메뉴 건너뛰기




Volumn 2015 International Conference on Computer Vision, ICCV 2015, Issue , 2015, Pages 3227-3234

Fully connected object proposals for video segmentation

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION;

EID: 84973890095     PISSN: 15505499     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2015.369     Document Type: Conference Paper
Times cited : (191)

References (44)
  • 3
    • 0742329432 scopus 로고    scopus 로고
    • Spectral partitioning with indefinite kernels using the nyström extension
    • S. Belongie, C. Fowlkes, F. R. K. Chung, and J. Malik. Spectral partitioning with indefinite kernels using the nyström extension. In Proc. ECCV, 2002.
    • (2002) Proc. ECCV
    • Belongie, S.1    Fowlkes, C.2    Chung, F.R.K.3    Malik, J.4
  • 4
    • 77953223104 scopus 로고    scopus 로고
    • Video object segmentation by tracking regions
    • W. Brendel and S. Todorovic. Video object segmentation by tracking regions. In Proc. ICCV, 2009.
    • (2009) Proc. ICCV
    • Brendel, W.1    Todorovic, S.2
  • 5
    • 80052905628 scopus 로고    scopus 로고
    • Object segmentation by long term analysis of point trajectories
    • T. Brox and J. Malik. Object segmentation by long term analysis of point trajectories. In Proc. ECCV, 2010.
    • (2010) Proc. ECCV
    • Brox, T.1    Malik, J.2
  • 6
    • 80052908305 scopus 로고    scopus 로고
    • Evaluation of background subtraction techniques for video surveillance
    • S. Brutzer, B. Höferlin, and G. Heidemann. Evaluation of background subtraction techniques for video surveillance. In Proc. CVPR, 2011.
    • (2011) Proc. CVPR
    • Brutzer, S.1    Höferlin, B.2    Heidemann, G.3
  • 7
    • 84887355384 scopus 로고    scopus 로고
    • Fully-connected crfs with non-parametric pairwise potential
    • N. D. F. Campbell, K. Subr, and J. Kautz. Fully-connected crfs with non-parametric pairwise potential. In Proc. CVPR, 2013.
    • (2013) Proc. CVPR
    • Campbell, N.D.F.1    Subr, K.2    Kautz, J.3
  • 8
    • 84861335519 scopus 로고    scopus 로고
    • Object recognition by sequential figure-ground ranking
    • J. Carreira, F. Li, and C. Sminchisescu. Object recognition by sequential figure-ground ranking. IJCV, 98(3):243-262, 2012.
    • (2012) IJCV , vol.98 , Issue.3 , pp. 243-262
    • Carreira, J.1    Li, F.2    Sminchisescu, C.3
  • 9
    • 84861335581 scopus 로고    scopus 로고
    • CPMC: Automatic object segmentation using constrained parametric min-cuts
    • J. Carreira and C. Sminchisescu. CPMC: Automatic object segmentation using constrained parametric min-cuts. IEEE TPAMI, 34(7):1312-1328, 2012.
    • (2012) IEEE TPAMI , vol.34 , Issue.7 , pp. 1312-1328
    • Carreira, J.1    Sminchisescu, C.2
  • 10
    • 70450173435 scopus 로고    scopus 로고
    • Histograms of oriented optical flow and binet-cauchy kernels on nonlinear dynamical systems for the recognition of human actions
    • R. Chaudhry, A. Ravichandran, G. D. Hager, and R. Vidal. Histograms of oriented optical flow and binet-cauchy kernels on nonlinear dynamical systems for the recognition of human actions. In Proc. CVPR, 2009.
    • (2009) Proc. CVPR
    • Chaudhry, R.1    Ravichandran, A.2    Hager, G.D.3    Vidal, R.4
  • 11
    • 84911456915 scopus 로고    scopus 로고
    • BING: Binarized normed gradients for objectness estimation at 300fps
    • M. Cheng, Z. Zhang, W. Lin, and P. H. S. Torr. BING: binarized normed gradients for objectness estimation at 300fps. In Proc. CVPR, 2014.
    • (2014) Proc. CVPR
    • Cheng, M.1    Zhang, Z.2    Lin, W.3    Torr, P.H.S.4
  • 12
    • 10444271708 scopus 로고    scopus 로고
    • Robust techniques for background subtraction in urban traffic video
    • S.-C. S. Cheung and C. Kamath. Robust techniques for background subtraction in urban traffic video. In Visual Communications and Image Processing, volume 5308, pages 881-892, 2004.
    • (2004) Visual Communications and Image Processing , vol.5308 , pp. 881-892
    • Cheung, S.-C.S.1    Kamath, C.2
  • 15
    • 85156202169 scopus 로고    scopus 로고
    • Global versus local methods in nonlinear dimensionality reduction
    • S. Becker, S. Thrun, and K. Obermayer, editors
    • V. de Silva and J. B. Tenenbaum. Global versus local methods in nonlinear dimensionality reduction. In S. Becker, S. Thrun, and K. Obermayer, editors, Proc. NIPS, 2002.
    • (2002) Proc. NIPS
    • De Silva, V.1    Tenenbaum, J.B.2
  • 16
    • 84891598441 scopus 로고    scopus 로고
    • Category-independent object proposals with diverse ranking
    • I. Endres and D. Hoiem. Category-independent object proposals with diverse ranking. IEEE TPAMI, 36(2):222-234, 2014.
    • (2014) IEEE TPAMI , vol.36 , Issue.2 , pp. 222-234
    • Endres, I.1    Hoiem, D.2
  • 17
    • 84919724784 scopus 로고    scopus 로고
    • Video segmentation by non-local consensus voting
    • A. Faktor and M. Irani. Video segmentation by non-local consensus voting. In Proc. BMVC, 2014.
    • (2014) Proc. BMVC
    • Faktor, A.1    Irani, M.2
  • 18
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • R. B. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proc. CVPR, 2014.
    • (2014) Proc. CVPR
    • Girshick, R.B.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 19
  • 20
    • 0344034707 scopus 로고    scopus 로고
    • Statistical background subtraction for a mobile observer
    • E. Hayman and J. Eklundh. Statistical background subtraction for a mobile observer. In Proc. ICCV, 2003.
    • (2003) Proc. ICCV
    • Hayman, E.1    Eklundh, J.2
  • 22
    • 0032098797 scopus 로고    scopus 로고
    • A unified approach to moving object detection in 2d and 3d scenes
    • M. Irani and P. Anandan. A unified approach to moving object detection in 2d and 3d scenes. IEEE TPAMI, 20(6):577-589, 1998.
    • (1998) IEEE TPAMI , vol.20 , Issue.6 , pp. 577-589
    • Irani, M.1    Anandan, P.2
  • 23
    • 85162351107 scopus 로고    scopus 로고
    • Efficient inference in fully connected crfs with Gaussian edge potentials
    • P. Krähenbühl and V. Koltun. Efficient inference in fully connected crfs with Gaussian edge potentials. In Proc. NIPS, 2011.
    • (2011) Proc. NIPS
    • Krähenbühl, P.1    Koltun, V.2
  • 25
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • J. D. Lafferty, A. McCallum, and F. C. N. Pereira. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In ICML, 2001.
    • (2001) ICML
    • Lafferty, J.D.1    McCallum, A.2    Pereira, F.C.N.3
  • 26
    • 84863045576 scopus 로고    scopus 로고
    • Key-segments for video object segmentation
    • Y. J. Lee, J. Kim, and K. Grauman. Key-segments for video object segmentation. In Proc. ICCV, 2011.
    • (2011) Proc. ICCV
    • Lee, Y.J.1    Kim, J.2    Grauman, K.3
  • 27
    • 84898791742 scopus 로고    scopus 로고
    • Video segmentation by tracking many figure-ground segments
    • F. Li, T. Kim, A. Humayun, D. Tsai, and J. M. Rehg. Video segmentation by tracking many figure-ground segments. In Proc. ICCV, 2013.
    • (2013) Proc. ICCV
    • Li, F.1    Kim, T.2    Humayun, A.3    Tsai, D.4    Rehg, J.M.5
  • 29
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D. G. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 60(2):91-110, 2004.
    • (2004) IJCV , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.G.1
  • 30
    • 84866714644 scopus 로고    scopus 로고
    • Maximum weight cliques with mutex constraints for video object segmentation
    • T. Ma and L. J. Latecki. Maximum weight cliques with mutex constraints for video object segmentation. In Proc. CVPR, 2012.
    • (2012) Proc. CVPR
    • Ma, T.1    Latecki, L.J.2
  • 31
    • 84856688133 scopus 로고    scopus 로고
    • Object segmentation in video: A hierarchical variational approach for turning point trajectories into dense regions
    • P. Ochs and T. Brox. Object segmentation in video: A hierarchical variational approach for turning point trajectories into dense regions. In Proc. ICCV, 2011.
    • (2011) Proc. ICCV
    • Ochs, P.1    Brox, T.2
  • 32
    • 84898831797 scopus 로고    scopus 로고
    • Fast object segmentation in unconstrained video
    • A. Papazoglou and V. Ferrari. Fast object segmentation in unconstrained video. In Proc. ICCV, 2013.
    • (2013) Proc. ICCV
    • Papazoglou, A.1    Ferrari, V.2
  • 34
    • 84866667038 scopus 로고    scopus 로고
    • Saliency filters: Contrast based filtering for salient region detection
    • F. Perazzi, P. Krähenbühl, Y. Pritch, and A. Hornung. Saliency filters: Contrast based filtering for salient region detection. In Proc. CVPR, 2012.
    • (2012) Proc. CVPR
    • Perazzi, F.1    Krähenbühl, P.2    Pritch, Y.3    Hornung, A.4
  • 35
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
    • J. C. Platt. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In Advances in large margin classifiers, pages 61-74, 1999.
    • (1999) Advances in Large Margin Classifiers , pp. 61-74
    • Platt, J.C.1
  • 37
    • 84911386933 scopus 로고    scopus 로고
    • Seamseg: Video object segmentation using patch seams
    • S. A. Ramakanth and R. V. Babu. Seamseg: Video object segmentation using patch seams. In Proc. CVPR, 2014.
    • (2014) Proc. CVPR
    • Ramakanth, S.A.1    Babu, R.V.2
  • 38
    • 0037235512 scopus 로고    scopus 로고
    • Statistical background modeling for non-stationary camera
    • Y. Ren, C. Chua, and Y. Ho. Statistical background modeling for non-stationary camera. Pattern Recognition Letters, 24(1-3):183-196, 2003.
    • (2003) Pattern Recognition Letters , vol.24 , Issue.1-3 , pp. 183-196
    • Ren, Y.1    Chua, C.2    Ho, Y.3
  • 39
    • 12844262766 scopus 로고    scopus 로고
    • Grabcut: Interactive foreground extraction using iterated graph cuts
    • C. Rother, V. Kolmogorov, and A. Blake. "grabcut": interactive foreground extraction using iterated graph cuts. ACM Trans. Graph., 23(3):309-314, 2004.
    • (2004) ACM Trans. Graph. , vol.23 , Issue.3 , pp. 309-314
    • Rother, C.1    Kolmogorov, V.2    Blake, A.3
  • 41
    • 84911455250 scopus 로고    scopus 로고
    • Region-based particle filter for video object segmentation
    • D. Varas and F. Marqués. Region-based particle filter for video object segmentation. In Proc. CVPR, 2014.
    • (2014) Proc. CVPR
    • Varas, D.1    Marqués, F.2
  • 42
    • 84973901215 scopus 로고    scopus 로고
    • Boosting support vector machines for imbalanced data sets
    • B. X. Wang and N. Japkowicz. Boosting support vector machines for imbalanced data sets. In Proc. ISMIS, 2008.
    • (2008) Proc. ISMIS
    • Wang, B.X.1    Japkowicz, N.2
  • 43
    • 84866688605 scopus 로고    scopus 로고
    • Evaluation of super-voxel methods for early video processing
    • C. Xu and J. J. Corso. Evaluation of super-voxel methods for early video processing. In Proc. CVPR, 2012.
    • (2012) Proc. CVPR
    • Xu, C.1    Corso, J.J.2
  • 44
    • 84887400612 scopus 로고    scopus 로고
    • Video object segmentation through spatially accurate and temporally dense extraction of primary object regions
    • D. Zhang, O. Javed, and M. Shah. Video object segmentation through spatially accurate and temporally dense extraction of primary object regions. In Proc. CVPR, 2013.
    • (2013) Proc. CVPR
    • Zhang, D.1    Javed, O.2    Shah, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.