메뉴 건너뛰기




Volumn , Issue , 2014, Pages 376-383

SeamSeg: Video object segmentation using patch seams

Author keywords

ANNF; Label propagation; PatchMatch; Video Object Segmentation; Video Seams

Indexed keywords

MOTION COMPENSATION; PATTERN RECOGNITION;

EID: 84911386933     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2014.55     Document Type: Conference Paper
Times cited : (145)

References (22)
  • 1
    • 34547653853 scopus 로고    scopus 로고
    • Seam carving for content-aware image resizing
    • S. Avidan and A. Shamir. Seam carving for content-aware image resizing. ACM Trans. Graph., 26(3), 2007.
    • (2007) ACM Trans. Graph. , vol.26 , Issue.3
    • Avidan, S.1    Shamir, A.2
  • 3
    • 70349655522 scopus 로고    scopus 로고
    • Patchmatch: A randomized correspondence algorithm for structural image editing
    • C. Barnes, E. Shechtman, A. Finkelstein, and D. B. Goldman. Patchmatch: a randomized correspondence algorithm for structural image editing. ACM Trans. Graph., 28(3), 2009.
    • (2009) ACM Trans. Graph. , vol.28 , Issue.3
    • Barnes, C.1    Shechtman, E.2    Finkelstein, A.3    Goldman, D.B.4
  • 4
    • 33847386213 scopus 로고    scopus 로고
    • The gray-code filter kernels
    • G. Ben-Artzi, H. Hel-Or, and Y. Hel-Or. The gray-code filter kernels. TPAMI, 29(3), 2007.
    • (2007) TPAMI , vol.29 , Issue.3
    • Ben-Artzi, G.1    Hel-Or, H.2    Hel-Or, Y.3
  • 5
    • 80052912117 scopus 로고    scopus 로고
    • Object segmentation by long term analysis of point trajectories
    • T. Brox and J. Malik. Object segmentation by long term analysis of point trajectories. In ECCV, 2010.
    • (2010) ECCV
    • Brox, T.1    Malik, J.2
  • 6
    • 84898436384 scopus 로고    scopus 로고
    • Mot-mixture of trees probabilistic graphical model for video segmentation
    • I. Budvytis, V. Badrinarayanan, and R. Cipolla. Mot-mixture of trees probabilistic graphical model for video segmentation. In BMVC, 2012.
    • (2012) BMVC
    • Budvytis, I.1    Badrinarayanan, V.2    Cipolla, R.3
  • 8
    • 84898437287 scopus 로고    scopus 로고
    • Combining self training and active learning for video segmentation
    • A. Fathi, M. F. Balcan, X. Ren, and J. M. Rehg. Combining self training and active learning for video segmentation. In BMVC, 2011.
    • (2011) BMVC
    • Fathi, A.1    Balcan, M.F.2    Ren, X.3    Rehg, J.M.4
  • 9
    • 77955986879 scopus 로고    scopus 로고
    • Efficient hierarchical graph-based video segmentation
    • M. Grundmann, V. Kwatra, M. Han, and I. Essa. Efficient hierarchical graph-based video segmentation. In CVPR, 2010.
    • (2010) CVPR
    • Grundmann, M.1    Kwatra, V.2    Han, M.3    Essa, I.4
  • 10
    • 84856670335 scopus 로고    scopus 로고
    • Coherency sensitive hashing
    • S. Korman and S. Avidan. Coherency sensitive hashing. In ICCV, 2011.
    • (2011) ICCV
    • Korman, S.1    Avidan, S.2
  • 11
    • 84863045576 scopus 로고    scopus 로고
    • Key-segments for video object segmentation
    • Y. J. Lee, J. Kim, and K. Grauman. Key-segments for video object segmentation. In ICCV, 2011.
    • (2011) ICCV
    • Lee, Y.J.1    Kim, J.2    Grauman, K.3
  • 12
    • 84856655399 scopus 로고    scopus 로고
    • Track to the future: Spatiotemporal video segmentation with long-range motion cues
    • J. Lezama, K. Alahari, J. Sivic, and I. Laptev. Track to the future: Spatiotemporal video segmentation with long-range motion cues. In CVPR, 2011.
    • (2011) CVPR
    • Lezama, J.1    Alahari, K.2    Sivic, J.3    Laptev, I.4
  • 13
    • 84866714644 scopus 로고    scopus 로고
    • Maximum weight cliques with mutex constraints for video object segmentation
    • T. Ma and L. Latecki. Maximum weight cliques with mutex constraints for video object segmentation. In CVPR, 2012.
    • (2012) CVPR
    • Ma, T.1    Latecki, L.2
  • 15
    • 84891033079 scopus 로고    scopus 로고
    • FeatureMatch: An efficient low dimensional patchmatch technique
    • S. A. Ramakanth and R. V. Babu. FeatureMatch: An efficient low dimensional patchmatch technique. ICVGIP, 2012.
    • (2012) ICVGIP
    • Ramakanth, S.A.1    Babu, R.V.2
  • 16
    • 84901049464 scopus 로고    scopus 로고
    • FeatureMatch: A general ANNF estimation technique and its applications
    • S. A. Ramakanth and R. V. Babu. FeatureMatch: A general ANNF estimation technique and its applications. IEEE Trans. Image Proc., 2014.
    • (2014) IEEE Trans. Image Proc.
    • Ramakanth, S.A.1    Babu, R.V.2
  • 18
    • 84866658183 scopus 로고    scopus 로고
    • Video segmentation by tracing discontinuities in a trajectory embedding
    • J. Shi, K. Fragkiadaki, and G. Zhang. Video segmentation by tracing discontinuities in a trajectory embedding. In CVPR, 2012.
    • (2012) CVPR
    • Shi, J.1    Fragkiadaki, K.2    Zhang, G.3
  • 19
    • 84867097423 scopus 로고    scopus 로고
    • Motion coherent tracking using multi-label MRF optimization
    • D. Tsai, M. Flagg, A. Nakazawa, and J. M. Rehg. Motion coherent tracking using multi-label MRF optimization. IJCV, 100(2), 2012.
    • (2012) IJCV , vol.100 , Issue.2
    • Tsai, D.1    Flagg, M.2    Nakazawa, A.3    Rehg, J.M.4
  • 20
    • 0035680116 scopus 로고    scopus 로고
    • Rapid object detection using a boosted cascade of simple features
    • P. A. Viola and M. J. Jones. Rapid object detection using a boosted cascade of simple features. In CVPR, 2001.
    • (2001) CVPR
    • Viola, P.A.1    Jones, M.J.2
  • 21
    • 84866688605 scopus 로고    scopus 로고
    • Evaluation of super-voxel methods for early video processing
    • C. Xu and J. J. Corso. Evaluation of super-voxel methods for early video processing. In CVPR, 2012.
    • (2012) CVPR
    • Xu, C.1    Corso, J.J.2
  • 22
    • 84887400612 scopus 로고    scopus 로고
    • Video object segmentation through spatially accurate and temporally dense extraction of primary object regions
    • D. Zhang, O. Javed, and M. Shah. Video object segmentation through spatially accurate and temporally dense extraction of primary object regions. In CVPR, 2013.
    • (2013) CVPR
    • Zhang, D.1    Javed, O.2    Shah, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.