메뉴 건너뛰기




Volumn 4, Issue 1, 2018, Pages 120-131

Generating focused molecule libraries for drug discovery with recurrent neural networks

Author keywords

[No Author keywords available]

Indexed keywords

BACTERIA; LIBRARIES; MOLECULES; NATURAL LANGUAGE PROCESSING SYSTEMS;

EID: 85041231217     PISSN: 23747943     EISSN: 23747951     Source Type: Journal    
DOI: 10.1021/acscentsci.7b00512     Document Type: Article
Times cited : (1249)

References (79)
  • 1
    • 85027922347 scopus 로고    scopus 로고
    • Reinventing chemistry
    • Whitesides, G. M. Reinventing chemistry Angew. Chem., Int. Ed. 2015, 54, 3196-3209 10.1002/anie.201410884
    • (2015) Angew. Chem., Int. Ed. , vol.54 , pp. 3196-3209
    • Whitesides, G.M.1
  • 2
    • 84969628929 scopus 로고    scopus 로고
    • De Novo Design at the Edge of Chaos: Miniperspective
    • Schneider, P.; Schneider, G. De Novo Design at the Edge of Chaos: Miniperspective J. Med. Chem. 2016, 59, 4077-4086 10.1021/acs.jmedchem.5b01849
    • (2016) J. Med. Chem. , vol.59 , pp. 4077-4086
    • Schneider, P.1    Schneider, G.2
  • 6
    • 23844449940 scopus 로고    scopus 로고
    • Computer-based de novo design of drug-like molecules
    • Schneider, G.; Fechner, U. Computer-based de novo design of drug-like molecules Nat. Rev. Drug Discovery 2005, 4, 649-663 10.1038/nrd1799
    • (2005) Nat. Rev. Drug Discovery , vol.4 , pp. 649-663
    • Schneider, G.1    Fechner, U.2
  • 10
    • 85007609844 scopus 로고    scopus 로고
    • Modelling chemical reasoning to predict and invent reactions
    • Segler, M. H.; Waller, M. P. Modelling chemical reasoning to predict and invent reactions Chem.-Eur. J. 2017, 23, 6118-6128 10.1002/chem.201604556
    • (2017) Chem. - Eur. J. , vol.23 , pp. 6118-6128
    • Segler, M.H.1    Waller, M.P.2
  • 11
    • 85013399420 scopus 로고    scopus 로고
    • Neural-Symbolic Machine Learning for Retrosynthesis and Reaction Prediction
    • Segler, M. H.; Waller, M. P. Neural-Symbolic Machine Learning for Retrosynthesis and Reaction Prediction Chem.-Eur. J. 2017, 23, 5966-5971 10.1002/chem.201605499
    • (2017) Chem. - Eur. J. , vol.23 , pp. 5966-5971
    • Segler, M.H.1    Waller, M.P.2
  • 13
    • 8844263008 scopus 로고    scopus 로고
    • Docking and scoring in virtual screening for drug discovery: Methods and applications
    • Kitchen, D. B.; Decornez, H.; Furr, J. R.; Bajorath, J. Docking and scoring in virtual screening for drug discovery: methods and applications Nat. Rev. Drug Discovery 2004, 3, 935-949 10.1038/nrd1549
    • (2004) Nat. Rev. Drug Discovery , vol.3 , pp. 935-949
    • Kitchen, D.B.1    Decornez, H.2    Furr, J.R.3    Bajorath, J.4
  • 14
    • 84862848391 scopus 로고    scopus 로고
    • Machine learning methods for property prediction in chemoinformatics: Quo vadis?
    • Varnek, A.; Baskin, I. Machine learning methods for property prediction in chemoinformatics: quo vadis? J. Chem. Inf. Model. 2012, 52, 1413-1437 10.1021/ci200409x
    • (2012) J. Chem. Inf. Model. , vol.52 , pp. 1413-1437
    • Varnek, A.1    Baskin, I.2
  • 15
    • 84904993806 scopus 로고    scopus 로고
    • Machine learning methods in chemoinformatics
    • Mitchell, J. B. Machine learning methods in chemoinformatics Wiley Interdisc. Rev. Comp. Mol. Sci. 2014, 4, 468-481 10.1002/wcms.1183
    • (2014) Wiley Interdisc. Rev. Comp. Mol. Sci. , vol.4 , pp. 468-481
    • Mitchell, J.B.1
  • 16
    • 84879897900 scopus 로고    scopus 로고
    • Open-source platform to benchmark fingerprints for ligand-based virtual screening
    • Riniker, S.; Landrum, G. A. Open-source platform to benchmark fingerprints for ligand-based virtual screening J. Cheminf. 2013, 5, 26 10.1186/1758-2946-5-26
    • (2013) J. Cheminf. , vol.5 , pp. 26
    • Riniker, S.1    Landrum, G.A.2
  • 17
    • 77952772341 scopus 로고    scopus 로고
    • Extended-connectivity fingerprints
    • Rogers, D.; Hahn, M. Extended-connectivity fingerprints J. Chem. Inf. Model. 2010, 50, 742-754 10.1021/ci100050t
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 742-754
    • Rogers, D.1    Hahn, M.2
  • 19
    • 0001022357 scopus 로고    scopus 로고
    • A neural device for searching direct correlations between structures and properties of chemical compounds
    • Baskin, I. I.; Palyulin, V. A.; Zefirov, N. S. A neural device for searching direct correlations between structures and properties of chemical compounds J. Chem. Inf. Comp. Sci. 1997, 37, 715-721 10.1021/ci940128y
    • (1997) J. Chem. Inf. Comp. Sci. , vol.37 , pp. 715-721
    • Baskin, I.I.1    Palyulin, V.A.2    Zefirov, N.S.3
  • 20
    • 26944503086 scopus 로고    scopus 로고
    • Automatic generation of complementary descriptors with molecular graph networks
    • Merkwirth, C.; Lengauer, T. Automatic generation of complementary descriptors with molecular graph networks J. Chem. Inf. Model. 2005, 45, 1159-1168 10.1021/ci049613b
    • (2005) J. Chem. Inf. Model. , vol.45 , pp. 1159-1168
    • Merkwirth, C.1    Lengauer, T.2
  • 22
    • 85026486382 scopus 로고    scopus 로고
    • Low Data Drug Discovery with One-Shot Learning
    • Altae-Tran, H.; Ramsundar, B.; Pappu, A. S.; Pande, V. Low Data Drug Discovery with One-Shot Learning ACS Cent. Sci. 2017, 3, 283-293 10.1021/acscentsci.6b00367
    • (2017) ACS Cent. Sci. , vol.3 , pp. 283-293
    • Altae-Tran, H.1    Ramsundar, B.2    Pappu, A.S.3    Pande, V.4
  • 24
    • 0025732436 scopus 로고
    • Neural networks: A new method for solving chemical problems or just a passing phase?
    • Zupan, J.; Gasteiger, J. Neural networks: A new method for solving chemical problems or just a passing phase? Anal. Chim. Acta 1991, 248, 1-30 10.1016/S0003-2670(00)80865-X
    • (1991) Anal. Chim. Acta , vol.248 , pp. 1-30
    • Zupan, J.1    Gasteiger, J.2
  • 27
    • 84880542260 scopus 로고    scopus 로고
    • Deep architectures and deep learning in chemoinformatics: The prediction of aqueous solubility for drug-like molecules
    • Lusci, A.; Pollastri, G.; Baldi, P. Deep architectures and deep learning in chemoinformatics: the prediction of aqueous solubility for drug-like molecules J. Chem. Inf. Model. 2013, 53, 1563-1575 10.1021/ci400187y
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 1563-1575
    • Lusci, A.1    Pollastri, G.2    Baldi, P.3
  • 31
    • 84954372459 scopus 로고    scopus 로고
    • Deep learning in drug discovery
    • Gawehn, E.; Hiss, J. A.; Schneider, G. Deep learning in drug discovery Mol. Inf. 2016, 35, 3-14 10.1002/minf.201501008
    • (2016) Mol. Inf. , vol.35 , pp. 3-14
    • Gawehn, E.1    Hiss, J.A.2    Schneider, G.3
  • 33
    • 84936800620 scopus 로고    scopus 로고
    • Constructing high-dimensional neural network potentials: A tutorial review
    • Behler, J. Constructing high-dimensional neural network potentials: A tutorial review Int. J. Quantum Chem. 2015, 115, 1032-1050 10.1002/qua.24890
    • (2015) Int. J. Quantum Chem. , vol.115 , pp. 1032-1050
    • Behler, J.1
  • 34
    • 34047127421 scopus 로고    scopus 로고
    • Generalized neural-network representation of high-dimensional potential-energy surfaces
    • Behler, J.; Parrinello, M. Generalized neural-network representation of high-dimensional potential-energy surfaces Phys. Rev. Lett. 2007, 98, 146401 10.1103/PhysRevLett.98.146401
    • (2007) Phys. Rev. Lett. , vol.98 , pp. 146401
    • Behler, J.1    Parrinello, M.2
  • 35
    • 84923367417 scopus 로고    scopus 로고
    • Deep neural nets as a method for quantitative structure-activity relationships
    • Ma, J.; Sheridan, R. P.; Liaw, A.; Dahl, G. E.; Svetnik, V. Deep neural nets as a method for quantitative structure-activity relationships J. Chem. Inf. Model. 2015, 55, 263-274 10.1021/ci500747n
    • (2015) J. Chem. Inf. Model. , vol.55 , pp. 263-274
    • Ma, J.1    Sheridan, R.P.2    Liaw, A.3    Dahl, G.E.4    Svetnik, V.5
  • 36
    • 84898653013 scopus 로고    scopus 로고
    • Multi-Objective Molecular de Novo Design by Adaptive Fragment Prioritization
    • Reutlinger, M.; Rodrigues, T.; Schneider, P.; Schneider, G. Multi-Objective Molecular De Novo Design by Adaptive Fragment Prioritization Angew. Chem., Int. Ed. 2014, 53, 4244-4248 10.1002/anie.201310864
    • (2014) Angew. Chem., Int. Ed. , vol.53 , pp. 4244-4248
    • Reutlinger, M.1    Rodrigues, T.2    Schneider, P.3    Schneider, G.4
  • 37
    • 77952651054 scopus 로고    scopus 로고
    • Exhaustive Structure Generation for Inverse-QSPR/QSAR
    • Miyao, T.; Arakawa, M.; Funatsu, K. Exhaustive Structure Generation for Inverse-QSPR/QSAR Mol. Inf. 2010, 29, 111-125 10.1002/minf.200900038
    • (2010) Mol. Inf. , vol.29 , pp. 111-125
    • Miyao, T.1    Arakawa, M.2    Funatsu, K.3
  • 38
    • 84961128863 scopus 로고    scopus 로고
    • Inverse QSPR/QSAR Analysis for Chemical Structure Generation (from y to x)
    • Miyao, T.; Kaneko, H.; Funatsu, K. Inverse QSPR/QSAR Analysis for Chemical Structure Generation (from y to x) J. Chem. Inf. Model. 2016, 56, 286-299 10.1021/acs.jcim.5b00628
    • (2016) J. Chem. Inf. Model. , vol.56 , pp. 286-299
    • Miyao, T.1    Kaneko, H.2    Funatsu, K.3
  • 39
    • 84992743776 scopus 로고    scopus 로고
    • Chemical-Space-Based de Novo Design Method to Generate Drug-Like Molecules
    • Takeda, S.; Kaneko, H.; Funatsu, K. Chemical-Space-Based de Novo Design Method To Generate Drug-Like Molecules J. Chem. Inf. Model. 2016, 56, 1885-1893 10.1021/acs.jcim.6b00038
    • (2016) J. Chem. Inf. Model. , vol.56 , pp. 1885-1893
    • Takeda, S.1    Kaneko, H.2    Funatsu, K.3
  • 40
    • 84915823456 scopus 로고    scopus 로고
    • Development of a new de novo design algorithm for exploring chemical space
    • Mishima, K.; Kaneko, H.; Funatsu, K. Development of a new de novo design algorithm for exploring chemical space Mol. Inf. 2014, 33, 779-789 10.1002/minf.201400056
    • (2014) Mol. Inf. , vol.33 , pp. 779-789
    • Mishima, K.1    Kaneko, H.2    Funatsu, K.3
  • 41
    • 78049448019 scopus 로고    scopus 로고
    • Generative models for chemical structures
    • White, D.; Wilson, R. C. Generative models for chemical structures J. Chem. Inf. Model. 2010, 50, 1257-1274 10.1021/ci9004089
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 1257-1274
    • White, D.1    Wilson, R.C.2
  • 42
    • 66249098082 scopus 로고    scopus 로고
    • Knowledge-based approach to de novo design using reaction vectors
    • Patel, H.; Bodkin, M. J.; Chen, B.; Gillet, V. J. Knowledge-based approach to de novo design using reaction vectors J. Chem. Inf. Model. 2009, 49, 1163-1184 10.1021/ci800413m
    • (2009) J. Chem. Inf. Model. , vol.49 , pp. 1163-1184
    • Patel, H.1    Bodkin, M.J.2    Chen, B.3    Gillet, V.J.4
  • 51
    • 0035505385 scopus 로고    scopus 로고
    • LSTM recurrent networks learn simple context-free and context-sensitive languages
    • Gers, F. A.; Schmidhuber, E. LSTM recurrent networks learn simple context-free and context-sensitive languages IEEE Transactions on Neural Networks 2001, 12, 1333-1340 10.1109/72.963769
    • (2001) IEEE Transactions on Neural Networks , vol.12 , pp. 1333-1340
    • Gers, F.A.1    Schmidhuber, E.2
  • 54
    • 0023965741 scopus 로고
    • SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules
    • Weininger, D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules J. Chem. Inf. Model. 1988, 28, 31-36 10.1021/ci00057a005
    • (1988) J. Chem. Inf. Model. , vol.28 , pp. 31-36
    • Weininger, D.1
  • 55
    • 85001976188 scopus 로고    scopus 로고
    • A Primer on Neural Network Models for Natural Language Processing
    • Goldberg, Y. A Primer on Neural Network Models for Natural Language Processing J. Artif. Intell. Res. 2016, 57, 345-420
    • (2016) J. Artif. Intell. Res. , vol.57 , pp. 345-420
    • Goldberg, Y.1
  • 61
    • 84981263443 scopus 로고    scopus 로고
    • retrieved on 2016-10 - 24.
    • Chollet, F. Keras; https://github.com/fchollet/keras; retrieved on 2016-10 - 24.
    • Keras
    • Chollet, F.1
  • 64
    • 33745135773 scopus 로고    scopus 로고
    • Recent developments of the chemistry development kit (CDK)-an open-source Java library for chemo-and bioinformatics
    • Steinbeck, C.; Hoppe, C.; Kuhn, S.; Floris, M.; Guha, R.; Willighagen, E. L. Recent developments of the chemistry development kit (CDK)-an open-source java library for chemo-and bioinformatics Curr. Pharm. Des. 2006, 12, 2111-2120 10.2174/138161206777585274
    • (2006) Curr. Pharm. Des. , vol.12 , pp. 2111-2120
    • Steinbeck, C.1    Hoppe, C.2    Kuhn, S.3    Floris, M.4    Guha, R.5    Willighagen, E.L.6
  • 65
    • 0037361967 scopus 로고    scopus 로고
    • The Chemistry Development Kit (CDK): An open-source Java library for chemo-and bioinformatics
    • Steinbeck, C.; Han, Y.; Kuhn, S.; Horlacher, O.; Luttmann, E.; Willighagen, E. The Chemistry Development Kit (CDK): An open-source Java library for chemo-and bioinformatics J. Chem. Inf. Comp. Sci. 2003, 43, 493-500 10.1021/ci025584y
    • (2003) J. Chem. Inf. Comp. Sci. , vol.43 , pp. 493-500
    • Steinbeck, C.1    Han, Y.2    Kuhn, S.3    Horlacher, O.4    Luttmann, E.5    Willighagen, E.6
  • 66
    • 80555140075 scopus 로고    scopus 로고
    • Scikit-learn: Machine Learning in Python
    • Pedregosa, F. et al. Scikit-learn: Machine Learning in Python J. Mach. Learn. Res. 2011, 12, 2825-2830
    • (2011) J. Mach. Learn. Res. , vol.12 , pp. 2825-2830
    • Pedregosa, F.1
  • 67
    • 84984950690 scopus 로고    scopus 로고
    • XGBoost: A scalable tree boosting system
    • Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system 22nd ACM SIGKDD Int. Conf. 2016, 785 10.1145/2939672.2939785
    • (2016) 22nd ACM SIGKDD Int. Conf. , pp. 785
    • Chen, T.1    Guestrin, C.2
  • 68
    • 0024664539 scopus 로고
    • SMILES. 2. Algorithm for generation of unique SMILES notation
    • Weininger, D.; Weininger, A.; Weininger, J. L. SMILES. 2. Algorithm for generation of unique SMILES notation J. Chem. Inf. Model. 1989, 29, 97-101 10.1021/ci00062a008
    • (1989) J. Chem. Inf. Model. , vol.29 , pp. 97-101
    • Weininger, D.1    Weininger, A.2    Weininger, J.L.3
  • 69
    • 85041212625 scopus 로고    scopus 로고
    • https://en.wikipedia.org/wiki/Graph-canonization.
  • 72
    • 84942531848 scopus 로고    scopus 로고
    • SCUBIDOO: A Large yet Screenable and Easily Searchable Database of Computationally Created Chemical Compounds Optimized toward High Likelihood of Synthetic Tractability
    • Chevillard, F.; Kolb, P. SCUBIDOO: A Large yet Screenable and Easily Searchable Database of Computationally Created Chemical Compounds Optimized toward High Likelihood of Synthetic Tractability J. Chem. Inf. Model. 2015, 55, 1824-1835 10.1021/acs.jcim.5b00203
    • (2015) J. Chem. Inf. Model. , vol.55 , pp. 1824-1835
    • Chevillard, F.1    Kolb, P.2
  • 74
    • 57249084011 scopus 로고    scopus 로고
    • Visualizing data using t-SNE
    • Maaten, L. v. d.; Hinton, G. Visualizing data using t-SNE J. Mach. Learn. Res. 2008, 9, 2579-2605
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 2579-2605
    • Hinton, G.1
  • 75
    • 0029894013 scopus 로고    scopus 로고
    • The properties of known drugs. 1. Molecular frameworks
    • Bemis, G. W.; Murcko, M. A. The properties of known drugs. 1. Molecular frameworks J. Med. Chem. 1996, 39, 2887-2893 10.1021/jm9602928
    • (1996) J. Med. Chem. , vol.39 , pp. 2887-2893
    • Bemis, G.W.1    Murcko, M.A.2
  • 76
    • 85018343292 scopus 로고    scopus 로고
    • Open source drug discovery: Highly potent antimalarial compounds derived from the Tres Cantos arylpyrroles
    • Williamson, A. E.; Todd, M. H. et al. Open source drug discovery: highly potent antimalarial compounds derived from the Tres Cantos arylpyrroles ACS Cent. Sci. 2016, 2, 687-701 10.1021/acscentsci.6b00086
    • (2016) ACS Cent. Sci. , vol.2 , pp. 687-701
    • Williamson, A.E.1    Todd, M.H.2
  • 79
    • 85032037004 scopus 로고    scopus 로고
    • Opportunities and Obstacles for Deep Learning in Biology and Medicine
    • Ching, T.; Himmelstein, D. S. et al. Opportunities And Obstacles For Deep Learning In Biology And Medicine bioRxiv 2017, 142760
    • (2017) BioRxiv , pp. 142760
    • Ching, T.1    Himmelstein, D.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.