-
1
-
-
84900420574
-
Expanding and reprogramming the genetic code of cells and animals
-
Chin JW (2014) Expanding and reprogramming the genetic code of cells and animals. Annu Rev Biochem 83:379–408.
-
(2014)
Annu Rev Biochem
, vol.83
, pp. 379-408
-
-
Chin, J.W.1
-
2
-
-
84915756442
-
Designing logical codon reassignment–Expanding the chemistry in biology
-
Dumas A, Lercher L, Spicer CD, Davis BG (2015) Designing logical codon reassignment–Expanding the chemistry in biology. Chem Sci (Camb) 6:50–69.
-
(2015)
Chem Sci (Camb)
, vol.6
, pp. 50-69
-
-
Dumas, A.1
Lercher, L.2
Spicer, C.D.3
Davis, B.G.4
-
3
-
-
84923112573
-
Biocontainment of genetically modified organisms by synthetic protein design
-
Mandell DJ, et al. (2015) Biocontainment of genetically modified organisms by synthetic protein design. Nature 518:55–60.
-
(2015)
Nature
, vol.518
, pp. 55-60
-
-
Mandell, D.J.1
-
4
-
-
84922595374
-
Recoded organisms engineered to depend on synthetic amino acids
-
Rovner AJ, et al. (2015) Recoded organisms engineered to depend on synthetic amino acids. Nature 518:89–93.
-
(2015)
Nature
, vol.518
, pp. 89-93
-
-
Rovner, A.J.1
-
5
-
-
84983523350
-
Design, synthesis, and testing toward a 57-codon genome
-
Ostrov N, et al. (2016) Design, synthesis, and testing toward a 57-codon genome. Science 353:819–822.
-
(2016)
Science
, vol.353
, pp. 819-822
-
-
Ostrov, N.1
-
6
-
-
84885791219
-
Genomically recoded organisms expand biological functions
-
Lajoie MJ, et al. (2013) Genomically recoded organisms expand biological functions. Science 342:357–360.
-
(2013)
Science
, vol.342
, pp. 357-360
-
-
Lajoie, M.J.1
-
7
-
-
84978879822
-
Genomic recoding broadly obstructs the propagation of horizontally transferred genetic elements
-
Ma NJ, Isaacs FJ (2016) Genomic recoding broadly obstructs the propagation of horizontally transferred genetic elements. Cell Syst 3:199–207.
-
(2016)
Cell Syst
, vol.3
, pp. 199-207
-
-
Ma, N.J.1
Isaacs, F.J.2
-
8
-
-
11144357971
-
Aminoacyl-tRNAs: Setting the limits of the genetic code
-
Ibba M, Söll D (2004) Aminoacyl-tRNAs: Setting the limits of the genetic code. Genes Dev 18:731–738.
-
(2004)
Genes Dev
, vol.18
, pp. 731-738
-
-
Ibba, M.1
Söll, D.2
-
9
-
-
51649087417
-
Transplantation of a tyrosine editing domain into a tyrosyl-tRNA synthetase variant enhances its specificity for a tyrosine analog
-
Oki K, Sakamoto K, Kobayashi T, Sasaki HM, Yokoyama S (2008) Transplantation of a tyrosine editing domain into a tyrosyl-tRNA synthetase variant enhances its specificity for a tyrosine analog. Proc Natl Acad Sci USA 105:13298–13303.
-
(2008)
Proc Natl Acad Sci USA
, vol.105
, pp. 13298-13303
-
-
Oki, K.1
Sakamoto, K.2
Kobayashi, T.3
Sasaki, H.M.4
Yokoyama, S.5
-
10
-
-
73149104141
-
An enhanced system for unnatural amino acid mutagenesis in E. Coli
-
Young TS, Ahmad I, Yin JA, Schultz PG (2010) An enhanced system for unnatural amino acid mutagenesis in E. coli. J Mol Biol 395:361–374.
-
(2010)
J Mol Biol
, vol.395
, pp. 361-374
-
-
Young, T.S.1
Ahmad, I.2
Yin, J.A.3
Schultz, P.G.4
-
11
-
-
79952140370
-
Importance of single molecular determinants in the fidelity of expanded genetic codes
-
Antonczak AK, et al. (2011) Importance of single molecular determinants in the fidelity of expanded genetic codes. Proc Natl Acad Sci USA 108:1320–1325.
-
(2011)
Proc Natl Acad Sci USA
, vol.108
, pp. 1320-1325
-
-
Antonczak, A.K.1
-
12
-
-
84859498501
-
Performance analysis of orthogonal pairs designed for an expanded eukaryotic genetic code
-
Nehring S, Budisa N, Wiltschi B (2012) Performance analysis of orthogonal pairs designed for an expanded eukaryotic genetic code. PLoS One 7:e31992.
-
(2012)
PLoS One
, vol.7
-
-
Nehring, S.1
Budisa, N.2
Wiltschi, B.3
-
13
-
-
85013083067
-
Rapid and inexpensive evaluation of nonstandard amino acid incorporation in Escherichia coli
-
Monk JW, et al. (2017) Rapid and inexpensive evaluation of nonstandard amino acid incorporation in Escherichia coli. ACS Synth Biol 6:45–54.
-
(2017)
ACS Synth Biol
, vol.6
, pp. 45-54
-
-
Monk, J.W.1
-
14
-
-
84906056183
-
Exploring the substrate range of wild-type aminoacyl-tRNA synthetases
-
Fan C, Ho JML, Chirathivat N, Söll D, Wang Y-S (2014) Exploring the substrate range of wild-type aminoacyl-tRNA synthetases. ChemBioChem 15:1805–1809.
-
(2014)
ChemBioChem
, vol.15
, pp. 1805-1809
-
-
Fan, C.1
Ho, J.M.L.2
Chirathivat, N.3
Söll, D.4
Wang, Y.-S.5
-
15
-
-
84912074071
-
Polyspecific pyrrolysyl-tRNA synthetases from directed evolution
-
Guo L-T, et al. (2014) Polyspecific pyrrolysyl-tRNA synthetases from directed evolution. Proc Natl Acad Sci USA 111:16724–16729.
-
(2014)
Proc Natl Acad Sci USA
, vol.111
, pp. 16724-16729
-
-
Guo, L.-T.1
-
16
-
-
79951644876
-
The de novo engineering of pyrrolysyl-tRNA synthetase for genetic incorporation of L-phenylalanine and its derivatives
-
Wang Y-S, et al. (2011) The de novo engineering of pyrrolysyl-tRNA synthetase for genetic incorporation of L-phenylalanine and its derivatives. Mol Biosyst 7:714–717.
-
(2011)
Mol Biosyst
, vol.7
, pp. 714-717
-
-
Wang, Y.-S.1
-
17
-
-
37349066767
-
A genetically encoded bidentate, metal-binding amino acid
-
Xie J, Liu W, Schultz PG (2007) A genetically encoded bidentate, metal-binding amino acid. Angew Chem Int Ed Engl 46:9239–9242.
-
(2007)
Angew Chem Int Ed Engl
, vol.46
, pp. 9239-9242
-
-
Xie, J.1
Liu, W.2
Schultz, P.G.3
-
18
-
-
0023003380
-
In vivo half-life of a protein is a function of its amino-terminal residue
-
Bachmair A, Finley D, Varshavsky A (1986) In vivo half-life of a protein is a function of its amino-terminal residue. Science 234:179–186.
-
(1986)
Science
, vol.234
, pp. 179-186
-
-
Bachmair, A.1
Finley, D.2
Varshavsky, A.3
-
21
-
-
85021091827
-
Targeting the N terminus for site-selective protein modification
-
Rosen CB, Francis MB (2017) Targeting the N terminus for site-selective protein modification. Nat Chem Biol 13:697–705.
-
(2017)
Nat Chem Biol
, vol.13
, pp. 697-705
-
-
Rosen, C.B.1
Francis, M.B.2
-
22
-
-
80054854782
-
RF1 knockout allows ribosomal incorporation of unnatural amino acids at multiple sites
-
Johnson DBF, et al. (2011) RF1 knockout allows ribosomal incorporation of unnatural amino acids at multiple sites. Nat Chem Biol 7:779–786.
-
(2011)
Nat Chem Biol
, vol.7
, pp. 779-786
-
-
Johnson, D.B.F.1
-
23
-
-
84868088312
-
Near-cognate suppression of amber, opal and quadruplet codons competes with aminoacyl-tRNAPyl for genetic code expansion
-
O’Donoghue P, et al. (2012) Near-cognate suppression of amber, opal and quadruplet codons competes with aminoacyl-tRNAPyl for genetic code expansion. FEBS Lett 586: 3931–3937.
-
(2012)
FEBS Lett
, vol.586
, pp. 3931-3937
-
-
O’Donoghue, P.1
-
24
-
-
33847226240
-
ClpS modulates but is not essential for bacterial N-end rule degradation
-
Wang KH, Sauer RT, Baker TA (2007) ClpS modulates but is not essential for bacterial N-end rule degradation. Genes Dev 21:403–408.
-
(2007)
Genes Dev
, vol.21
, pp. 403-408
-
-
Wang, K.H.1
Sauer, R.T.2
Baker, T.A.3
-
25
-
-
54049111071
-
Tuning the strength of a bacterial N-end rule degradation signal
-
Wang KH, Oakes ESC, Sauer RT, Baker TA (2008) Tuning the strength of a bacterial N-end rule degradation signal. J Biol Chem 283:24600–24607.
-
(2008)
J Biol Chem
, vol.283
, pp. 24600-24607
-
-
Wang, K.H.1
Oakes, E.S.C.2
Sauer, R.T.3
Baker, T.A.4
-
26
-
-
84949796862
-
Evolution of translation machinery in recoded bacteria enables multi-site incorporation of nonstandard amino acids
-
Amiram M, et al. (2015) Evolution of translation machinery in recoded bacteria enables multi-site incorporation of nonstandard amino acids. Nat Biotechnol 33:1272–1279.
-
(2015)
Nat Biotechnol
, vol.33
, pp. 1272-1279
-
-
Amiram, M.1
-
27
-
-
84855908601
-
Quantifying plasmid copy number to investigate plasmid dosage effects associated with directed protein evolution
-
Million-Weaver S, Alexander DL, Allen JM, Camps M (2012) Quantifying plasmid copy number to investigate plasmid dosage effects associated with directed protein evolution. Methods Mol Biol 834:33–48.
-
(2012)
Methods Mol Biol
, vol.834
, pp. 33-48
-
-
Million-Weaver, S.1
Alexander, D.L.2
Allen, J.M.3
Camps, M.4
-
28
-
-
0025991456
-
Cloning and functional analysis of the ubiquitin-specific protease gene UBP1 of Saccharomyces cerevisiae
-
Tobias JW, Varshavsky A (1991) Cloning and functional analysis of the ubiquitin-specific protease gene UBP1 of Saccharomyces cerevisiae. J Biol Chem 266:12021–12028.
-
(1991)
J Biol Chem
, vol.266
, pp. 12021-12028
-
-
Tobias, J.W.1
Varshavsky, A.2
-
29
-
-
26844527708
-
Expression of yeast deubiquitination enzyme UBP1 analogues in E. Coli
-
Wojtowicz A, et al. (2005) Expression of yeast deubiquitination enzyme UBP1 analogues in E. coli. Microb Cell Fact 4:17.
-
(2005)
Microb Cell Fact
, vol.4
, pp. 17
-
-
Wojtowicz, A.1
-
30
-
-
79960451307
-
The ClpS adaptor mediates staged delivery of N-end rule substrates to the AAA+ ClpAP protease
-
Román-Hernández G, Hou JY, Grant RA, Sauer RT, Baker TA (2011) The ClpS adaptor mediates staged delivery of N-end rule substrates to the AAA+ ClpAP protease. Mol Cell 43:217–228.
-
(2011)
Mol Cell
, vol.43
, pp. 217-228
-
-
Román-Hernández, G.1
Hou, J.Y.2
Grant, R.A.3
Sauer, R.T.4
Baker, T.A.5
-
31
-
-
0036210995
-
ClpS, a substrate modulator of the ClpAP machine
-
Dougan DA, Reid BG, Horwich AL, Bukau B (2002) ClpS, a substrate modulator of the ClpAP machine. Mol Cell 9:673–683.
-
(2002)
Mol Cell
, vol.9
, pp. 673-683
-
-
Dougan, D.A.1
Reid, B.G.2
Horwich, A.L.3
Bukau, B.4
-
32
-
-
55049110221
-
The molecular basis of N-end rule recognition
-
Wang KH, Roman-Hernandez G, Grant RA, Sauer RT, Baker TA (2008) The molecular basis of N-end rule recognition. Mol Cell 32:406–414.
-
(2008)
Mol Cell
, vol.32
, pp. 406-414
-
-
Wang, K.H.1
Roman-Hernandez, G.2
Grant, R.A.3
Sauer, R.T.4
Baker, T.A.5
-
34
-
-
0035812828
-
Uniform binding of aminoacyl-tRNAs to elongation factor Tu by thermodynamic compensation
-
LaRiviere FJ, Wolfson AD, Uhlenbeck OC (2001) Uniform binding of aminoacyl-tRNAs to elongation factor Tu by thermodynamic compensation. Science 294:165–168.
-
(2001)
Science
, vol.294
, pp. 165-168
-
-
LaRiviere, F.J.1
Wolfson, A.D.2
Uhlenbeck, O.C.3
-
35
-
-
60849128493
-
Understanding the sequence specificity of tRNA binding to elongation factor Tu using tRNA mutagenesis
-
Schrader JM, Chapman SJ, Uhlenbeck OC (2009) Understanding the sequence specificity of tRNA binding to elongation factor Tu using tRNA mutagenesis. J Mol Biol 386:1255–1264.
-
(2009)
J Mol Biol
, vol.386
, pp. 1255-1264
-
-
Schrader, J.M.1
Chapman, S.J.2
Uhlenbeck, O.C.3
-
36
-
-
0035377246
-
Dual system to reinforce biological containment of recombinant bacteria designed for rhizoremediation
-
Ronchel MC, Ramos JL (2001) Dual system to reinforce biological containment of recombinant bacteria designed for rhizoremediation. Appl Environ Microbiol 67:2649–2656.
-
(2001)
Appl Environ Microbiol
, vol.67
, pp. 2649-2656
-
-
Ronchel, M.C.1
Ramos, J.L.2
-
37
-
-
61449233980
-
A fluorescent, genetically engineered microorganism that degrades organophosphates and commits suicide when required
-
Li Q, Wu Y-J (2009) A fluorescent, genetically engineered microorganism that degrades organophosphates and commits suicide when required. Appl Microbiol Biotechnol 82:749–756.
-
(2009)
Appl Microbiol Biotechnol
, vol.82
, pp. 749-756
-
-
Li, Q.1
Wu, Y.-J.2
-
38
-
-
79957929747
-
Characterization of a synthetic bacterial self-destruction device for programmed cell death and for recombinant proteins release
-
Pasotti L, Zucca S, Lupotto M, Cusella De Angelis MG, Magni P (2011) Characterization of a synthetic bacterial self-destruction device for programmed cell death and for recombinant proteins release. J Biol Eng 5:8.
-
(2011)
J Biol Eng
, vol.5
, pp. 8
-
-
Pasotti, L.1
Zucca, S.2
Lupotto, M.3
De Angelis, C.M.G.4
Magni, P.5
-
39
-
-
84925610163
-
GeneGuard: A modular plasmid system designed for biosafety
-
Wright O, Delmans M, Stan G-B, Ellis T (2015) GeneGuard: A modular plasmid system designed for biosafety. ACS Synth Biol 4:307–316.
-
(2015)
ACS Synth Biol
, vol.4
, pp. 307-316
-
-
Wright, O.1
Delmans, M.2
Stan, G.-B.3
Ellis, T.4
-
40
-
-
84955192252
-
Deadman’ and ‘Passcode’ microbial kill switches for bacterial containment
-
Chan CTY, Lee JW, Cameron DE, Bashor CJ, Collins JJ (2016) ‘Deadman’ and ‘Passcode’ microbial kill switches for bacterial containment. Nat Chem Biol 12:82–86.
-
(2016)
Nat Chem Biol
, vol.12
, pp. 82-86
-
-
Chan, C.T.Y.1
Lee, J.W.2
Cameron, D.E.3
Bashor, C.J.4
Collins, J.J.5
-
41
-
-
70349320611
-
Discovery of Escherichia coli methionyl-tRNA synthetase mutants for efficient labeling of proteins with azidonorleucine in vivo
-
Tanrikulu IC, Schmitt E, Mechulam Y, Goddard WA, 3rd, Tirrell DA (2009) Discovery of Escherichia coli methionyl-tRNA synthetase mutants for efficient labeling of proteins with azidonorleucine in vivo. Proc Natl Acad Sci USA 106:15285–15290.
-
(2009)
Proc Natl Acad Sci USA
, vol.106
, pp. 15285-15290
-
-
Tanrikulu, I.C.1
Schmitt, E.2
Mechulam, Y.3
Goddard, W.A.4
Tirrell, D.A.5
-
42
-
-
84892823522
-
Experimental challenges of sense codon reassignment: An innovative approach to genetic code expansion
-
Krishnakumar R, Ling J (2014) Experimental challenges of sense codon reassignment: An innovative approach to genetic code expansion. FEBS Lett 588:383–388.
-
(2014)
FEBS Lett
, vol.588
, pp. 383-388
-
-
Krishnakumar, R.1
Ling, J.2
-
43
-
-
84951731246
-
Evaluating sense codon reassignment with a simple fluorescence screen
-
Biddle W, Schmitt MA, Fisk JD (2015) Evaluating sense codon reassignment with a simple fluorescence screen. Biochemistry 54:7355–7364.
-
(2015)
Biochemistry
, vol.54
, pp. 7355-7364
-
-
Biddle, W.1
Schmitt, M.A.2
Fisk, J.D.3
-
44
-
-
84868135871
-
A sensitive green fluorescent protein biomarker of N-glycosylation site occupancy
-
Losfeld M-E, Soncin F, Ng BG, Singec I, Freeze HH (2012) A sensitive green fluorescent protein biomarker of N-glycosylation site occupancy. FASEB J 26:4210–4217.
-
(2012)
FASEB J
, vol.26
, pp. 4210-4217
-
-
Losfeld, M.-E.1
Soncin, F.2
Ng, B.G.3
Singec, I.4
Freeze, H.H.5
-
45
-
-
84894445908
-
Production of site-specific antibody-drug conjugates using optimized non-natural amino acids in a cell-free expression system
-
Zimmerman ES, et al. (2014) Production of site-specific antibody-drug conjugates using optimized non-natural amino acids in a cell-free expression system. Bioconjug Chem 25: 351–361.
-
(2014)
Bioconjug Chem
, vol.25
, pp. 351-361
-
-
Zimmerman, E.S.1
-
46
-
-
85013793402
-
Coupling genetic code expansion and metabolic engineering for synthetic cells
-
Völler J-S, Budisa N (2017) Coupling genetic code expansion and metabolic engineering for synthetic cells. Curr Opin Biotechnol 48:1–7.
-
(2017)
Curr Opin Biotechnol
, vol.48
, pp. 1-7
-
-
Völler, J.-S.1
Budisa, N.2
-
47
-
-
85017885362
-
An N-end rule pathway that recognizes proline and destroys gluconeogenic enzymes
-
Chen S-J, Wu X, Wadas B, Oh J-H, Varshavsky A (2017) An N-end rule pathway that recognizes proline and destroys gluconeogenic enzymes. Science 355:eaal3655.
-
(2017)
Science
, vol.355
, pp. eaal3655
-
-
Chen, S.-J.1
Wu, X.2
Wadas, B.3
Oh, J.-H.4
Varshavsky, A.5
-
48
-
-
3042672710
-
Removal of N-terminal methionine from recombinant proteins by engineered E. Coli methionine aminopeptidase
-
Liao Y-D, Jeng J-C, Wang C-F, Wang S-C, Chang S-T (2004) Removal of N-terminal methionine from recombinant proteins by engineered E. coli methionine aminopeptidase. Protein Sci 13:1802–1810.
-
(2004)
Protein Sci
, vol.13
, pp. 1802-1810
-
-
Liao, Y.-D.1
Jeng, J.-C.2
Wang, C.-F.3
Wang, S.-C.4
Chang, S.-T.5
-
49
-
-
33644786997
-
Aminoacyl-transferases and the N-end rule pathway of prokaryotic/ eukaryotic specificity in a human pathogen
-
Graciet E, et al. (2006) Aminoacyl-transferases and the N-end rule pathway of prokaryotic/ eukaryotic specificity in a human pathogen. Proc Natl Acad Sci USA 103:3078–3083.
-
(2006)
Proc Natl Acad Sci USA
, vol.103
, pp. 3078-3083
-
-
Graciet, E.1
-
50
-
-
0037422608
-
Addition of the keto functional group to the genetic code of Escherichia coli
-
Wang L, Zhang Z, Brock A, Schultz PG (2003) Addition of the keto functional group to the genetic code of Escherichia coli. Proc Natl Acad Sci USA 100:56–61.
-
(2003)
Proc Natl Acad Sci USA
, vol.100
, pp. 56-61
-
-
Wang, L.1
Zhang, Z.2
Brock, A.3
Schultz, P.G.4
-
51
-
-
0037036727
-
Addition of p-azido-L-phenylalanine to the genetic code of Escherichia coli
-
Chin JW, et al. (2002) Addition of p-azido-L-phenylalanine to the genetic code of Escherichia coli. J Am Chem Soc 124:9026–9027.
-
(2002)
J Am Chem Soc
, vol.124
, pp. 9026-9027
-
-
Chin, J.W.1
-
52
-
-
0037028931
-
Adding L-3-(2-Naphthyl)alanine to the genetic code of E. Coli
-
Wang L, Brock A, Schultz PG (2002) Adding L-3-(2-Naphthyl)alanine to the genetic code of E. coli. J Am Chem Soc 124:1836–1837.
-
(2002)
J Am Chem Soc
, vol.124
, pp. 1836-1837
-
-
Wang, L.1
Brock, A.2
Schultz, P.G.3
-
53
-
-
67349270900
-
Enzymatic assembly of DNA molecules up to several hundred kilobases
-
Gibson DG, et al. (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345.
-
(2009)
Nat Methods
, vol.6
, pp. 343-345
-
-
Gibson, D.G.1
-
54
-
-
78049389374
-
Rational design of an orthogonal tryptophanyl nonsense suppressor tRNA
-
Hughes RA, Ellington AD (2010) Rational design of an orthogonal tryptophanyl nonsense suppressor tRNA. Nucleic Acids Res 38:6813–6830.
-
(2010)
Nucleic Acids Res
, vol.38
, pp. 6813-6830
-
-
Hughes, R.A.1
Ellington, A.D.2
-
55
-
-
84892184252
-
Directed evolution of genetic parts and circuits by compartmentalized partnered replication
-
Ellefson JW, et al. (2014) Directed evolution of genetic parts and circuits by compartmentalized partnered replication. Nat Biotechnol 32:97–101.
-
(2014)
Nat Biotechnol
, vol.32
, pp. 97-101
-
-
Ellefson, J.W.1
-
56
-
-
70349964350
-
Automated design of synthetic ribosome binding sites to control protein expression
-
Salis HM, Mirsky EA, Voigt CA (2009) Automated design of synthetic ribosome binding sites to control protein expression. Nat Biotechnol 27:946–950.
-
(2009)
Nat Biotechnol
, vol.27
, pp. 946-950
-
-
Salis, H.M.1
Mirsky, E.A.2
Voigt, C.A.3
-
57
-
-
84906330621
-
Synthesis and accumulation of aromatic aldehydes in an engineered strain of Escherichia coli
-
Kunjapur AM, Tarasova Y, Prather KLJ (2014) Synthesis and accumulation of aromatic aldehydes in an engineered strain of Escherichia coli. J Am Chem Soc 136: 11644–11654.
-
(2014)
J Am Chem Soc
, vol.136
, pp. 11644-11654
-
-
Kunjapur, A.M.1
Tarasova, Y.2
Prather, K.L.J.3
|