1630
-
-
Rodriguez, J.J.1
Kuncheva, L.I.2
Alonso, C.J.3
-
59
-
-
0003500248
-
C4.5: Programs for Machine Learning
-
Morgan Kaufmann Publishers Inc. San Francisco, CA, USA
-
Quinlan, J.R., C4.5: Programs for Machine Learning. 1993, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.
-
(1993)
-
-
Quinlan, J.R.1
-
60
-
-
68549121111
-
C4.5 and imbalanced data sets: investigating the effect of sampling method, probabilistic estimate, and decision tree structure
-
Chawla, N.V., C4.5 and imbalanced data sets: investigating the effect of sampling method, probabilistic estimate, and decision tree structure. Proceedings of the ICML Workshop on Class Imbalances, 2003.
-
(2003)
Proceedings of the ICML Workshop on Class Imbalances
-
-
Chawla, N.V.1
-
61
-
-
33646023117
-
An introduction to ROC analysis
-
Fawcett, T., An introduction to ROC analysis. Pattern Recognit. Lett. 27:8 (2006), 861–874.
-
(2006)
Pattern Recognit. Lett.
, vol.27
, Issue.8
, pp. 861-874
-
-
Fawcett, T.1
-
62
-
-
0004217877
-
Information Retrieval
-
second Butterworth-Heinemann Newton, MA, USA
-
Rijsbergen, C.J.V., Information Retrieval. second, 1979, Butterworth-Heinemann, Newton, MA, USA.
-
(1979)
-
-
Rijsbergen, C.J.V.1
-
64
-
-
79951829331
-
Keel data-mining software tool: Data set repository, integration of algorithms and experimental analysis framework
-
Alcalá-Fdez, J., Fernández, A., Luengo, J., Derrac, J., García, S., Sánchez, F., Herrera, L., Keel data-mining software tool: Data set repository, integration of algorithms and experimental analysis framework. J. Multiple Valued Logic Soft Comput. 17:2–3 (2011), 255–287.
-
(2011)
J. Multiple Valued Logic Soft Comput.
, vol.17
, Issue.2-3
, pp. 255-287
-
-
Alcalá-Fdez, J.1
Fernández, A.2
Luengo, J.3
Derrac, J.4
García, S.5
Sánchez, F.6
Herrera, L.7
-
65
-
-
46849096083
-
A study of the behaviour of linguistic fuzzy rule based classification systems in the framework of imbalanced data-sets
-
Fernández, A., García, S., del Jesus, M.J., Herrera, F., A study of the behaviour of linguistic fuzzy rule based classification systems in the framework of imbalanced data-sets. Fuzzy Sets Syst. 159:18 (2008), 2378–2398.
-
(2008)
Fuzzy Sets Syst.
, vol.159
, Issue.18
, pp. 2378-2398
-
-
Fernández, A.1
García, S.2
del Jesus, M.J.3
Herrera, F.4
-
66
-
-
0001750957
-
Approximations of the critical region of the fbietkan statistic
-
Iman, R.L., Davenport, J.M., Approximations of the critical region of the fbietkan statistic. Commun. Stat. Theory Methods 9:6 (1980), 571–595.
-
(1980)
Commun. Stat. Theory Methods
, vol.9
, Issue.6
, pp. 571-595
-
-
Iman, R.L.1
Davenport, J.M.2
-
67
-
-
77549084648
-
Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power
-
García, S., Fernández, A., Luengo, J., Herrera, F., Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power. Inf. Sci. 180:10 (2010), 2044–2064.
-
(2010)
Inf. Sci.
, vol.180
, Issue.10
, pp. 2044-2064
-
-
García, S.1
Fernández, A.2
Luengo, J.3
Herrera, F.4
-
68
-
-
21144459575
-
On a monotonicity problem in step-down multiple test procedures
-
Finner, H., On a monotonicity problem in step-down multiple test procedures. J. Am. Stat. Assoc. 88:423 (1993), 920–923.
-
(1993)
J. Am. Stat. Assoc.
, vol.88
, Issue.423
, pp. 920-923
-
-
Finner, H.1
-
69
-
-
29144474463
-
An experimental bias-variance analysis of svm ensembles based on resampling techniques
-
Valentini, G., An experimental bias-variance analysis of svm ensembles based on resampling techniques. IEEE Trans. Sys. Man Cybern. Part B Cybern. 35:6 (2005), 1252–1271.
-
(2005)
IEEE Trans. Sys. Man Cybern. Part B Cybern.
, vol.35
, Issue.6
, pp. 1252-1271
-
-
Valentini, G.1
-
70
-
-
84961631662
-
To combat multi-class imbalanced problems by means of over-sampling techniques
-
Abdi, L., Hashemi, S., To combat multi-class imbalanced problems by means of over-sampling techniques. IEEE Trans. Knowl. Data Eng. 28:1 (2016), 238–251.
-
(2016)
IEEE Trans. Knowl. Data Eng.
, vol.28
, Issue.1
, pp. 238-251
-
-
Abdi, L.1
Hashemi, S.2
-
71
-
-
84947127879
-
To combat multi-class imbalanced problems by means of over-sampling and boosting techniques
-
Abdi, L., Hashemi, S., To combat multi-class imbalanced problems by means of over-sampling and boosting techniques. Soft Comput. 19:12 (2015), 3369–3385.
-
(2015)
Soft Comput.
, vol.19
, Issue.12
, pp. 3369-3385
-
-
Abdi, L.1
Hashemi, S.2
-
72
-
-
84874667219
-
Analysing the classification of imbalanced data-sets with multiple classes: Binarization techniques and ad-hoc approaches
-
Fernández, A., López, V., Galar, M., Del Jesus, M.J., Herrera, F., Analysing the classification of imbalanced data-sets with multiple classes: Binarization techniques and ad-hoc approaches. Knowl. Based Syst. 42 (2013), 97–110.
-
(2013)
Knowl. Based Syst.
, vol.42
, pp. 97-110
-
-
Fernández, A.1
López, V.2
Galar, M.3
Del Jesus, M.J.4
Herrera, F.5
-
73
-
-
79953050208
-
A dynamic over-sampling procedure based on sensitivity for multi-class problems
-
Fernández-Navarro, F., Hervás-Martínez, C., Gutiérrez, P.A., A dynamic over-sampling procedure based on sensitivity for multi-class problems. Pattern Recognit. 44:8 (2011), 1821–1833.
-
(2011)
Pattern Recognit.
, vol.44
, Issue.8
, pp. 1821-1833
-
-
Fernández-Navarro, F.1
Hervás-Martínez, C.2
Gutiérrez, P.A.3
-
74
-
-
67049152595
-
Boosting for learning multiple classes with imbalanced class distribution
-
Sun, Y., Kamel, M.S., Wang, Y., Boosting for learning multiple classes with imbalanced class distribution. Proceedings of the International Conference on Data Mining (ICDM), 2006, 592–602.
-
(2006)
Proceedings of the International Conference on Data Mining (ICDM)
, pp. 592-602
-
-
Sun, Y.1
Kamel, M.S.2
Wang, Y.3
|