메뉴 건너뛰기




Volumn , Issue , 2016, Pages 10-21

Generating sentences from a continuous space

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL LINGUISTICS; MODELING LANGUAGES; NATURAL LANGUAGE PROCESSING SYSTEMS; RECURRENT NEURAL NETWORKS;

EID: 85072753030     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.18653/v1/k16-1002     Document Type: Conference Paper
Times cited : (1578)

References (39)
  • 1
    • 85083953689 scopus 로고    scopus 로고
    • Neural machine translation by jointly learning to align and translate
    • Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural machine translation by jointly learning to align and translate. In Proc. ICLR.
    • (2015) Proc. ICLR.
    • Bahdanau, D.1    Cho, K.2    Bengio, Y.3
  • 5
    • 84965138788 scopus 로고    scopus 로고
    • Semi-supervised sequence learning
    • Andrew M. Dai and Quoc V. Le. 2015. Semi-supervised sequence learning. In Proc. NIPS.
    • (2015) Proc. NIPS.
    • Dai, A.M.1    Le, Q.V.2
  • 6
    • 84965143571 scopus 로고    scopus 로고
    • Deep generative image models using a laplacian pyramid of adversarial networks
    • Emily Denton, Soumith Chintala, Arthur Szlam, and Rob Fergus. 2015. Deep generative image models using a laplacian pyramid of adversarial networks. In Proc. NIPS.
    • (2015) Proc. NIPS.
    • Denton, E.1    Chintala, S.2    Szlam, A.3    Fergus, R.4
  • 7
    • 85105937549 scopus 로고    scopus 로고
    • Unsupervised construction of large paraphrase corpora: Exploiting massively parallel news sources
    • Bill Dolan, Chris Quirk, and Chris Brockett. 2004. Unsupervised construction of large paraphrase corpora: Exploiting massively parallel news sources. In Proc. COLING.
    • (2004) Proc. COLING.
    • Dolan, B.1    Quirk, C.2    Brockett, C.3
  • 15
    • 84943803518 scopus 로고    scopus 로고
    • Deep unordered composition rivals syntactic methods for text classification
    • Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber, and Hal Daumé III. 2015. Deep unordered composition rivals syntactic methods for text classification. In Proc. ACL.
    • (2015) Proc. ACL.
    • Iyyer, M.1    Manjunatha, V.2    Boyd-Graber, J.3    Daumé, H.4
  • 16
    • 0005907840 scopus 로고    scopus 로고
    • An information-theoretic analysis of hard and soft assignment methods for clustering
    • Springer
    • Michael Kearns, Yishay Mansour, and Andrew Y Ng. 1998. An information-theoretic analysis of hard and soft assignment methods for clustering. In Learning in graphical models, Springer, pages 495–520.
    • (1998) Learning in Graphical Models , pp. 495-520
    • Kearns, M.1    Mansour, Y.2    Ng, A.Y.3
  • 17
    • 84961376850 scopus 로고    scopus 로고
    • Convolutional neural networks for sentence classification
    • Yoon Kim. 2014. Convolutional neural networks for sentence classification. In Proc. EMNLP.
    • (2014) Proc. EMNLP.
    • Kim, Y.1
  • 18
    • 84959248509 scopus 로고    scopus 로고
    • Auto-encoding variational bayes
    • Diederik P. Kingma and Max Welling. 2015. Auto-encoding variational bayes. In Proc. ICLR.
    • (2015) Proc. ICLR.
    • Kingma, D.P.1    Welling, M.2
  • 21
    • 84919829999 scopus 로고    scopus 로고
    • Distributed representations of sentences and documents
    • Quoc V. Le and Tomáš Mikolov. 2014. Distributed representations of sentences and documents. In Proc. ICML.
    • (2014) Proc. ICML.
    • Le, Q.V.1    Mikolov, T.2
  • 22
    • 84943794827 scopus 로고    scopus 로고
    • A hierarchical neural autoencoder for paragraphs and documents
    • Jiwei Li, Minh-Thang Luong, and Dan Jurafsky. 2015a. A hierarchical neural autoencoder for paragraphs and documents. In Proc. ACL.
    • (2015) Proc. ACL.
    • Li, J.1    Luong, M.-T.2    Jurafsky, D.3
  • 23
    • 1542370072 scopus 로고    scopus 로고
    • Learning question classifiers
    • Xin Li and Dan Roth. 2002. Learning question classifiers. In Proc. COLING.
    • (2002) Proc. COLING.
    • Li, X.1    Roth, D.2
  • 24
    • 84970016114 scopus 로고    scopus 로고
    • Generative moment matching networks
    • Yujia Li, Kevin Swersky, and Richard Zemel. 2015b. Generative moment matching networks. In Proc. ICML.
    • (2015) Proc. ICML.
    • Li, Y.1    Swersky, K.2    Zemel, R.3
  • 25
    • 85083950512 scopus 로고    scopus 로고
    • Deep captioning with multimodal recurrent neural networks (m-RNN)
    • Junhua Mao, Wei Xu, Yi Yang, Jiang Wang, Zhiheng Huang, and Alan Yuille. 2015. Deep captioning with multimodal recurrent neural networks (m-RNN). In Proc. ICLR.
    • (2015) Proc. ICLR.
    • Mao, J.1    Xu, W.2    Yang, Y.3    Wang, J.4    Huang, Z.5    Yuille, A.6
  • 26
    • 34249852033 scopus 로고
    • Building a large annotated corpus of english: The penn treebank
    • Mitchell P Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. 1993. Building a large annotated corpus of English: The Penn Treebank. Computational linguistics 19(2):313–330.
    • (1993) Computational Linguistics , vol.19 , Issue.2 , pp. 313-330
    • Marcus, M.P.1    Marcinkiewicz, M.A.2    Santorini, B.3
  • 27
    • 84998953749 scopus 로고    scopus 로고
    • Neural variational inference for text processing
    • Yishu Miao, Lei Yu, and Phil Blunsom. 2016. Neural variational inference for text processing. In Proc. ICML.
    • (2016) Proc. ICML.
    • Miao, Y.1    Yu, L.2    Blunsom, P.3
  • 29
    • 85083952074 scopus 로고    scopus 로고
    • Techniques for learning binary stochastic feedforward neural networks
    • Tapani Raiko, Mathias Berglund, Guillaume Alain, and Laurent Dinh. 2015. Techniques for learning binary stochastic feedforward neural networks. In Proc. ICLR.
    • (2015) Proc. ICLR.
    • Raiko, T.1    Berglund, M.2    Alain, G.3    Dinh, L.4
  • 30
    • 84969776493 scopus 로고    scopus 로고
    • Variational inference with normalizing flows
    • Danilo J. Rezende and Shakir Mohamed. 2015. Variational inference with normalizing flows. In Proc. ICML.
    • (2015) Proc. ICML.
    • Rezende, D.J.1    Mohamed, S.2
  • 31
    • 84919796093 scopus 로고    scopus 로고
    • Stochastic backpropagation and approximate inference in deep generative models
    • Danilo J. Rezende, Shakir Mohamed, and Daan Wierstra. 2014. Stochastic backpropagation and approximate inference in deep generative models. In Proc. ICML.
    • (2014) Proc. ICML.
    • Rezende, D.J.1    Mohamed, S.2    Wierstra, D.3
  • 32
    • 84869201485 scopus 로고    scopus 로고
    • Practical bayesian optimization of machine learning algorithms
    • Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. 2012. Practical Bayesian optimization of machine learning algorithms. In Proc. NIPS.
    • (2012) Proc. NIPS.
    • Snoek, J.1    Larochelle, H.2    Adams, R.P.3
  • 33
    • 85162476102 scopus 로고    scopus 로고
    • Dynamic pooling and unfolding recursive autoencoders for paraphrase detection
    • Richard Socher, Eric H Huang, Jeffrey Pennin, Christopher D. Manning, and Andrew Y. Ng. 2011. Dynamic pooling and unfolding recursive autoencoders for paraphrase detection. In Proc. NIPS.
    • (2011) Proc. NIPS.
    • Socher, R.1    Huang, E.H.2    Pennin, J.3    Manning, C.D.4    Ng, A.Y.5
  • 34
    • 84904163933 scopus 로고    scopus 로고
    • Dropout: A simple way to prevent neural networks from overfitting
    • Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. 2014. Dropout: A simple way to prevent neural networks from overfitting. JMLR 15(1):1929–1958.
    • (2014) JMLR , vol.15 , Issue.1 , pp. 1929-1958
    • Srivastava, N.1    Hinton, G.2    Krizhevsky, A.3    Sutskever, I.4    Salakhutdinov, R.5
  • 36
    • 84928547704 scopus 로고    scopus 로고
    • Sequence to sequence learning with neural networks
    • Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to sequence learning with neural networks. In Proc. NIPS.
    • (2014) Proc. NIPS.
    • Sutskever, I.1    Vinyals, O.2    Le, Q.V.3
  • 37
    • 84965111399 scopus 로고    scopus 로고
    • Generative image modeling using spatial LSTMs
    • Lucas Theis and Matthias Bethge. 2015. Generative image modeling using spatial LSTMs. In Proc. NIPS.
    • (2015) Proc. NIPS.
    • Theis, L.1    Bethge, M.2
  • 38
  • 39
    • 84949766261 scopus 로고    scopus 로고
    • Self-adaptive hierarchical sentence model
    • Han Zhao, Zhengdong Lu, and Pascal Poupart. 2015. Self-adaptive hierarchical sentence model. In Proc. IJCAI.
    • (2015) Proc. IJCAI.
    • Zhao, H.1    Lu, Z.2    Poupart, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.