메뉴 건너뛰기




Volumn 44, Issue 8, 2011, Pages 1821-1833

A dynamic over-sampling procedure based on sensitivity for multi-class problems

Author keywords

Accuracy; Classification; Imbalanced datasets; Memetic algorithm; Multi class; Over sampling method; Sensitivity; SMOTE

Indexed keywords

ACCURACY; CLASSIFICATION; IMBALANCED DATA-SETS; MEMETIC ALGORITHMS; MULTI-CLASS; OVER-SAMPLING METHOD; SENSITIVITY; SMOTE;

EID: 79953050208     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2011.02.019     Document Type: Article
Times cited : (132)

References (61)
  • 1
    • 27144549260 scopus 로고    scopus 로고
    • Editorial: Special issue on learning from imbalanced data sets
    • N.V. Chawla, N. Japlowicz, and A. Kotcz Editorial: special issue on learning from imbalanced data sets Aigkdd Explorations 6 1 2006 1 6
    • (2006) Aigkdd Explorations , vol.6 , Issue.1 , pp. 1-6
    • Chawla, N.V.1    Japlowicz, N.2    Kotcz, A.3
  • 2
    • 79953056539 scopus 로고    scopus 로고
    • Online rare events detection
    • Springer-Verlag, Berlin, Heidelberg
    • J.H. Zhao, X. Li, Z.Y. Dong, Online rare events detection, in: PAKDD'07, Springer-Verlag, Berlin, Heidelberg, 2007.
    • (2007) PAKDD'07
    • Zhao, J.H.1    Li, X.2    Dong, Z.Y.3
  • 10
    • 55349111507 scopus 로고    scopus 로고
    • Evolutionary training set selection to optimize c4.5 in imbalanced problems
    • IEEE Computer Society
    • S. García, and F. Herrera Evolutionary training set selection to optimize c4.5 in imbalanced problems International Conference on Hybrid Intelligent Systems 2008 IEEE Computer Society 567 572
    • (2008) International Conference on Hybrid Intelligent Systems , pp. 567-572
    • García, S.1    Herrera, F.2
  • 13
    • 55549116330 scopus 로고    scopus 로고
    • Evolutionary rule-based systems for imbalanced data sets
    • A. Orriols-Puig, and E. Bernadó-Mansilla Evolutionary rule-based systems for imbalanced data sets Soft Computing 13 3 2009 213 225
    • (2009) Soft Computing , vol.13 , Issue.3 , pp. 213-225
    • Orriols-Puig, A.1    Bernadó-Mansilla, E.2
  • 14
    • 67651243664 scopus 로고    scopus 로고
    • Extending rule-based classifiers to improve recognition of imbalanced classes
    • J. Stefanowski, S. Wilk, Extending rule-based classifiers to improve recognition of imbalanced classes, in: Studies in Computational Intelligence, vol. 223, 2009.
    • (2009) Studies in Computational Intelligence , vol.223
    • Stefanowski, J.1    Wilk, S.2
  • 15
    • 31344442851 scopus 로고    scopus 로고
    • Training cost-sensitive neural networks with methods addressing the class imbalance problem
    • DOI 10.1109/TKDE.2006.17
    • Z.-H. Zhou, and X.-Y. Liu Training cost-sensitive neural networks with methods addressing the class imbalance problem IEEE Transactions on Knowledge and Data Engineering 18 1 2006 63 77 (Pubitemid 43145089)
    • (2006) IEEE Transactions on Knowledge and Data Engineering , vol.18 , Issue.1 , pp. 63-77
    • Zhou, Z.-H.1    Liu, X.-Y.2
  • 16
    • 64049115860 scopus 로고    scopus 로고
    • On the influence of an adaptative inference system in fuzzy rule based classification systems for imbalanced data-sets
    • A. Fernández, M.J. Del Jesus, and F. Herrera On the influence of an adaptative inference system in fuzzy rule based classification systems for imbalanced data-sets Expert Systems with Applications 36 2009 9805 9812
    • (2009) Expert Systems with Applications , vol.36 , pp. 9805-9812
    • Fernández, A.1    Del Jesus, M.J.2    Herrera, F.3
  • 17
    • 38349184207 scopus 로고    scopus 로고
    • Do unbalanced data have a negative effect on lda?
    • J. Xue, and D.M. Titterington Do unbalanced data have a negative effect on lda? Pattern Recognition 41 5 2008 1575 1588
    • (2008) Pattern Recognition , vol.41 , Issue.5 , pp. 1575-1588
    • Xue, J.1    Titterington, D.M.2
  • 18
    • 33749240206 scopus 로고    scopus 로고
    • Multi-class pattern classification using neural networks
    • DOI 10.1016/j.patcog.2006.04.041, PII S0031320306002081
    • G.B. Ou, and Y.L. Murphey Multi-class pattern classification using neural networks Pattern Recognition 40 1 2007 4 18 (Pubitemid 44486283)
    • (2007) Pattern Recognition , vol.40 , Issue.1 , pp. 4-18
    • Ou, G.1    Murphey, Y.L.2
  • 20
    • 9444270977 scopus 로고    scopus 로고
    • Class Imbalances versus Class Overlapping: An Analysis of a Learning System Behavior
    • MICAI 2004: Advances in Artificial Intelligence Third Mexican International Conference on Artificial Intelligence Mexico City, Mexico, April 26-30, 2004 Proceedings
    • R.C. Prati, G.E.A.P.A. Batista, and M.C. Monard Class imbalances versus class overlapping: an analysis of a learning system behavior MICAI 2004: Advances in Artificial Intelligence, Lecture Notes in Computer Science vol. 2972 2004 312 321 (Pubitemid 38716795)
    • (2004) Lecture Notes in Computer Science , Issue.2972 , pp. 312-321
    • Prati, R.C.1    Batista, G.E.A.P.A.2    Monard, M.C.3
  • 21
    • 0031998121 scopus 로고    scopus 로고
    • Machine learning for the detection of oil spills in satellite radar images
    • M. Kubat, R.C. Holte, and S. Matwin Machine learning for the detection of oil spills in satellite radar images Machine Learning 30 23 1998 195 215
    • (1998) Machine Learning , vol.30 , Issue.23 , pp. 195-215
    • Kubat, M.1    Holte, R.C.2    Matwin, S.3
  • 24
    • 0028202408 scopus 로고
    • Representation design and brute-force induction in a boeing manufacturing domain
    • P. Riddle, R. Segal, and O. Etzioni Representation design and brute-force induction in a boeing manufacturing domain Applied Artificial Intelligence 8 1 1994 125 147
    • (1994) Applied Artificial Intelligence , vol.8 , Issue.1 , pp. 125-147
    • Riddle, P.1    Segal, R.2    Etzioni, O.3
  • 27
    • 27144531570 scopus 로고    scopus 로고
    • A study of the behavior of several methods for balancing machine learning training data
    • G.E.A.P.A. Batista, R.C. Prati, and M.C. Monard A study of the behavior of several methods for balancing machine learning training data SIGKDD Explorations 6 1 2004 20 29
    • (2004) SIGKDD Explorations , vol.6 , Issue.1 , pp. 20-29
    • Batista, G.E.A.P.A.1    Prati, R.C.2    Monard, M.C.3
  • 31
    • 32344438970 scopus 로고    scopus 로고
    • Extreme re-balancing for SVMs: A case study
    • B. Raskutti, and A. Kowalczyk Extreme re-balancing for SVMs: a case study SIGKDD Explorations 6 1 2004 60 69
    • (2004) SIGKDD Explorations , vol.6 , Issue.1 , pp. 60-69
    • Raskutti, B.1    Kowalczyk, A.2
  • 34
    • 14644390912 scopus 로고    scopus 로고
    • Using AUC and accuracy in evaluating learning algorithms
    • DOI 10.1109/TKDE.2005.50
    • J. Huang, and C.X. Ling Using auc and accuracy in evaluating learning algorithms IEEE Transactions on Knowledge and Data Engineering 17 3 2005 299 310 (Pubitemid 40320164)
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.3 , pp. 299-310
    • Huang, J.1    Ling, C.X.2
  • 35
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • T. Fawcett An introduction to ROC analysis Pattern Recognition Letters 27 2006 861 874
    • (2006) Pattern Recognition Letters , vol.27 , pp. 861-874
    • Fawcett, T.1
  • 36
    • 33748466311 scopus 로고    scopus 로고
    • Selecting features in microarray classification using ROC curves
    • DOI 10.1016/j.patcog.2006.07.010, PII S0031320306003426, Bioinformatics
    • H. Mamitsuka Selecting features in microarray classification using ROC curves Pattern Recognition 39 12 2006 2393 2404 (Pubitemid 44349151)
    • (2006) Pattern Recognition , vol.39 , Issue.12 , pp. 2393-2404
    • Mamitsuka, H.1
  • 37
    • 33947267482 scopus 로고    scopus 로고
    • Weighting fuzzy classification rules using receiver operating characteristics (ROC) analysis
    • DOI 10.1016/j.ins.2006.12.009, PII S0020025507000047
    • M.J. Zolghadri, and E.G. Mansoori Weighting fuzzy classification rules using receiver operating characteristics analysis Information Sciences 177 11 2007 2296 2307 (Pubitemid 46435494)
    • (2007) Information Sciences , vol.177 , Issue.11 , pp. 2296-2307
    • Zolghadri, M.J.1    Mansoori, E.G.2
  • 38
    • 39149090650 scopus 로고    scopus 로고
    • Maximizing the area under the ROC curve by pairwise feature combination
    • C. Marrocco, R.P.W. Duin, and F. Tortorella Maximizing the area under the ROC curve by pairwise feature combination Pattern Recognition 41 6 2008 1961 1974
    • (2008) Pattern Recognition , vol.41 , Issue.6 , pp. 1961-1974
    • Marrocco, C.1    Duin, R.P.W.2    Tortorella, F.3
  • 39
    • 0003562954 scopus 로고    scopus 로고
    • A Simple Generalisation of the Area Under the ROC Curve for Multiple Class Classification Problems
    • DOI 10.1023/A:1010920819831
    • D.J. Hand, and R.J. Till A simple generalisation of the area under the roc curve for multiple class classification problems Machine Learning 45 2001 171 186 (Pubitemid 33635984)
    • (2001) Machine Learning , vol.45 , Issue.2 , pp. 171-186
    • Hand, D.J.1    Till, R.J.2
  • 40
    • 9444288762 scopus 로고    scopus 로고
    • Volume under the ROC Surface for Multi-class Problems
    • Machine Learning: ECML 2003
    • C. Ferri, J. Hernández-Orallo, and M.A. Salido Volume under the roc surface for multi-class problems Machine Learning: ECML 2003, Lecture Notes in Computer Science vol. 2837 2003 108 120 (Pubitemid 37230970)
    • (2003) Lecture Notes in Computer Science , Issue.2837 , pp. 108-120
    • Ferri, C.1    Hernandez-Orallo, J.2    Salido, M.A.3
  • 41
    • 33646054819 scopus 로고    scopus 로고
    • Multi-class roc analysis from a multi-objective optimisation perspective
    • R.M. Everson, and J.E. Fieldsend Multi-class roc analysis from a multi-objective optimisation perspective Pattern Recognition Letters 27 8 2006 918 927
    • (2006) Pattern Recognition Letters , vol.27 , Issue.8 , pp. 918-927
    • Everson, R.M.1    Fieldsend, J.E.2
  • 43
    • 77957930634 scopus 로고    scopus 로고
    • Memetic pareto evolutionary artificial neural networks to determine growth/no-growth in predictive microbiology
    • J. Fernandez, C. Hervas, F. Martinez, and P. Gutierrez Memetic pareto evolutionary artificial neural networks to determine growth/no-growth in predictive microbiology Applied Soft Computing 11 1 2011 534 550
    • (2011) Applied Soft Computing , vol.11 , Issue.1 , pp. 534-550
    • Fernandez, J.1    Hervas, C.2    Martinez, F.3    Gutierrez, P.4
  • 44
  • 45
    • 0034825091 scopus 로고    scopus 로고
    • Supervised versus unsupervised binary-learning by feedforward neural networks
    • DOI 10.1023/A:1007660820062
    • N. Japkowicz Supervised versus unsupervised binary-learning by feedforward neural networks Machine Learning 42 12 2001 97 122 (Pubitemid 32872400)
    • (2001) Machine Learning , vol.42 , Issue.1-2 , pp. 97-122
    • Japkowicz, N.1
  • 46
    • 0029375452 scopus 로고
    • Learning and generalization in radial basis function networks
    • J.A.S. Freeman, and D. Saad Learning and generalization in radial basis function networks Neural Computation 7 5 1995 1000 1020
    • (1995) Neural Computation , vol.7 , Issue.5 , pp. 1000-1020
    • Freeman, J.A.S.1    Saad, D.2
  • 47
    • 0031277461 scopus 로고    scopus 로고
    • An efficient method to construct a radial basis function neural network classifier
    • DOI 10.1016/S0893-6080(97)00002-6, PII S0893608097000026
    • Y. Hwang, and S. Bang An efficient method to construct radial basis function neural network classifier Neural Networks 10 8 1997 1495 1503 (Pubitemid 28260899)
    • (1997) Neural Networks , vol.10 , Issue.8 , pp. 1495-1503
    • Hwang, Y.-S.1    Bang, S.-Y.2
  • 48
    • 33751560009 scopus 로고
    • Regularisation in the selection of radial basis function centres
    • M.J.L. Orr Regularisation in the selection of radial basis function centres Neural Computation 7 3 1995 606 623
    • (1995) Neural Computation , vol.7 , Issue.3 , pp. 606-623
    • Orr, M.J.L.1
  • 49
    • 36849009815 scopus 로고    scopus 로고
    • Cloud basis function neural network: A modified RBF network architecture for holistic facial expression recognition
    • DOI 10.1016/j.patcog.2007.09.015, PII S0031320307004372
    • C.R. De Silva, S. Ranganath, and L.C. De Silva Cloud basis function neural network: a modified rbf network architecture for holistic facial expression recognition Pattern Recognition 41 4 2008 1241 1253 (Pubitemid 350218150)
    • (2008) Pattern Recognition , vol.41 , Issue.4 , pp. 1241-1253
    • De Silva, C.R.1    Ranganath, S.2    De Silva, L.C.3
  • 54
    • 0037238922 scopus 로고    scopus 로고
    • Empirical evaluation of the improved Rprop learning algorithms
    • DOI 10.1016/S0925-2312(01)00700-7, PII S0925231201007007
    • C. Igel, and M. Hüsken Empirical evaluation of the improved Rprop learning algorithms Neurocomputing 50 6 2003 105 123 (Pubitemid 36131033)
    • (2003) Neurocomputing , vol.50 , pp. 105-123
    • Igel, C.1    Husken, M.2
  • 59
    • 0001837148 scopus 로고
    • A comparison of alternative tests of significance for the problem of m rankings
    • M. Friedman A comparison of alternative tests of significance for the problem of m rankings Annals of Mathematical Statistics 11 1 1940 86 92
    • (1940) Annals of Mathematical Statistics , vol.11 , Issue.1 , pp. 86-92
    • Friedman, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.