메뉴 건너뛰기




Volumn 2016-December, Issue , 2016, Pages 724-732

A benchmark dataset and evaluation methodology for video object segmentation

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; MOTION COMPENSATION; PATTERN RECOGNITION;

EID: 84986253571     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2016.85     Document Type: Conference Paper
Times cited : (2232)

References (53)
  • 2
    • 70349705448 scopus 로고    scopus 로고
    • Video snapcut: Robust video object cutout using localized classifiers
    • 3
    • X. Bai, J. Wang, D. Simons, and G. Sapiro. Video snapcut: robust video object cutout using localized classifiers. ACM Trans. Graph., 28 (3), 2009.
    • (2009) ACM Trans. Graph , vol.28 , Issue.3
    • Bai, X.1    Wang, J.2    Simons, D.3    Sapiro, G.4
  • 3
    • 0036538619 scopus 로고    scopus 로고
    • Shape matching and object recognition using shape contexts
    • 4
    • S. Belongie, J. Malik, and J. Puzicha. Shape matching and object recognition using shape contexts. TPAMI, 24 (4), 2002.
    • (2002) TPAMI , vol.24 , Issue.4
    • Belongie, S.1    Malik, J.2    Puzicha, J.3
  • 4
    • 56049086147 scopus 로고    scopus 로고
    • Semantic object classes in video: A high-definition ground truth database
    • 1, 2
    • G. J. Brostow, J. Fauqueur, and R. Cipolla. Semantic object classes in video: A high-definition ground truth database. Pattern Recognition Letters, 30 (2), 2009.
    • (2009) Pattern Recognition Letters , vol.30 , Issue.2
    • Brostow, G.J.1    Fauqueur, J.2    Cipolla, R.3
  • 5
    • 80052912117 scopus 로고    scopus 로고
    • Object segmentation by long term analysis of point trajectories
    • 1, 2, 5, 6, 7
    • T. Brox and J. Malik. Object segmentation by long term analysis of point trajectories. In ECCV, 2010.
    • (2010) ECCV
    • Brox, T.1    Malik, J.2
  • 6
    • 84887338408 scopus 로고    scopus 로고
    • A naturalistic open source movie for optical flow evaluation
    • 1, 3
    • D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A naturalistic open source movie for optical flow evaluation. In ECCV, 2012.
    • (2012) ECCV
    • Butler, D.J.1    Wulff, J.2    Stanley, G.B.3    Black, M.J.4
  • 7
    • 84887381501 scopus 로고    scopus 로고
    • A video representation using temporal superpixels
    • 2, 5, 6
    • J. Chang, D. Wei, and J. W. F. III. A video representation using temporal superpixels. In CVPR, 2013.
    • (2013) CVPR
    • Chang, J.1    Wei, D.2
  • 8
    • 78650892698 scopus 로고    scopus 로고
    • Propagating multi-class pixel labels throughout video frames
    • 2
    • A. Y. C. Chen and J. J. Corso. Propagating multi-class pixel labels throughout video frames. In WNYIPW, 2010.
    • (2010) WNYIPW
    • Chen, A.Y.C.1    Corso, J.J.2
  • 9
    • 70450191721 scopus 로고    scopus 로고
    • An open source tracking testbed and evaluation web site
    • January.
    • R. Collins, X. Zhou, and S. K. Teh. An open source tracking testbed and evaluation web site. In PETS 2005, January 2005.
    • (2005) PETS 2005
    • Collins, R.1    Zhou, X.2    Teh, S.K.3
  • 10
    • 84898446030 scopus 로고    scopus 로고
    • What is a good evaluation measure for semantic segmentation
    • 4
    • G. Csurka, D. Larlus, and F. Perronnin. What is a good evaluation measure for semantic segmentation In BMVC, 2013.
    • (2013) BMVC
    • Csurka, G.1    Larlus, D.2    Perronnin, F.3
  • 11
    • 84898820142 scopus 로고    scopus 로고
    • Structured forests for fast edge detection
    • 3
    • P. Dollár and C. L. Zitnick. Structured forests for fast edge detection. In ICCV, 2013.
    • (2013) ICCV
    • Dollár, P.1    Zitnick, C.L.2
  • 13
    • 84919724784 scopus 로고    scopus 로고
    • Video segmentation by non-local consensus voting
    • 2, 5, 6
    • A. Faktor and M. Irani. Video segmentation by non-local consensus voting. In BMVC, 2014.
    • (2014) BMVC
    • Faktor, A.1    Irani, M.2
  • 14
    • 84996533970 scopus 로고    scopus 로고
    • Jumpcut: Non-successive mask transfer and interpolation for video cutout
    • 2, 3, 5, 6
    • Q. Fan, F. Zhong, D. Lischinski, D. Cohen-Or, and B. Chen. Jumpcut: Non-successive mask transfer and interpolation for video cutout. ACM Trans. Graph., 34 (6), 2015.
    • (2015) ACM Trans. Graph , vol.34 , Issue.6
    • Fan, Q.1    Zhong, F.2    Lischinski, D.3    Cohen-Or, D.4    Chen, B.5
  • 15
    • 80052894345 scopus 로고    scopus 로고
    • Learning to recognize objects in egocentric activities
    • 1, 2
    • A. Fathi, X. Ren, and J. M. Rehg. Learning to recognize objects in egocentric activities. In CVPR, 2011.
    • (2011) CVPR
    • Fathi, A.1    Ren, X.2    Rehg, J.M.3
  • 17
    • 80052870092 scopus 로고    scopus 로고
    • Detection free tracking: Exploiting motion and topology for segmenting and tracking under entanglement
    • 2
    • K. Fragkiadaki and J. Shi. Detection free tracking: Exploiting motion and topology for segmenting and tracking under entanglement. In CVPR, 2011.
    • (2011) CVPR
    • Fragkiadaki, K.1    Shi, J.2
  • 18
    • 84866658183 scopus 로고    scopus 로고
    • Video segmentation by tracing discontinuities in a trajectory embedding
    • 2, 5, 6
    • K. Fragkiadaki, G. Zhang, and J. Shi. Video segmentation by tracing discontinuities in a trajectory embedding. In CVPR, 2012.
    • (2012) CVPR
    • Fragkiadaki, K.1    Zhang, G.2    Shi, J.3
  • 19
    • 84898817849 scopus 로고    scopus 로고
    • A unified video segmentation benchmark: Annotation, metrics and analysis
    • 2
    • F. Galasso, N. S. Nagaraja, T. J. Cardenas, T. Brox, and B. Schiele. A unified video segmentation benchmark: Annotation, metrics and analysis. In ICCV, 2013.
    • (2013) ICCV
    • Galasso, F.1    Nagaraja, N.S.2    Cardenas, T.J.3    Brox, T.4    Schiele, B.5
  • 21
    • 77955986879 scopus 로고    scopus 로고
    • Efficient hierarchical graph-based video segmentation
    • 1, 2, 5, 6
    • M. Grundmann, V. Kwatra, M. Han, and I. A. Essa. Efficient hierarchical graph-based video segmentation. In CVPR, 2010.
    • (2010) CVPR
    • Grundmann, M.1    Kwatra, V.2    Han, M.3    Essa, I.A.4
  • 22
    • 84959205272 scopus 로고    scopus 로고
    • Supervoxel-consistent foreground propagation in video
    • 3
    • S. D. Jain and K. Grauman. Supervoxel-consistent foreground propagation in video. In ECCV, 2014.
    • (2014) ECCV
    • Jain, S.D.1    Grauman, K.2
  • 23
  • 24
    • 84863045576 scopus 로고    scopus 로고
    • Key-segments for video object segmentation
    • 2, 5, 6
    • Y. J. Lee, J. Kim, and K. Grauman. Key-segments for video object segmentation. In Proc. ICCV, 2011.
    • (2011) Proc. ICCV
    • Lee, Y.J.1    Kim, J.2    Grauman, K.3
  • 25
    • 84898791742 scopus 로고    scopus 로고
    • Video segmentation by tracking many figure-ground segments
    • 1, 2
    • F. Li, T. Kim, A. Humayun, D. Tsai, and J. M. Rehg. Video segmentation by tracking many figure-ground segments. In ICCV, 2013.
    • (2013) ICCV
    • Li, F.1    Kim, T.2    Humayun, A.3    Tsai, D.4    Rehg, J.M.5
  • 28
    • 3042525106 scopus 로고    scopus 로고
    • Learning to detect natural image boundaries using local brightness, color, and texture cues
    • 4
    • D. Martin, C. Fowlkes, and J. Malik. Learning to detect natural image boundaries using local brightness, color, and texture cues. TPAMI, 26 (5), 2004.
    • (2004) TPAMI , vol.26 , Issue.5
    • Martin, D.1    Fowlkes, C.2    Malik, J.3
  • 29
    • 0034850577 scopus 로고    scopus 로고
    • A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics
    • 1
    • D. R. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In ICCV, 2001.
    • (2001) ICCV
    • Martin, D.R.1    Fowlkes, C.2    Tal, D.3    Malik, J.4
  • 32
    • 80052890615 scopus 로고    scopus 로고
    • A largescale benchmark dataset for event recognition in surveillance video
    • 2
    • S. Oh, A. Hoogs, A. G. A. Perera, and M. Desai. A largescale benchmark dataset for event recognition in surveillance video. In CVPR, 2011.
    • (2011) CVPR
    • Oh, S.1    Hoogs, A.2    Perera, A.G.A.3    Desai, M.4
  • 33
    • 84898831797 scopus 로고    scopus 로고
    • Fast object segmentation in unconstrained video
    • 2, 5, 6
    • A. Papazoglou and V. Ferrari. Fast object segmentation in unconstrained video. In ICCV, 2013.
    • (2013) ICCV
    • Papazoglou, A.1    Ferrari, V.2
  • 34
    • 84866667038 scopus 로고    scopus 로고
    • Saliency filters: Contrast based filtering for salient region detection
    • 2, 5, 6
    • F. Perazzi, P. Krähenbühl, Y. Pritch, and A. Hornung. Saliency filters: Contrast based filtering for salient region detection. In CVPR, 2012.
    • (2012) CVPR
    • Perazzi, F.1    Krähenbühl, P.2    Pritch, Y.3    Hornung, A.4
  • 35
    • 84973890095 scopus 로고    scopus 로고
    • Fully connected object proposals for video segmentation
    • 2, 3, 5, 6
    • F. Perazzi, O. Wang, M. Gross, and A. Sorkine-Hornung. Fully connected object proposals for video segmentation. In ICCV, 2015.
    • (2015) ICCV
    • Perazzi, F.1    Wang, O.2    Gross, M.3    Sorkine-Hornung, A.4
  • 36
    • 85006053812 scopus 로고    scopus 로고
    • Multiscale combinatorial grouping for image segmentation and object proposal generation
    • 5, 6
    • J. Pont-Tuset, P. Arbeláez, J. T. Barron, F. Marques, and J. Malik. Multiscale combinatorial grouping for image segmentation and object proposal generation. TPAMI, 2016.
    • (2016) TPAMI
    • Pont-Tuset, J.1    Arbeláez, P.2    Barron, J.T.3    Marques, F.4    Malik, J.5
  • 37
    • 85009895254 scopus 로고    scopus 로고
    • Supervised evaluation of image segmentation and object proposal techniques
    • 4
    • J. Pont-Tuset and F. Marques. Supervised evaluation of image segmentation and object proposal techniques. TPAMI, 2015.
    • (2015) TPAMI
    • Pont-Tuset, J.1    Marques, F.2
  • 38
    • 84866674032 scopus 로고    scopus 로고
    • Learning object class detectors from weakly annotated video
    • 1, 2
    • A. Prest, C. Leistner, J. Civera, C. Schmid, and V. Ferrari. Learning object class detectors from weakly annotated video. In CVPR, 2012.
    • (2012) CVPR
    • Prest, A.1    Leistner, C.2    Civera, J.3    Schmid, C.4    Ferrari, V.5
  • 40
    • 84911386933 scopus 로고    scopus 로고
    • Seamseg: Video object segmentation using patch seams
    • 2, 3, 5, 6
    • S. A. Ramakanth and R. V. Babu. Seamseg: Video object segmentation using patch seams. In CVPR, 2014.
    • (2014) CVPR
    • Ramakanth, S.A.1    Babu, R.V.2
  • 41
    • 70449586646 scopus 로고    scopus 로고
    • Egocentric recognition of handled objects: Benchmark and analysis
    • 1, 2
    • X. Ren and M. Philipose. Egocentric recognition of handled objects: Benchmark and analysis. In CVPR Workshops, 2009.
    • (2009) CVPR Workshops
    • Ren, X.1    Philipose, M.2
  • 43
    • 84959191527 scopus 로고    scopus 로고
    • Saliency-Aware geodesic video object segmentation
    • 2, 5, 6
    • J. Shen, W. Wenguan, and F. Porikli. Saliency-Aware geodesic video object segmentation. In CVPR, 2015.
    • (2015) CVPR
    • Shen, J.1    Wenguan, W.2    Porikli, F.3
  • 44
    • 80052887242 scopus 로고    scopus 로고
    • Occlusion boundary detection and figure/ground assignment from optical flow
    • 1, 2
    • P. Sundberg, T. Brox, M. Maire, P. Arbelaez, and J. Malik. Occlusion boundary detection and figure/ground assignment from optical flow. In CVPR, 2011.
    • (2011) CVPR
    • Sundberg, P.1    Brox, T.2    Maire, M.3    Arbelaez, P.4    Malik, J.5
  • 45
    • 84959181650 scopus 로고    scopus 로고
    • Causal video object segmentation from persistence of occlusions
    • 2, 5, 6
    • B. Taylor, V. Karasev, and S. Soatto. Causal video object segmentation from persistence of occlusions. In CVPR, 2015.
    • (2015) CVPR
    • Taylor, B.1    Karasev, V.2    Soatto, S.3
  • 46
    • 34948881815 scopus 로고    scopus 로고
    • A benchmark for the comparison of 3-d motion segmentation algorithms
    • 1, 2
    • R. Tron and R. Vidal. A benchmark for the comparison of 3-d motion segmentation algorithms. In CVPR, 2007.
    • (2007) CVPR
    • Tron, R.1    Vidal, R.2
  • 47
    • 84898465039 scopus 로고    scopus 로고
    • Motion coherent tracking with multi-label MRF optimization
    • 1, 2
    • D. Tsai, M. Flagg, and J. M. Rehg. Motion coherent tracking with multi-label MRF optimization. In BMVC, 2010.
    • (2010) BMVC
    • Tsai, D.1    Flagg, M.2    Rehg, J.M.3
  • 48
    • 84898797894 scopus 로고    scopus 로고
    • Active frame selection for label propagation in videos
    • 3
    • S. Vijayanarasimhan and K. Grauman. Active frame selection for label propagation in videos. In ECCV, 2012.
    • (2012) ECCV
    • Vijayanarasimhan, S.1    Grauman, K.2
  • 50
    • 84887348427 scopus 로고    scopus 로고
    • Online object tracking: A benchmark
    • 2, 3
    • Y. Wu, J. Lim, and M. Yang. Online object tracking: A benchmark. In CVPR, 2013.
    • (2013) CVPR
    • Wu, Y.1    Lim, J.2    Yang, M.3
  • 51
    • 84866688605 scopus 로고    scopus 로고
    • Evaluation of super-voxel methods for early video processing
    • 2
    • C. Xu and J. J. Corso. Evaluation of super-voxel methods for early video processing. In CVPR, 2012.
    • (2012) CVPR
    • Xu, C.1    Corso, J.J.2
  • 52
    • 84887400612 scopus 로고    scopus 로고
    • Video object segmentation through spatially accurate and temporally dense extraction of primary object regions
    • 2
    • D. Zhang, O. Javed, and M. Shah. Video object segmentation through spatially accurate and temporally dense extraction of primary object regions. In CVPR, 2013.
    • (2013) CVPR
    • Zhang, D.1    Javed, O.2    Shah, M.3
  • 53
    • 84870177108 scopus 로고    scopus 로고
    • Discontinuityaware video object cutout
    • 3
    • F. Zhong, X. Qin, Q. Peng, and X. Meng. Discontinuityaware video object cutout. ACM Trans. Graph., 31 (6), 2012.
    • (2012) ACM Trans. Graph , vol.31 , Issue.6
    • Zhong, F.1    Qin, X.2    Peng, Q.3    Meng, X.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.