메뉴 건너뛰기




Volumn 45, Issue 9, 2012, Pages 3544-3556

LoGID: An adaptive framework combining local and global incremental learning for dynamic selection of ensembles of HMMs

Author keywords

Adaptive systems; Dynamic selection; Ensembles of classifiers; Hidden Markov models; Incremental learning

Indexed keywords

ADAPTIVE FRAMEWORK; BASE CLASSIFIERS; BASELINE SYSTEMS; BATCH LEARNING; DYNAMIC SELECTION; ENSEMBLES OF CLASSIFIERS; INCREMENTAL LEARNING; LEARNING PHASIS; NEW MEMBERS; PERFORMANCE OF SYSTEMS; RECOGNITION RATES; SMALL TRAINING; STATE-OF-THE-ART APPROACH; TEST SAMPLES;

EID: 84861630536     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2012.02.034     Document Type: Conference Paper
Times cited : (44)

References (35)
  • 2
    • 68249094176 scopus 로고    scopus 로고
    • Evaluation of incremental learning algorithms for HMM in the recognition of alphanumeric characters
    • (New Frontiers in Handwriting Recognition)
    • P.R. Cavalin, R. Sabourin, C.Y. Suen, and A.S. Britto Jr. Evaluation of incremental learning algorithms for HMM in the recognition of alphanumeric characters Pattern Recognition 42 12 2009 3241 3253 (New Frontiers in Handwriting Recognition)
    • (2009) Pattern Recognition , vol.42 , Issue.12 , pp. 3241-3253
    • Cavalin, P.R.1    Sabourin, R.2    Suen, C.Y.3    Britto, Jr.A.S.4
  • 3
    • 46749096639 scopus 로고    scopus 로고
    • Online learning with hidden Markov models
    • G. Mongillo, and S. Deneve Online learning with hidden Markov models Neural Computation 20 2008 1706 1716
    • (2008) Neural Computation , vol.20 , pp. 1706-1716
    • Mongillo, G.1    Deneve, S.2
  • 6
    • 60349123276 scopus 로고    scopus 로고
    • Incremental construction of classifier and discriminant ensembles
    • A. Ulas, M. Semerci, O.T. Yildiz, and E. Alpaydin Incremental construction of classifier and discriminant ensembles Information Sciences 179 2009 1298 1318
    • (2009) Information Sciences , vol.179 , pp. 1298-1318
    • Ulas, A.1    Semerci, M.2    Yildiz, O.T.3    Alpaydin, E.4
  • 9
    • 38349135448 scopus 로고    scopus 로고
    • From dynamic classifier selection to dynamic ensemble selection
    • A.H. Ko, R. Sabourin, and A.S. Britto Jr. From dynamic classifier selection to dynamic ensemble selection Pattern Recognition 41 5 2008 1718 1731
    • (2008) Pattern Recognition , vol.41 , Issue.5 , pp. 1718-1731
    • Ko, A.H.1    Sabourin, R.2    Britto, Jr.A.S.3
  • 10
    • 0034830461 scopus 로고    scopus 로고
    • Decision templates for multiple classifier fusion: An experimental comparison
    • 'L.I. Kuncheva, J.C. Bezder, and R.P.W. Duin Decision templates for multiple classifier fusion: an experimental comparison Pattern Recognition 34 2001 299 314
    • (2001) Pattern Recognition , vol.34 , pp. 299-314
    • Kuncheva, 'L.I.1    Bezder, J.C.2    Duin, R.P.W.3
  • 13
    • 33745950074 scopus 로고    scopus 로고
    • Dynamically weighted majority voting for incremental learning and comparison of three boosting based approaches
    • A. Gangardiwala, R. Polikar, Dynamically weighted majority voting for incremental learning and comparison of three boosting based approaches, in: Proceedings of the International Joint Conference on Neural Networks, 2005, pp. 1131-1136.
    • (2005) Proceedings of the International Joint Conference on Neural Networks , pp. 1131-1136
    • Gangardiwala, A.1    Polikar, R.2
  • 14
    • 58649083899 scopus 로고    scopus 로고
    • Learn.NC: Combining ensemble of classifiers with dynamically weighted consult-and-vote for efficient incremental learning of new classes
    • M.D. Muhlbaier, A. Topalis, and R. Polikar Learn.NC: combining ensemble of classifiers with dynamically weighted consult-and-vote for efficient incremental learning of new classes IEEE Transactions on Neural Networks 20 1 2009 152 168
    • (2009) IEEE Transactions on Neural Networks , vol.20 , Issue.1 , pp. 152-168
    • Muhlbaier, M.D.1    Topalis, A.2    Polikar, R.3
  • 16
    • 84994037050 scopus 로고    scopus 로고
    • Dynamic classifier selection based on multiple classifier behaviour
    • G. Giacinto, and F. Roli Dynamic classifier selection based on multiple classifier behaviour Pattern Recognition 34 2001 1879 1881
    • (2001) Pattern Recognition , vol.34 , pp. 1879-1881
    • Giacinto, G.1    Roli, F.2
  • 17
    • 19544364128 scopus 로고    scopus 로고
    • Dynamic classifier selection for effective mining from noisy data streams
    • IEEE Computer Society, Washington, DC, USA
    • X. Zhu, X. Wu, Y. Yang, Dynamic classifier selection for effective mining from noisy data streams, in: Proceedings of the 4th IEEE International Conference on Data Mining, IEEE Computer Society, Washington, DC, USA, 2004, pp. 305-312.
    • (2004) Proceedings of the 4th IEEE International Conference on Data Mining , pp. 305-312
    • Zhu, X.1    Wu, X.2    Yang, Y.3
  • 18
    • 45549107002 scopus 로고    scopus 로고
    • A dynamic overproduce-and-choose strategy for the selection of classifier ensembles
    • E.M. Dos Santos, R. Sabourin, and P. Maupin A dynamic overproduce-and-choose strategy for the selection of classifier ensembles Pattern Recognition 41 2008 2993 3009
    • (2008) Pattern Recognition , vol.41 , pp. 2993-3009
    • Dos Santos, E.M.1    Sabourin, R.2    Maupin, P.3
  • 21
    • 13544267516 scopus 로고    scopus 로고
    • A dynamic classifier selection and combination approach to image region labelling
    • S. Singh, and M. Singh A dynamic classifier selection and combination approach to image region labelling Signal Processing: Image Communication 20 3 2005 219 231
    • (2005) Signal Processing: Image Communication , vol.20 , Issue.3 , pp. 219-231
    • Singh, S.1    Singh, M.2
  • 27
    • 0024610919 scopus 로고
    • A tutorial on hidden Markov models and selected applications in speech recognition
    • L.R. Rabiner A tutorial on hidden Markov models and selected applications in speech recognition Proceedings of the IEEE 77 2 1989 257 286
    • (1989) Proceedings of the IEEE , vol.77 , Issue.2 , pp. 257-286
    • Rabiner, L.R.1
  • 28
    • 30244529221 scopus 로고
    • Durationally constrained training of HMM without explicit state durational PDF
    • University of Amsterdam
    • X. Wang, Durationally constrained training of HMM without explicit state durational PDF, in: Proceedings of the Institute of Phonetic Sciences, vol. 18, University of Amsterdam, 1994, pp. 111-130.
    • (1994) Proceedings of the Institute of Phonetic Sciences , vol.18 , pp. 111-130
    • Wang, X.1
  • 29
    • 70449526526 scopus 로고    scopus 로고
    • Leave-one-out-training and leave-one-out-testing hidden Markov models for a handwritten numeral recognizer: The implication of a single classifier and multiple classifications
    • A.H. Ko, P.R. Cavalin, R. Sabourin, and A.S. Britto Jr. Leave-one-out-training and leave-one-out-testing hidden Markov models for a handwritten numeral recognizer: the implication of a single classifier and multiple classifications IEEE Transactions on Pattern Analysis and Machine Intelligence 1 2009 2168 2178
    • (2009) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.1 , pp. 2168-2178
    • Ko, A.H.1    Cavalin, P.R.2    Sabourin, R.3    Britto, Jr.A.S.4
  • 34
    • 58849166251 scopus 로고    scopus 로고
    • Ensemble of HMM classifiers based on the clustering validity index for a handwritten numeral recognizer
    • A.H. Ko, R. Sabourin, and A.S. Britto Jr. Ensemble of HMM classifiers based on the clustering validity index for a handwritten numeral recognizer Pattern Analysis and Applications 12 2009 21 35
    • (2009) Pattern Analysis and Applications , vol.12 , pp. 21-35
    • Ko, A.H.1    Sabourin, R.2    Britto, Jr.A.S.3
  • 35
    • 84873318970 scopus 로고    scopus 로고
    • Exploring bit-difference for approximate KNN search in high-dimensional databases
    • Australian Computer Society, Inc.
    • B. Cui, H.T. Shen, J. Shen, K.-L. Tan, Exploring bit-difference for approximate KNN search in high-dimensional databases, in: Proceedings of the 16th Australasian Database Conference, Australian Computer Society, Inc., 2005, pp. 165-174.
    • (2005) Proceedings of the 16th Australasian Database Conference , pp. 165-174
    • Cui, B.1    Shen, H.T.2    Shen, J.3    Tan, K.-L.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.