메뉴 건너뛰기




Volumn 19, Issue 12, 2015, Pages 3369-3385

To combat multi-class imbalanced problems by means of over-sampling and boosting techniques

Author keywords

Boosting algorithm; Class decomposition techniques; Mahalanobis distance; Multi class imbalance; Over sampling

Indexed keywords

ALGORITHMS; ARTIFICIAL INTELLIGENCE; BENCHMARKING; LEARNING SYSTEMS;

EID: 84947127879     PISSN: 14327643     EISSN: 14337479     Source Type: Journal    
DOI: 10.1007/s00500-014-1291-z     Document Type: Article
Times cited : (29)

References (65)
  • 2
    • 84867580242 scopus 로고    scopus 로고
    • DBFS: an effective density based feature selection scheme for small sample size and high dimensional imbalanced data sets
    • Alibeigi M, Hashemi S, Hamzeh A (2012) DBFS: an effective density based feature selection scheme for small sample size and high dimensional imbalanced data sets. Data Knowl Eng
    • (2012) Data Knowl Eng
    • Alibeigi, M.1    Hashemi, S.2    Hamzeh, A.3
  • 3
    • 84947131889 scopus 로고
    • On measures of information and their characterizations
    • Aczl J, Darczy Z (1975) On measures of information and their characterizations. New York
    • (1975) New York
    • Aczl, J.1    Darczy, Z.2
  • 4
    • 84947131890 scopus 로고    scopus 로고
    • Bishop CM (2007) Pattern recognition and machine learning (information science and statistics)
    • Bishop CM (2007) Pattern recognition and machine learning (information science and statistics)
  • 5
    • 0031191630 scopus 로고    scopus 로고
    • The use of the area under the roc curve in the evaluation of machine learning algorithms
    • Bradley AP (1997) The use of the area under the roc curve in the evaluation of machine learning algorithms. Pattern Recognit 30(7):1145–1159
    • (1997) Pattern Recognit , vol.30 , Issue.7 , pp. 1145-1159
    • Bradley, A.P.1
  • 8
    • 84947131891 scopus 로고    scopus 로고
    • C4.5 and imbalanced data sets: investigating the effect of sampling method, probabilistic estimate, and decision tree structure. In: Proceedings of the ICML
    • Chawla NV (2003) C4.5 and imbalanced data sets: investigating the effect of sampling method, probabilistic estimate, and decision tree structure. In: Proceedings of the ICML, vol 3
    • (2003) vol 3
    • Chawla, N.V.1
  • 9
    • 27144549260 scopus 로고    scopus 로고
    • Editorial: special issue on learning from imbalanced data sets
    • Chawla NV, Japkowicz N, Kotcz A (2004) Editorial: special issue on learning from imbalanced data sets. SIGKDD Explor Newsl 6(1):1–6
    • (2004) SIGKDD Explor Newsl , vol.6 , Issue.1 , pp. 1-6
    • Chawla, N.V.1    Japkowicz, N.2    Kotcz, A.3
  • 10
    • 38349079707 scopus 로고    scopus 로고
    • Efficient classification of multi-label and imbalanced data using min-max modular classifiers. In: International joint conference on neural networks, IJCNN’06, IEEE
    • Chen K, Lu BL, Kwok JT (2006) Efficient classification of multi-label and imbalanced data using min-max modular classifiers. In: International joint conference on neural networks, IJCNN’06, IEEE, pp 1770–1775
    • (2006) pp 1770–1775
    • Chen, K.1    Lu, B.L.2    Kwok, J.T.3
  • 12
    • 85149612939 scopus 로고
    • Fast effective rule induction
    • Cohen WW (1995) Fast effective rule induction. In: ICML, vol 95, pp 115–123
    • (1995) ICML , vol.95 , pp. 115-123
    • Cohen, W.W.1
  • 13
    • 35548978022 scopus 로고    scopus 로고
    • Fast linear algebra is stable
    • Demmel J, Dumitriu I, Holtz O (2007) Fast linear algebra is stable. Numer Math 108(1):59–91
    • (2007) Numer Math , vol.108 , Issue.1 , pp. 59-91
    • Demmel, J.1    Dumitriu, I.2    Holtz, O.3
  • 14
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30
    • (2006) J Mach Learn Res , vol.7 , pp. 1-30
    • Demar, J.1
  • 16
    • 84943987463 scopus 로고
    • Multiple comparisons among means
    • Dunn OJ (1961) Multiple comparisons among means. J Am Stat Assoc 56(293):52–64
    • (1961) J Am Stat Assoc , vol.56 , Issue.293 , pp. 52-64
    • Dunn, O.J.1
  • 17
    • 58149180961 scopus 로고    scopus 로고
    • Learning classifiers from only positive and unlabeled data. In: Proceedings of the 14th ACM SIGKDD international conference on knowledge discovery and data mining
    • Elkan C, Noto K (2008) Learning classifiers from only positive and unlabeled data. In: Proceedings of the 14th ACM SIGKDD international conference on knowledge discovery and data mining, pp 213–220
    • (2008) pp 213–220
    • Elkan, C.1    Noto, K.2
  • 18
    • 77954871595 scopus 로고    scopus 로고
    • Herrera F (2010) Multi-class imbalanced data-sets with linguistic fuzzy rule based classification systems based on pairwise learning
    • Springer, Berlin
    • Fernndez A, Del Jesus MJ, Herrera F (2010) Multi-class imbalanced data-sets with linguistic fuzzy rule based classification systems based on pairwise learning. In: Computational intelligence for knowledge-based systems design. Springer, Berlin, pp 89–98
    • Computational intelligence for knowledge-based systems design , pp. 89-98
    • Fernndez, A.1    Del Jesus, M.J.2
  • 19
    • 84947131895 scopus 로고    scopus 로고
    • Frank A, Asuncion A (2010) UCI machine learning repository
    • Frank A, Asuncion A (2010) UCI machine learning repository: http://archive.ics.uci.edu/ml
  • 20
    • 0002978642 scopus 로고    scopus 로고
    • Experiments with a new boosting algorithm
    • Freund Y, Schapire RE (1996) Experiments with a new boosting algorithm. In: ICML, vol 96, pp 148–156
    • (1996) ICML , vol.96 , pp. 148-156
    • Freund, Y.1    Schapire, R.E.2
  • 21
    • 84944811700 scopus 로고
    • The use of ranks to avoid the assumption of normality implicit in the analysis of variance
    • Friedman M (1937) The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J Am Stat Assoc 32(200):675–701
    • (1937) J Am Stat Assoc , vol.32 , Issue.200 , pp. 675-701
    • Friedman, M.1
  • 23
    • 0000708450 scopus 로고
    • A class of invariant consistent tests for multivariate normality
    • Henze N, Zirkler B (1990) A class of invariant consistent tests for multivariate normality. Commun Statist Theor Meth 19(10):3595–3618
    • (1990) Commun Statist Theor Meth , vol.19 , Issue.10 , pp. 3595-3618
    • Henze, N.1    Zirkler, B.2
  • 24
    • 27144501672 scopus 로고    scopus 로고
    • Mao BH (2005) Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning
    • Springer, Berlin
    • Han H, Wang WY, Mao BH (2005) Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning. In: Advances in intelligent computing. Springer, Berlin, pp 878–887
    • Advances in intelligent computing , pp. 878-887
    • Han, H.1    Wang, W.Y.2
  • 25
    • 0003562954 scopus 로고    scopus 로고
    • A simple generalisation of the area under the roc curve for multiple class classification problems
    • Hand DJ, Till RJ (2001) A simple generalisation of the area under the roc curve for multiple class classification problems. Mach Learn 45(2):171–186
    • (2001) Mach Learn , vol.45 , Issue.2 , pp. 171-186
    • Hand, D.J.1    Till, R.J.2
  • 26
    • 84931162639 scopus 로고
    • The condensed nearest neighbour rule
    • Hart PE (1968) The condensed nearest neighbour rule. IEEE Trans Inform Theory 14(3):515–516
    • (1968) IEEE Trans Inform Theory , vol.14 , Issue.3 , pp. 515-516
    • Hart, P.E.1
  • 27
    • 0032355984 scopus 로고    scopus 로고
    • Classification by pairwise coupling
    • Hastie T, Tibshirani R (1998) Classification by pairwise coupling. Ann Stat 26(2):451–471
    • (1998) Ann Stat , vol.26 , Issue.2 , pp. 451-471
    • Hastie, T.1    Tibshirani, R.2
  • 28
    • 56349089205 scopus 로고    scopus 로고
    • Li S (2008) ADASYN: adaptive synthetic sampling approach for imbalanced learning
    • IEEE world congress on computational intelligence, IEEE
    • He H, Bai Y, Garcia EA, Li S (2008) ADASYN: adaptive synthetic sampling approach for imbalanced learning. In: IEEE international joint conference on neural networks. IJCNN (IEEE world congress on computational intelligence), IEEE, pp 1322–1328.
    • IEEE international joint conference on neural networks. IJCNN , pp. 1322-1328
    • He, H.1    Bai, Y.2    Garcia, E.A.3
  • 29
    • 68549133155 scopus 로고    scopus 로고
    • Learning from imbalanced data
    • He H, Garcia EA (2009) Learning from imbalanced data. IEEE Trans Knowl Data Eng 21(9):1263–1284
    • (2009) IEEE Trans Knowl Data Eng , vol.21 , Issue.9 , pp. 1263-1284
    • He, H.1    Garcia, E.A.2
  • 30
    • 0001750957 scopus 로고
    • Approximations of the critical region of the fbietkan statistic
    • Iman RL, Davenport JM (1980) Approximations of the critical region of the fbietkan statistic. Commun Stat Theory Methods 9(6):571–595
    • (1980) Commun Stat Theory Methods , vol.9 , Issue.6 , pp. 571-595
    • Iman, R.L.1    Davenport, J.M.2
  • 33
    • 84947131897 scopus 로고    scopus 로고
    • Kotsiantis SB, Zaharakis ID, Pintelas PE (2007) Supervised machine learning: a review of classification techniques
    • Kotsiantis SB, Zaharakis ID, Pintelas PE (2007) Supervised machine learning: a review of classification techniques
  • 34
    • 0001972236 scopus 로고    scopus 로고
    • Addressing the curse of imbalanced training sets: one-sided selection. In: Proceeding 14th international conference on machine learning
    • Kubat M, Matwin S (1997) Addressing the curse of imbalanced training sets: one-sided selection. In: Proceeding 14th international conference on machine learning, p 179–186
    • (1997) p 179–186
    • Kubat, M.1    Matwin, S.2
  • 35
    • 84947918649 scopus 로고    scopus 로고
    • Matwin S (1997) Learning when negative examples abound
    • Springer, Berlin
    • Kubat M, Holte R, Matwin S (1997) Learning when negative examples abound. In: Machine learning: ECML-97. Springer, Berlin, pp 146–153
    • Machine learning: ECML-97 , pp. 146-153
    • Kubat, M.1    Holte, R.2
  • 36
    • 0001927585 scopus 로고
    • On information and sufficiency
    • Kullback S, Leibler RA (1951) On information and sufficiency. Ann Math Stat 22(1):79–86
    • (1951) Ann Math Stat , vol.22 , Issue.1 , pp. 79-86
    • Kullback, S.1    Leibler, R.A.2
  • 38
    • 44949084506 scopus 로고    scopus 로고
    • Classification of weld flaws with imbalanced class data
    • Liao TW (2008) Classification of weld flaws with imbalanced class data. Expert Syst Appl 35(3):1041–1052
    • (2008) Expert Syst Appl , vol.35 , Issue.3 , pp. 1041-1052
    • Liao, T.W.1
  • 41
    • 33748611921 scopus 로고    scopus 로고
    • Ensemble based systems in decision making
    • Polikar R (2006) Ensemble based systems in decision making. Circuits Syst Mag IEEE 6(3):21–45
    • (2006) Circuits Syst Mag IEEE , vol.6 , Issue.3 , pp. 21-45
    • Polikar, R.1
  • 43
    • 9444270977 scopus 로고    scopus 로고
    • Class imbalances versus class overlapping: an analysis of a learning system behavior. In MICAI 2004: advances in artificial intelligence
    • Prati RC, Batista GE, Monard MC (2004) Class imbalances versus class overlapping: an analysis of a learning system behavior. In MICAI 2004: advances in artificial intelligence. Springer, Berlin, pp 312–321
    • (2004) Springer, Berlin , pp. 312-321
    • Prati, R.C.1    Batista, G.E.2    Monard, M.C.3
  • 44
    • 0005685575 scopus 로고
    • C4. 5: programs for machine learning, vol 1
    • Quinlan JR (1993) C4. 5: programs for machine learning, vol 1. Morgan kaufmann
    • (1993) Morgan kaufmann
    • Quinlan, J.R.1
  • 45
    • 32344438970 scopus 로고    scopus 로고
    • Extreme re-balancing for svms: a case study
    • Raskutti B, Kowalczyk A (2004) Extreme re-balancing for svms: a case study. SIGKDD Explor 6(1):60–69
    • (2004) SIGKDD Explor , vol.6 , Issue.1 , pp. 60-69
    • Raskutti, B.1    Kowalczyk, A.2
  • 46
    • 56749117943 scopus 로고    scopus 로고
    • In defense of one-vs-all classification
    • Rifkin R, Klautau A (2004) In defense of one-vs-all classification. J Mach Learn Res 5:101–141
    • (2004) J Mach Learn Res , vol.5 , pp. 101-141
    • Rifkin, R.1    Klautau, A.2
  • 50
    • 26944447463 scopus 로고    scopus 로고
    • Wang Y (2005) Parameter inference of cost-sensitive boosting algorithms
    • Springer, Berlin
    • Sun Y, Wong AK, Wang Y (2005) Parameter inference of cost-sensitive boosting algorithms. In: Machine learning and data mining in pattern recognition. Springer, Berlin, pp 21–30
    • Machine learning and data mining in pattern recognition , pp. 21-30
    • Sun, Y.1    Wong, A.K.2
  • 51
    • 67049152595 scopus 로고    scopus 로고
    • Boosting for learning multiple classes with imbalanced class distribution. In: Proceeding of the sixth international conference on data mining. ICDM’06, IEEE
    • Sun Y, Kamel MS, Wang Y (2006) Boosting for learning multiple classes with imbalanced class distribution. In: Proceeding of the sixth international conference on data mining. ICDM’06, IEEE, pp 592–602
    • (2006) pp 592–602
    • Sun, Y.1    Kamel, M.S.2    Wang, Y.3
  • 52
    • 34547673383 scopus 로고    scopus 로고
    • Cost-sensitive boosting for classification of imbalanced data
    • Sun Y, Kamel MS, Wong AK, Wang Y (2007) Cost-sensitive boosting for classification of imbalanced data. Pattern Recognit 40(12):3358–3378
    • (2007) Pattern Recognit , vol.40 , Issue.12 , pp. 3358-3378
    • Sun, Y.1    Kamel, M.S.2    Wong, A.K.3    Wang, Y.4
  • 53
    • 84947131901 scopus 로고    scopus 로고
    • Deville Y: Multi-class protein fold classification using a new ensemble machine learning approach
    • Tan A, Gilbert D, Deville Y (2003) Multi-class protein fold classification using a new ensemble machine learning approach
    • (2003) Gilbert D
    • Tan, A.1
  • 54
    • 0017024036 scopus 로고
    • Two modifications of cnn
    • Tomek I (1976) Two modifications of cnn. IEEE Trans Syst Man Cybern 11:769–772
    • (1976) IEEE Trans Syst Man Cybern , vol.11 , pp. 769-772
    • Tomek, I.1
  • 55
    • 84947131902 scopus 로고    scopus 로고
    • Henze–Zirkler’s multivariate normality test, A MATLAB file [WWW document]
    • Trujillo-Ortiz A, Hernandez-Walls R, Barba-Rojo K, Cupul-Magana L (2007) HZmvntest: Henze–Zirkler’s multivariate normality test. A MATLAB file [WWW document]. http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=17931
    • (2007) HZmvntest
    • Trujillo-Ortiz, A.1    Hernandez-Walls, R.2    Barba-Rojo, K.3    Cupul-Magana, L.4
  • 57
    • 84864153221 scopus 로고    scopus 로고
    • Multiclass imbalance problems: analysis and potential solutions
    • Wang S, Yao X (2012) Multiclass imbalance problems: analysis and potential solutions. IEEE Trans Syst Man Cybern Part B Cybern 42(4):1119–1130
    • (2012) IEEE Trans Syst Man Cybern Part B Cybern , vol.42 , Issue.4 , pp. 1119-1130
    • Wang, S.1    Yao, X.2
  • 58
    • 0003790115 scopus 로고    scopus 로고
    • The effect of class distribution on classifier learning: an empirical study
    • Rutgers University, USA
    • Weiss GM, Provost F (2001) The effect of class distribution on classifier learning: an empirical study. Rutgers University, USA
    • (2001)
    • Weiss, G.M.1    Provost, F.2
  • 59
    • 1442275185 scopus 로고    scopus 로고
    • Learning when training data are costly: the effect of class distribution on tree induction
    • Weiss GM, Provost FJ (2003) Learning when training data are costly: the effect of class distribution on tree induction. J Artif Intell Res (JAIR) 19:315–354
    • (2003) J Artif Intell Res (JAIR) , vol.19 , pp. 315-354
    • Weiss, G.M.1    Provost, F.J.2
  • 60
    • 20844458491 scopus 로고    scopus 로고
    • Mining with rarity: a unifying framework
    • Weiss GM (2004) Mining with rarity: a unifying framework. ACM SIGKDD Explor Newsl 6(1):7–19
    • (2004) ACM SIGKDD Explor Newsl , vol.6 , Issue.1 , pp. 7-19
    • Weiss, G.M.1
  • 61
    • 0015361129 scopus 로고
    • Asymptotic properties of nearest neighbour rules using edited data
    • Wilson DL (1972) Asymptotic properties of nearest neighbour rules using edited data. IEEE Trans Syst Man Cybern 2(3):408–421
    • (1972) IEEE Trans Syst Man Cybern , vol.2 , Issue.3 , pp. 408-421
    • Wilson, D.L.1
  • 62
    • 84947130078 scopus 로고    scopus 로고
    • Data mining, practical machine learning tools and techniques, Morgan Kaufmann
    • Witten IH (2005) and Frank, E. Data mining, practical machine learning tools and techniques. Morgan Kaufmann
    • (2005) and Frank, E
    • Witten, I.H.1
  • 64
    • 31344442851 scopus 로고    scopus 로고
    • Training cost-sensitive neural networks with methods addressing the class imbalance problem
    • Zhou ZH, Liu XY (2006) Training cost-sensitive neural networks with methods addressing the class imbalance problem. IEEE Trans Knowl Data Eng 18(1):63–77
    • (2006) IEEE Trans Knowl Data Eng , vol.18 , Issue.1 , pp. 63-77
    • Zhou, Z.H.1    Liu, X.Y.2
  • 65
    • 57649150671 scopus 로고    scopus 로고
    • Parameter optimization of kernel-based one-class classifier on imbalance learning
    • Zhuang L, Dai H (2006) Parameter optimization of kernel-based one-class classifier on imbalance learning. J Comput 1(7):32–40
    • (2006) J Comput , vol.1 , Issue.7 , pp. 32-40
    • Zhuang, L.1    Dai, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.