-
1
-
-
85027922347
-
Reinventing chemistry
-
Whitesides, G. M. Reinventing chemistry Angew. Chem., Int. Ed. 2015, 54, 3196-3209 10.1002/anie.201410884
-
(2015)
Angew. Chem., Int. Ed.
, vol.54
, pp. 3196-3209
-
-
Whitesides, G.M.1
-
2
-
-
84969628929
-
De Novo Design at the Edge of Chaos: Miniperspective
-
Schneider, P.; Schneider, G. De Novo Design at the Edge of Chaos: Miniperspective J. Med. Chem. 2016, 59, 4077-4086 10.1021/acs.jmedchem.5b01849
-
(2016)
J. Med. Chem.
, vol.59
, pp. 4077-4086
-
-
Schneider, P.1
Schneider, G.2
-
3
-
-
84865298452
-
The enumeration of chemical space
-
Reymond, J.-L.; Ruddigkeit, L.; Blum, L.; van Deursen, R. The enumeration of chemical space Wiley Interdisc. Rev. Comp. Mol. Sci. 2012, 2, 717-733 10.1002/wcms.1104
-
(2012)
Wiley Interdisc. Rev. Comp. Mol. Sci.
, vol.2
, pp. 717-733
-
-
Reymond, J.-L.1
Ruddigkeit, L.2
Blum, L.3
Van Deursen, R.4
-
6
-
-
23844449940
-
Computer-based de novo design of drug-like molecules
-
Schneider, G.; Fechner, U. Computer-based de novo design of drug-like molecules Nat. Rev. Drug Discovery 2005, 4, 649-663 10.1038/nrd1799
-
(2005)
Nat. Rev. Drug Discovery
, vol.4
, pp. 649-663
-
-
Schneider, G.1
Fechner, U.2
-
8
-
-
84861142957
-
DOGS: Reaction-driven de novo design of bioactive compounds
-
Hartenfeller, M.; Zettl, H.; Walter, M.; Rupp, M.; Reisen, F.; Proschak, E.; Weggen, S.; Stark, H.; Schneider, G. DOGS: reaction-driven de novo design of bioactive compounds PLoS Comput. Biol. 2012, 8, e1002380 10.1371/journal.pcbi.1002380
-
(2012)
PLoS Comput. Biol.
, vol.8
, pp. e1002380
-
-
Hartenfeller, M.1
Zettl, H.2
Walter, M.3
Rupp, M.4
Reisen, F.5
Proschak, E.6
Weggen, S.7
Stark, H.8
Schneider, G.9
-
9
-
-
84555220599
-
A collection of robust organic synthesis reactions for in silico molecule design
-
Hartenfeller, M.; Eberle, M.; Meier, P.; Nieto-Oberhuber, C.; Altmann, K.-H.; Schneider, G.; Jacoby, E.; Renner, S. A collection of robust organic synthesis reactions for in silico molecule design J. Chem. Inf. Model. 2011, 51, 3093-3098 10.1021/ci200379p
-
(2011)
J. Chem. Inf. Model.
, vol.51
, pp. 3093-3098
-
-
Hartenfeller, M.1
Eberle, M.2
Meier, P.3
Nieto-Oberhuber, C.4
Altmann, K.-H.5
Schneider, G.6
Jacoby, E.7
Renner, S.8
-
10
-
-
85007609844
-
Modelling chemical reasoning to predict and invent reactions
-
Segler, M. H.; Waller, M. P. Modelling chemical reasoning to predict and invent reactions Chem.-Eur. J. 2017, 23, 6118-6128 10.1002/chem.201604556
-
(2017)
Chem. - Eur. J.
, vol.23
, pp. 6118-6128
-
-
Segler, M.H.1
Waller, M.P.2
-
11
-
-
85013399420
-
Neural-Symbolic Machine Learning for Retrosynthesis and Reaction Prediction
-
Segler, M. H.; Waller, M. P. Neural-Symbolic Machine Learning for Retrosynthesis and Reaction Prediction Chem.-Eur. J. 2017, 23, 5966-5971 10.1002/chem.201605499
-
(2017)
Chem. - Eur. J.
, vol.23
, pp. 5966-5971
-
-
Segler, M.H.1
Waller, M.P.2
-
13
-
-
8844263008
-
Docking and scoring in virtual screening for drug discovery: Methods and applications
-
Kitchen, D. B.; Decornez, H.; Furr, J. R.; Bajorath, J. Docking and scoring in virtual screening for drug discovery: methods and applications Nat. Rev. Drug Discovery 2004, 3, 935-949 10.1038/nrd1549
-
(2004)
Nat. Rev. Drug Discovery
, vol.3
, pp. 935-949
-
-
Kitchen, D.B.1
Decornez, H.2
Furr, J.R.3
Bajorath, J.4
-
14
-
-
84862848391
-
Machine learning methods for property prediction in chemoinformatics: Quo vadis?
-
Varnek, A.; Baskin, I. Machine learning methods for property prediction in chemoinformatics: quo vadis? J. Chem. Inf. Model. 2012, 52, 1413-1437 10.1021/ci200409x
-
(2012)
J. Chem. Inf. Model.
, vol.52
, pp. 1413-1437
-
-
Varnek, A.1
Baskin, I.2
-
15
-
-
84904993806
-
Machine learning methods in chemoinformatics
-
Mitchell, J. B. Machine learning methods in chemoinformatics Wiley Interdisc. Rev. Comp. Mol. Sci. 2014, 4, 468-481 10.1002/wcms.1183
-
(2014)
Wiley Interdisc. Rev. Comp. Mol. Sci.
, vol.4
, pp. 468-481
-
-
Mitchell, J.B.1
-
16
-
-
84879897900
-
Open-source platform to benchmark fingerprints for ligand-based virtual screening
-
Riniker, S.; Landrum, G. A. Open-source platform to benchmark fingerprints for ligand-based virtual screening J. Cheminf. 2013, 5, 26 10.1186/1758-2946-5-26
-
(2013)
J. Cheminf.
, vol.5
, pp. 26
-
-
Riniker, S.1
Landrum, G.A.2
-
17
-
-
77952772341
-
Extended-connectivity fingerprints
-
Rogers, D.; Hahn, M. Extended-connectivity fingerprints J. Chem. Inf. Model. 2010, 50, 742-754 10.1021/ci100050t
-
(2010)
J. Chem. Inf. Model.
, vol.50
, pp. 742-754
-
-
Rogers, D.1
Hahn, M.2
-
18
-
-
84908226575
-
Ligand-based target prediction with signature fingerprints
-
Alvarsson, J.; Eklund, M.; Engkvist, O.; Spjuth, O.; Carlsson, L.; Wikberg, J. E.; Noeske, T. Ligand-based target prediction with signature fingerprints J. Chem. Inf. Model. 2014, 54, 2647-2653 10.1021/ci500361u
-
(2014)
J. Chem. Inf. Model.
, vol.54
, pp. 2647-2653
-
-
Alvarsson, J.1
Eklund, M.2
Engkvist, O.3
Spjuth, O.4
Carlsson, L.5
Wikberg, J.E.6
Noeske, T.7
-
19
-
-
0001022357
-
A neural device for searching direct correlations between structures and properties of chemical compounds
-
Baskin, I. I.; Palyulin, V. A.; Zefirov, N. S. A neural device for searching direct correlations between structures and properties of chemical compounds J. Chem. Inf. Comp. Sci. 1997, 37, 715-721 10.1021/ci940128y
-
(1997)
J. Chem. Inf. Comp. Sci.
, vol.37
, pp. 715-721
-
-
Baskin, I.I.1
Palyulin, V.A.2
Zefirov, N.S.3
-
20
-
-
26944503086
-
Automatic generation of complementary descriptors with molecular graph networks
-
Merkwirth, C.; Lengauer, T. Automatic generation of complementary descriptors with molecular graph networks J. Chem. Inf. Model. 2005, 45, 1159-1168 10.1021/ci049613b
-
(2005)
J. Chem. Inf. Model.
, vol.45
, pp. 1159-1168
-
-
Merkwirth, C.1
Lengauer, T.2
-
21
-
-
84965159799
-
Convolutional networks on graphs for learning molecular fingerprints
-
Duvenaud, D. K.; Maclaurin, D.; Iparraguirre, J.; Bombarell, R.; Hirzel, T.; Aspuru-Guzik, A.; Adams, R. P. Convolutional networks on graphs for learning molecular fingerprints Adv. Neural Inf. Proc. Syst. 2015, 2224-2232
-
(2015)
Adv. Neural Inf. Proc. Syst.
, pp. 2224-2232
-
-
Duvenaud, D.K.1
MacLaurin, D.2
Iparraguirre, J.3
Bombarell, R.4
Hirzel, T.5
Aspuru-Guzik, A.6
Adams, R.P.7
-
22
-
-
85026486382
-
Low Data Drug Discovery with One-Shot Learning
-
Altae-Tran, H.; Ramsundar, B.; Pappu, A. S.; Pande, V. Low Data Drug Discovery with One-Shot Learning ACS Cent. Sci. 2017, 3, 283-293 10.1021/acscentsci.6b00367
-
(2017)
ACS Cent. Sci.
, vol.3
, pp. 283-293
-
-
Altae-Tran, H.1
Ramsundar, B.2
Pappu, A.S.3
Pande, V.4
-
24
-
-
0025732436
-
Neural networks: A new method for solving chemical problems or just a passing phase?
-
Zupan, J.; Gasteiger, J. Neural networks: A new method for solving chemical problems or just a passing phase? Anal. Chim. Acta 1991, 248, 1-30 10.1016/S0003-2670(00)80865-X
-
(1991)
Anal. Chim. Acta
, vol.248
, pp. 1-30
-
-
Zupan, J.1
Gasteiger, J.2
-
25
-
-
33748242731
-
Neural networks in chemistry
-
Gasteiger, J.; Zupan, J. Neural networks in chemistry Angew. Chem., Int. Ed. Engl. 1993, 32, 503-527 10.1002/anie.199305031
-
(1993)
Angew. Chem., Int. Ed. Engl.
, vol.32
, pp. 503-527
-
-
Gasteiger, J.1
Zupan, J.2
-
27
-
-
84880542260
-
Deep architectures and deep learning in chemoinformatics: The prediction of aqueous solubility for drug-like molecules
-
Lusci, A.; Pollastri, G.; Baldi, P. Deep architectures and deep learning in chemoinformatics: the prediction of aqueous solubility for drug-like molecules J. Chem. Inf. Model. 2013, 53, 1563-1575 10.1021/ci400187y
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 1563-1575
-
-
Lusci, A.1
Pollastri, G.2
Baldi, P.3
-
28
-
-
84981496808
-
Deep learning as an opportunity in virtual screening
-
In
-
Unterthiner, T.; Mayr, A.; Klambauer, G.; Steijaert, M.; Wegner, J. K.; Ceulemans, H.; Hochreiter, S. Deep learning as an opportunity in virtual screening. In Proceedings of the Deep Learning Workshop at NIPS; 2014; Vol. 27, pp 1-9.
-
(2014)
Proceedings of the Deep Learning Workshop at NIPS
, vol.27
, pp. 1-9
-
-
Unterthiner, T.1
Mayr, A.2
Klambauer, G.3
Steijaert, M.4
Wegner, J.K.5
Ceulemans, H.6
Hochreiter, S.7
-
29
-
-
84958640223
-
-
Unterthiner, T.; Mayr, A.; Klambauer, G.; Hochreiter, S. Toxicity prediction using deep learning ArXiv 2015, 1503-1445
-
(2015)
Toxicity prediction using deep learning
, pp. 1503
-
-
Unterthiner, T.1
Mayr, A.2
Klambauer, G.3
Hochreiter, S.4
-
30
-
-
84960539870
-
Hybrid Network Model for "deep Learning" of Chemical Data: Application to Antimicrobial Peptides
-
Schneider, P.; Müller, A. T.; Gabernet, G.; Button, A. L.; Posselt, G.; Wessler, S.; Hiss, J. A.; Schneider, G. Hybrid Network Model for "Deep Learning" of Chemical Data: Application to Antimicrobial Peptides Mol. Inf. 2017, 36, 1600011 10.1002/minf.201600011
-
(2017)
Mol. Inf.
, vol.36
, pp. 1600011
-
-
Schneider, P.1
Müller, A.T.2
Gabernet, G.3
Button, A.L.4
Posselt, G.5
Wessler, S.6
Hiss, J.A.7
Schneider, G.8
-
31
-
-
84954372459
-
Deep learning in drug discovery
-
Gawehn, E.; Hiss, J. A.; Schneider, G. Deep learning in drug discovery Mol. Inf. 2016, 35, 3-14 10.1002/minf.201501008
-
(2016)
Mol. Inf.
, vol.35
, pp. 3-14
-
-
Gawehn, E.1
Hiss, J.A.2
Schneider, G.3
-
32
-
-
84927735077
-
-
Ramsundar, B.; Kearnes, S.; Riley, P.; Webster, D.; Konerding, D.; Pande, V. Massively multitask networks for drug discovery ArXiv 2015, 1502-2072
-
(2015)
Massively multitask networks for drug discovery
, pp. 1502-2072
-
-
Ramsundar, B.1
Kearnes, S.2
Riley, P.3
Webster, D.4
Konerding, D.5
Pande, V.6
-
33
-
-
84936800620
-
Constructing high-dimensional neural network potentials: A tutorial review
-
Behler, J. Constructing high-dimensional neural network potentials: A tutorial review Int. J. Quantum Chem. 2015, 115, 1032-1050 10.1002/qua.24890
-
(2015)
Int. J. Quantum Chem.
, vol.115
, pp. 1032-1050
-
-
Behler, J.1
-
34
-
-
34047127421
-
Generalized neural-network representation of high-dimensional potential-energy surfaces
-
Behler, J.; Parrinello, M. Generalized neural-network representation of high-dimensional potential-energy surfaces Phys. Rev. Lett. 2007, 98, 146401 10.1103/PhysRevLett.98.146401
-
(2007)
Phys. Rev. Lett.
, vol.98
, pp. 146401
-
-
Behler, J.1
Parrinello, M.2
-
35
-
-
84923367417
-
Deep neural nets as a method for quantitative structure-activity relationships
-
Ma, J.; Sheridan, R. P.; Liaw, A.; Dahl, G. E.; Svetnik, V. Deep neural nets as a method for quantitative structure-activity relationships J. Chem. Inf. Model. 2015, 55, 263-274 10.1021/ci500747n
-
(2015)
J. Chem. Inf. Model.
, vol.55
, pp. 263-274
-
-
Ma, J.1
Sheridan, R.P.2
Liaw, A.3
Dahl, G.E.4
Svetnik, V.5
-
36
-
-
84898653013
-
Multi-Objective Molecular de Novo Design by Adaptive Fragment Prioritization
-
Reutlinger, M.; Rodrigues, T.; Schneider, P.; Schneider, G. Multi-Objective Molecular De Novo Design by Adaptive Fragment Prioritization Angew. Chem., Int. Ed. 2014, 53, 4244-4248 10.1002/anie.201310864
-
(2014)
Angew. Chem., Int. Ed.
, vol.53
, pp. 4244-4248
-
-
Reutlinger, M.1
Rodrigues, T.2
Schneider, P.3
Schneider, G.4
-
37
-
-
77952651054
-
Exhaustive Structure Generation for Inverse-QSPR/QSAR
-
Miyao, T.; Arakawa, M.; Funatsu, K. Exhaustive Structure Generation for Inverse-QSPR/QSAR Mol. Inf. 2010, 29, 111-125 10.1002/minf.200900038
-
(2010)
Mol. Inf.
, vol.29
, pp. 111-125
-
-
Miyao, T.1
Arakawa, M.2
Funatsu, K.3
-
38
-
-
84961128863
-
Inverse QSPR/QSAR Analysis for Chemical Structure Generation (from y to x)
-
Miyao, T.; Kaneko, H.; Funatsu, K. Inverse QSPR/QSAR Analysis for Chemical Structure Generation (from y to x) J. Chem. Inf. Model. 2016, 56, 286-299 10.1021/acs.jcim.5b00628
-
(2016)
J. Chem. Inf. Model.
, vol.56
, pp. 286-299
-
-
Miyao, T.1
Kaneko, H.2
Funatsu, K.3
-
39
-
-
84992743776
-
Chemical-Space-Based de Novo Design Method to Generate Drug-Like Molecules
-
Takeda, S.; Kaneko, H.; Funatsu, K. Chemical-Space-Based de Novo Design Method To Generate Drug-Like Molecules J. Chem. Inf. Model. 2016, 56, 1885-1893 10.1021/acs.jcim.6b00038
-
(2016)
J. Chem. Inf. Model.
, vol.56
, pp. 1885-1893
-
-
Takeda, S.1
Kaneko, H.2
Funatsu, K.3
-
40
-
-
84915823456
-
Development of a new de novo design algorithm for exploring chemical space
-
Mishima, K.; Kaneko, H.; Funatsu, K. Development of a new de novo design algorithm for exploring chemical space Mol. Inf. 2014, 33, 779-789 10.1002/minf.201400056
-
(2014)
Mol. Inf.
, vol.33
, pp. 779-789
-
-
Mishima, K.1
Kaneko, H.2
Funatsu, K.3
-
41
-
-
78049448019
-
Generative models for chemical structures
-
White, D.; Wilson, R. C. Generative models for chemical structures J. Chem. Inf. Model. 2010, 50, 1257-1274 10.1021/ci9004089
-
(2010)
J. Chem. Inf. Model.
, vol.50
, pp. 1257-1274
-
-
White, D.1
Wilson, R.C.2
-
42
-
-
66249098082
-
Knowledge-based approach to de novo design using reaction vectors
-
Patel, H.; Bodkin, M. J.; Chen, B.; Gillet, V. J. Knowledge-based approach to de novo design using reaction vectors J. Chem. Inf. Model. 2009, 49, 1163-1184 10.1021/ci800413m
-
(2009)
J. Chem. Inf. Model.
, vol.49
, pp. 1163-1184
-
-
Patel, H.1
Bodkin, M.J.2
Chen, B.3
Gillet, V.J.4
-
43
-
-
85072753030
-
Generating sentences from a continuous space
-
In.
-
Bowman, S. R.; Vilnis, L.; Vinyals, O.; Dai, A. M.; Jozefowicz, R.; Bengio, S. Generating sentences from a continuous space. In SIGNLL Conference on Computational Natural Language Learning (CONLL); 2016.
-
(2016)
SIGNLL Conference on Computational Natural Language Learning (CONLL)
-
-
Bowman, S.R.1
Vilnis, L.2
Vinyals, O.3
Dai, A.M.4
Jozefowicz, R.5
Bengio, S.6
-
44
-
-
85007238720
-
-
Gómez-Bombarelli, R.; Duvenaud, D.; Hernández-Lobato, J. M.; Aguilera-Iparraguirre, J.; Hirzel, T. D.; Adams, R. P.; Aspuru-Guzik, A. Automatic chemical design using a data-driven continuous representation of molecules ArXiv 2016, 1610-2415
-
(2016)
Automatic chemical design using a data-driven continuous representation of molecules
, pp. 1610-2415
-
-
Gómez-Bombarelli, R.1
Duvenaud, D.2
Hernández-Lobato, J.M.3
Aguilera-Iparraguirre, J.4
Hirzel, T.D.5
Adams, R.P.6
Aspuru-Guzik, A.7
-
47
-
-
84978840213
-
-
Jozefowicz, R.; Vinyals, O.; Schuster, M.; Shazeer, N.; Wu, Y. Exploring the limits of language modeling ArXiv 2016, 1602-2410
-
(2016)
Exploring the limits of language modeling
, pp. 1602-2410
-
-
Jozefowicz, R.1
Vinyals, O.2
Schuster, M.3
Shazeer, N.4
Wu, Y.5
-
51
-
-
0035505385
-
LSTM recurrent networks learn simple context-free and context-sensitive languages
-
Gers, F. A.; Schmidhuber, E. LSTM recurrent networks learn simple context-free and context-sensitive languages IEEE Transactions on Neural Networks 2001, 12, 1333-1340 10.1109/72.963769
-
(2001)
IEEE Transactions on Neural Networks
, vol.12
, pp. 1333-1340
-
-
Gers, F.A.1
Schmidhuber, E.2
-
52
-
-
85041195650
-
-
Bhoopchand, A.; Rocktäschel, T.; Barr, E.; Riedel, S. Learning Python Code Suggestion with a Sparse Pointer Network ArXiv 2016, 1611-8307
-
(2016)
Learning Python Code Suggestion with a Sparse Pointer Network
, pp. 1611-8307
-
-
Bhoopchand, A.1
Rocktäschel, T.2
Barr, E.3
Riedel, S.4
-
54
-
-
0023965741
-
SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules
-
Weininger, D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules J. Chem. Inf. Model. 1988, 28, 31-36 10.1021/ci00057a005
-
(1988)
J. Chem. Inf. Model.
, vol.28
, pp. 31-36
-
-
Weininger, D.1
-
55
-
-
85001976188
-
A Primer on Neural Network Models for Natural Language Processing
-
Goldberg, Y. A Primer on Neural Network Models for Natural Language Processing J. Artif. Intell. Res. 2016, 57, 345-420
-
(2016)
J. Artif. Intell. Res.
, vol.57
, pp. 345-420
-
-
Goldberg, Y.1
-
57
-
-
85014030168
-
-
Johnson, M.; Schuster, M.; Le, Q. V.; Krikun, M.; Wu, Y.; Chen, Z.; Thorat, N.; Viégas, F.; Wattenberg, M.; Corrado, G. Google's Multilingual Neural Machine Translation System: Enabling Zero-Shot Translation ArXiv 2016, 1611-4558
-
(2016)
Google's Multilingual Neural Machine Translation System: Enabling Zero-Shot Translation
, pp. 1611-4558
-
-
Johnson, M.1
Schuster, M.2
Le, Q.V.3
Krikun, M.4
Wu, Y.5
Chen, Z.6
Thorat, N.7
Viégas, F.8
Wattenberg, M.9
Corrado, G.10
-
60
-
-
84979010616
-
LSTM: A search space odyssey
-
Greff, K.; Srivastava, R. K.; Koutník, J.; Steunebrink, B. R.; Schmidhuber, J. LSTM: A search space odyssey IEEE transactions on neural networks and learning systems 2017, 28, 2222-2232 10.1109/TNNLS.2016.2582924
-
(2017)
IEEE Transactions on Neural Networks and Learning Systems
, vol.28
, pp. 2222-2232
-
-
Greff, K.1
Srivastava, R.K.2
Koutník, J.3
Steunebrink, B.R.4
Schmidhuber, J.5
-
61
-
-
84981263443
-
-
retrieved on 2016-10 - 24.
-
Chollet, F. Keras; https://github.com/fchollet/keras; retrieved on 2016-10 - 24.
-
Keras
-
-
Chollet, F.1
-
64
-
-
33745135773
-
Recent developments of the chemistry development kit (CDK)-an open-source Java library for chemo-and bioinformatics
-
Steinbeck, C.; Hoppe, C.; Kuhn, S.; Floris, M.; Guha, R.; Willighagen, E. L. Recent developments of the chemistry development kit (CDK)-an open-source java library for chemo-and bioinformatics Curr. Pharm. Des. 2006, 12, 2111-2120 10.2174/138161206777585274
-
(2006)
Curr. Pharm. Des.
, vol.12
, pp. 2111-2120
-
-
Steinbeck, C.1
Hoppe, C.2
Kuhn, S.3
Floris, M.4
Guha, R.5
Willighagen, E.L.6
-
65
-
-
0037361967
-
The Chemistry Development Kit (CDK): An open-source Java library for chemo-and bioinformatics
-
Steinbeck, C.; Han, Y.; Kuhn, S.; Horlacher, O.; Luttmann, E.; Willighagen, E. The Chemistry Development Kit (CDK): An open-source Java library for chemo-and bioinformatics J. Chem. Inf. Comp. Sci. 2003, 43, 493-500 10.1021/ci025584y
-
(2003)
J. Chem. Inf. Comp. Sci.
, vol.43
, pp. 493-500
-
-
Steinbeck, C.1
Han, Y.2
Kuhn, S.3
Horlacher, O.4
Luttmann, E.5
Willighagen, E.6
-
66
-
-
80555140075
-
Scikit-learn: Machine Learning in Python
-
Pedregosa, F. et al. Scikit-learn: Machine Learning in Python J. Mach. Learn. Res. 2011, 12, 2825-2830
-
(2011)
J. Mach. Learn. Res.
, vol.12
, pp. 2825-2830
-
-
Pedregosa, F.1
-
67
-
-
84984950690
-
XGBoost: A scalable tree boosting system
-
Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system 22nd ACM SIGKDD Int. Conf. 2016, 785 10.1145/2939672.2939785
-
(2016)
22nd ACM SIGKDD Int. Conf.
, pp. 785
-
-
Chen, T.1
Guestrin, C.2
-
68
-
-
0024664539
-
SMILES. 2. Algorithm for generation of unique SMILES notation
-
Weininger, D.; Weininger, A.; Weininger, J. L. SMILES. 2. Algorithm for generation of unique SMILES notation J. Chem. Inf. Model. 1989, 29, 97-101 10.1021/ci00062a008
-
(1989)
J. Chem. Inf. Model.
, vol.29
, pp. 97-101
-
-
Weininger, D.1
Weininger, A.2
Weininger, J.L.3
-
69
-
-
85041212625
-
-
https://en.wikipedia.org/wiki/Graph-canonization.
-
-
-
-
70
-
-
84904163933
-
Dropout: A simple way to prevent neural networks from overfitting
-
Srivastava, N.; Hinton, G. E.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: a simple way to prevent neural networks from overfitting J. Mach. Learn. Res. 2014, 15, 1929-1958
-
(2014)
J. Mach. Learn. Res.
, vol.15
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.E.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
71
-
-
84889581795
-
Chemical predictive modelling to improve compound quality
-
Cumming, J. G.; Davis, A. M.; Muresan, S.; Haeberlein, M.; Chen, H. Chemical predictive modelling to improve compound quality Nat. Rev. Drug Discovery 2013, 12, 948-962 10.1038/nrd4128
-
(2013)
Nat. Rev. Drug Discovery
, vol.12
, pp. 948-962
-
-
Cumming, J.G.1
Davis, A.M.2
Muresan, S.3
Haeberlein, M.4
Chen, H.5
-
72
-
-
84942531848
-
SCUBIDOO: A Large yet Screenable and Easily Searchable Database of Computationally Created Chemical Compounds Optimized toward High Likelihood of Synthetic Tractability
-
Chevillard, F.; Kolb, P. SCUBIDOO: A Large yet Screenable and Easily Searchable Database of Computationally Created Chemical Compounds Optimized toward High Likelihood of Synthetic Tractability J. Chem. Inf. Model. 2015, 55, 1824-1835 10.1021/acs.jcim.5b00203
-
(2015)
J. Chem. Inf. Model.
, vol.55
, pp. 1824-1835
-
-
Chevillard, F.1
Kolb, P.2
-
74
-
-
57249084011
-
Visualizing data using t-SNE
-
Maaten, L. v. d.; Hinton, G. Visualizing data using t-SNE J. Mach. Learn. Res. 2008, 9, 2579-2605
-
(2008)
J. Mach. Learn. Res.
, vol.9
, pp. 2579-2605
-
-
Hinton, G.1
-
75
-
-
0029894013
-
The properties of known drugs. 1. Molecular frameworks
-
Bemis, G. W.; Murcko, M. A. The properties of known drugs. 1. Molecular frameworks J. Med. Chem. 1996, 39, 2887-2893 10.1021/jm9602928
-
(1996)
J. Med. Chem.
, vol.39
, pp. 2887-2893
-
-
Bemis, G.W.1
Murcko, M.A.2
-
76
-
-
85018343292
-
Open source drug discovery: Highly potent antimalarial compounds derived from the Tres Cantos arylpyrroles
-
Williamson, A. E.; Todd, M. H. et al. Open source drug discovery: highly potent antimalarial compounds derived from the Tres Cantos arylpyrroles ACS Cent. Sci. 2016, 2, 687-701 10.1021/acscentsci.6b00086
-
(2016)
ACS Cent. Sci.
, vol.2
, pp. 687-701
-
-
Williamson, A.E.1
Todd, M.H.2
-
77
-
-
85027955443
-
Organic synthesis: March of the machines
-
Ley, S. V.; Fitzpatrick, D. E.; Ingham, R.; Myers, R. M. Organic synthesis: march of the machines Angew. Chem., Int. Ed. 2015, 54, 3449-3464 10.1002/anie.201410744
-
(2015)
Angew. Chem., Int. Ed.
, vol.54
, pp. 3449-3464
-
-
Ley, S.V.1
Fitzpatrick, D.E.2
Ingham, R.3
Myers, R.M.4
-
79
-
-
85032037004
-
Opportunities and Obstacles for Deep Learning in Biology and Medicine
-
Ching, T.; Himmelstein, D. S. et al. Opportunities And Obstacles For Deep Learning In Biology And Medicine bioRxiv 2017, 142760
-
(2017)
BioRxiv
, pp. 142760
-
-
Ching, T.1
Himmelstein, D.S.2
|