-
2
-
-
84905175079
-
Energy metabolism in the liver
-
pmid: 24692138
-
L. Rui, Energy metabolism in the liver. Compr. Physiol. 4, 177–197 (2014). doi: 10.1002/cphy.c130024; pmid: 24692138
-
(2014)
Compr. Physiol
, vol.4
, pp. 177-197
-
-
Rui, L.1
-
3
-
-
0029844569
-
Isolation of degradation-deficient mutants defective in the targeting of fructose-1,6bisphosphatase into the vacuole for degradation in Saccharomyces cerevisiae
-
pmid: 8844145
-
M. Hoffman, H. L. Chiang, Isolation of degradation-deficient mutants defective in the targeting of fructose-1,6bisphosphatase into the vacuole for degradation in Saccharomyces cerevisiae. Genetics 143, 1555–1566 (1996). pmid: 8844145
-
(1996)
Genetics
, vol.143
, pp. 1555-1566
-
-
Hoffman, M.1
Chiang, H. L.2
-
4
-
-
0032566737
-
Proteins of newly isolated mutants and the amino-terminal proline are essential for ubiquitin-proteasome-catalyzed catabolite degradation of fructose-1,6bisphosphatase of Saccharomyces cerevisiae
-
pmid: 9737955
-
M. Hämmerle et al., Proteins of newly isolated mutants and the amino-terminal proline are essential for ubiquitin-proteasome-catalyzed catabolite degradation of fructose-1,6bisphosphatase of Saccharomyces cerevisiae. J. Biol. Chem. 273, 25000–25005 (1998). doi: 10.1074/jbc.273.39.25000; pmid: 9737955
-
(1998)
J. Biol. Chem
, vol.273
, pp. 25000-25005
-
-
Hämmerle, M.1
-
5
-
-
84864102038
-
Exploring the topology of the Gid complex, the E3 ubiquitin ligase involved in catabolite-induced degradation of gluconeogenic enzymes
-
pmid: 22645139
-
R. Menssen et al., Exploring the topology of the Gid complex, the E3 ubiquitin ligase involved in catabolite-induced degradation of gluconeogenic enzymes. J. Biol. Chem. 287, 25602–25614 (2012). doi: 10.1074/jbc.M112.363762; pmid: 22645139
-
(2012)
J. Biol. Chem
, vol.287
, pp. 25602-25614
-
-
Menssen, R.1
-
6
-
-
54249111115
-
The yeast GID complex, a novel ubiquitin ligase (E3) involved in the regulation of carbohydrate metabolism
-
pmid: 18508925
-
O. Santt et al., The yeast GID complex, a novel ubiquitin ligase (E3) involved in the regulation of carbohydrate metabolism. Mol. Biol. Cell 19, 3323–3333 (2008). doi: 10.1091/mbc.E08-03-0328; pmid: 18508925
-
(2008)
Mol. Biol. Cell
, vol.19
, pp. 3323-3333
-
-
Santt, O.1
-
7
-
-
0038709277
-
Catabolite degradation of fructose-1,6bisphosphatase in the yeast Saccharomyces cerevisiae: A genome-wide screen identifies eight novel GID genes and indicates the existence of two degradation pathways
-
pmid: 12686616
-
J. Regelmann et al., Catabolite degradation of fructose-1,6bisphosphatase in the yeast Saccharomyces cerevisiae: A genome-wide screen identifies eight novel GID genes and indicates the existence of two degradation pathways. Mol. Biol. Cell 14, 1652–1663 (2003). doi: 10.1091/mbc.E02-08-0456; pmid: 12686616
-
(2003)
Mol. Biol. Cell
, vol.14
, pp. 1652-1663
-
-
Regelmann, J.1
-
8
-
-
84860526844
-
Vacuole import and degradation pathway: Insights into a specialized autophagy pathway
-
pmid: 22125667
-
A. A. Alibhoy, H. L. Chiang, Vacuole import and degradation pathway: Insights into a specialized autophagy pathway. World J. Biol. Chem. 2, 239–245 (2011). doi: 10.4331/wjbc.v2.i11.239; pmid: 22125667
-
(2011)
World J. Biol. Chem
, vol.2
, pp. 239-245
-
-
Alibhoy, A. A.1
Chiang, H. L.2
-
9
-
-
84894031918
-
Fructose-1,6-bisphosphatase, malate dehydrogenase, isocitrate lyase, phosphoenolpyruvate carboxykinase, glyceraldehyde-3-phosphate dehydrogenase, and cyclophilin A are secreted in Saccharomyces cerevisiae grown in low glucose
-
pmid: 24563717
-
B. J. Giardina, H. L. Chiang, Fructose-1,6-bisphosphatase, malate dehydrogenase, isocitrate lyase, phosphoenolpyruvate carboxykinase, glyceraldehyde-3-phosphate dehydrogenase, and cyclophilin A are secreted in Saccharomyces cerevisiae grown in low glucose. Commun. Integr. Biol. 6, e27216 (2013). doi: 10.4161/cib.27216; pmid: 24563717
-
(2013)
Commun. Integr. Biol
, vol.6
, pp. e27216
-
-
Giardina, B. J.1
Chiang, H. L.2
-
10
-
-
84856446278
-
Vid30 is required for the association of Vid vesicles and actin patches in the vacuole import and degradation pathway
-
pmid: 22082961
-
A. A. Alibhoy, B. J. Giardina, D. D. Dunton, H. L. Chiang, Vid30 is required for the association of Vid vesicles and actin patches in the vacuole import and degradation pathway. Autophagy 8, 29–46 (2012). doi: 10.4161/auto.8.1.18104; pmid: 22082961
-
(2012)
Autophagy
, vol.8
, pp. 29-46
-
-
Alibhoy, A. A.1
Giardina, B. J.2
Dunton, D. D.3
Chiang, H. L.4
-
11
-
-
54449096709
-
The vacuolar import and degradation pathway merges with the endocytic pathway to deliver fructose-1,6-bisphosphatase to the vacuole for degradation
-
pmid: 18660504
-
C. R. Brown, A. B. Wolfe, D. Cui, H. L. Chiang, The vacuolar import and degradation pathway merges with the endocytic pathway to deliver fructose-1,6-bisphosphatase to the vacuole for degradation. J. Biol. Chem. 283, 26116–26127 (2008). doi: 10.1074/jbc.M709922200; pmid: 18660504
-
(2008)
J. Biol. Chem
, vol.283
, pp. 26116-26127
-
-
Brown, C. R.1
Wolfe, A. B.2
Cui, D.3
Chiang, H. L.4
-
12
-
-
0026788169
-
Glucose-induced degradation of the MDH2 isozyme of malate dehydrogenase in yeast
-
pmid: 1324938
-
K. I. Minard, L. McAlister-Henn, Glucose-induced degradation of the MDH2 isozyme of malate dehydrogenase in yeast. J. Biol. Chem. 267, 17458–17464 (1992). pmid: 1324938
-
(1992)
J. Biol. Chem
, vol.267
, pp. 17458-17464
-
-
Minard, K. I.1
McAlister-Henn, L.2
-
13
-
-
84907272714
-
Fructose-1,6-bisphosphatase opposes renal carcinoma progression
-
pmid: 25043030
-
B. Li et al., Fructose-1,6-bisphosphatase opposes renal carcinoma progression. Nature 513, 251–255 (2014). doi: 10.1038/nature13557; pmid: 25043030
-
(2014)
Nature
, vol.513
, pp. 251-255
-
-
Li, B.1
-
14
-
-
84947758920
-
Cancer cells hijack gluconeogenic enzymes to fuel cell growth
-
pmid: 26590709
-
E. Balsa-Martinez, P. Puigserver, Cancer cells hijack gluconeogenic enzymes to fuel cell growth. Mol. Cell 60, 509–511 (2015). doi: 10.1016/j.molcel.2015.11.005; pmid: 26590709
-
(2015)
Mol. Cell
, vol.60
, pp. 509-511
-
-
Balsa-Martinez, E.1
Puigserver, P.2
-
15
-
-
34250674456
-
RanBPM, Muskelin, p48EMLP, p44CTLH, and the armadillo-repeat proteins ARMC8a and ARMC8b are components of the CTLH complex
-
pmid: 17467196
-
N. Kobayashi et al., RanBPM, Muskelin, p48EMLP, p44CTLH, and the armadillo-repeat proteins ARMC8a and ARMC8b are components of the CTLH complex. Gene 396, 236–247 (2007). doi: 10.1016/j.gene.2007.02.032; pmid: 17467196
-
(2007)
Gene
, vol.396
, pp. 236-247
-
-
Kobayashi, N.1
-
16
-
-
84885466174
-
Molecular phylogeny of a RING E3 ubiquitin ligase, conserved in eukaryotic cells and dominated by homologous components, the muskelin/ RanBPM/CTLH complex
-
pmid: 24143168
-
O. Francis, F. Han, J. C. Adams, Molecular phylogeny of a RING E3 ubiquitin ligase, conserved in eukaryotic cells and dominated by homologous components, the muskelin/ RanBPM/CTLH complex. PLOS ONE 8, e75217 (2013). doi: 10.1371/journal.pone.0075217; pmid: 24143168
-
(2013)
PLOS ONE
, vol.8
, pp. e75217
-
-
Francis, O.1
Han, F.2
Adams, J. C.3
-
17
-
-
84925859733
-
RMND5 from Xenopus laevis is an E3 ubiquitin-ligase and functions in early embryonic forebrain development
-
pmid: 25793641
-
T. Pfirrmann et al., RMND5 from Xenopus laevis is an E3 ubiquitin-ligase and functions in early embryonic forebrain development. PLOS ONE 10, e0120342 (2015). doi: 10.1371/ journal.pone.0120342; pmid: 25793641
-
(2015)
PLOS ONE
, vol.10
, pp. e0120342
-
-
Pfirrmann, T.1
-
18
-
-
0023003380
-
In vivo half-life of a protein is a function of its amino-terminal residue
-
pmid: 3018930
-
A. Bachmair, D. Finley, A. Varshavsky, In vivo half-life of a protein is a function of its amino-terminal residue. Science 234, 179–186 (1986). doi: 10.1126/science.3018930; pmid: 3018930
-
(1986)
Science
, vol.234
, pp. 179-186
-
-
Bachmair, A.1
Finley, D.2
Varshavsky, A.3
-
19
-
-
77149120798
-
N-terminal acetylation of cellular proteins creates specific degradation signals
-
pmid: 20110468
-
C. S. Hwang, A. Shemorry, A. Varshavsky, N-terminal acetylation of cellular proteins creates specific degradation signals. Science 327, 973–977 (2010). doi: 10.1126/ science.1183147; pmid: 20110468
-
(2010)
Science
, vol.327
, pp. 973-977
-
-
Hwang, C. S.1
Shemorry, A.2
Varshavsky, A.3
-
20
-
-
84878195272
-
Control of protein quality and stoichiometries by N-terminal acetylation and the N-end rule pathway
-
pmid: 23603116
-
A. Shemorry, C. S. Hwang, A. Varshavsky, Control of protein quality and stoichiometries by N-terminal acetylation and the N-end rule pathway. Mol. Cell 50, 540–551 (2013). doi: 10.1016/j.molcel.2013.03.018; pmid: 23603116
-
(2013)
Mol. Cell
, vol.50
, pp. 540-551
-
-
Shemorry, A.1
Hwang, C. S.2
Varshavsky, A.3
-
21
-
-
84994242315
-
Structural basis for dual specificity of yeast N-terminal amidase in the N-end rule pathway
-
pmid: 27791147
-
M. K. Kim, S. J. Oh, B. G. Lee, H. K. Song, Structural basis for dual specificity of yeast N-terminal amidase in the N-end rule pathway. Proc. Natl. Acad. Sci. U.S.A. 113, 12438–12443 (2016). doi: 10.1073/pnas.1612620113; pmid: 27791147
-
(2016)
Proc. Natl. Acad. Sci. U.S.A
, vol.113
, pp. 12438-12443
-
-
Kim, M. K.1
Oh, S. J.2
Lee, B. G.3
Song, H. K.4
-
22
-
-
79960683356
-
The N-end rule pathway and regulation by proteolysis
-
pmid: 21633985
-
A. Varshavsky, The N-end rule pathway and regulation by proteolysis. Protein Sci. 20, 1298–1345 (2011). doi: 10.1002/ pro.666; pmid: 21633985
-
(2011)
Protein Sci
, vol.20
, pp. 1298-1345
-
-
Varshavsky, A.1
-
23
-
-
84867176120
-
The ubiquitin-proteasome system of Saccharomyces cerevisiae
-
pmid: 23028185
-
D. Finley, H. D. Ulrich, T. Sommer, P. Kaiser, The ubiquitin-proteasome system of Saccharomyces cerevisiae. Genetics 192, 319–360 (2012). doi: 10.1534/genetics.112.140467; pmid: 23028185
-
(2012)
Genetics
, vol.192
, pp. 319-360
-
-
Finley, D.1
Ulrich, H. D.2
Sommer, T.3
Kaiser, P.4
-
24
-
-
84908478523
-
The eukaryotic N-end rule pathway: Conserved mechanisms and diverse functions
-
pmid: 24874449
-
D. J. Gibbs, J. Bacardit, A. Bachmair, M. J. Holdsworth, The eukaryotic N-end rule pathway: Conserved mechanisms and diverse functions. Trends Cell Biol. 24, 603–611 (2014). doi: 10.1016/j.tcb.2014.05.001; pmid: 24874449
-
(2014)
Trends Cell Biol
, vol.24
, pp. 603-611
-
-
Gibbs, D. J.1
Bacardit, J.2
Bachmair, A.3
Holdsworth, M. J.4
-
25
-
-
84861210856
-
The N-end rule pathway
-
pmid: 22524314
-
T. Tasaki, S. M. Sriram, K. S. Park, Y. T. Kwon, The N-end rule pathway. Annu. Rev. Biochem. 81, 261–289 (2012). doi: 10.1146/annurev-biochem-051710-093308; pmid: 22524314
-
(2012)
Annu. Rev. Biochem
, vol.81
, pp. 261-289
-
-
Tasaki, T.1
Sriram, S. M.2
Park, K. S.3
Kwon, Y. T.4
-
26
-
-
33947713897
-
The N-end rule pathway for regulated proteolysis: Prokaryotic and eukaryotic strategies
-
pmid: 17306546
-
A. Mogk, R. Schmidt, B. Bukau, The N-end rule pathway for regulated proteolysis: Prokaryotic and eukaryotic strategies. Trends Cell Biol. 17, 165–172 (2007). doi: 10.1016/ j.tcb.2007.02.001; pmid: 17306546
-
(2007)
Trends Cell Biol
, vol.17
, pp. 165-172
-
-
Mogk, A.1
Schmidt, R.2
Bukau, B.3
-
27
-
-
84855198546
-
The N-end rule pathway: From recognition by N-recognins, to destruction by AAA+ proteases
-
pmid: 21781991
-
D. A. Dougan, D. Micevski, K. N. Truscott, The N-end rule pathway: From recognition by N-recognins, to destruction by AAA+ proteases. Biochim. Biophys. Acta 1823, 83–91 (2012). doi: 10.1016/j.bbamcr.2011.07.002; pmid: 21781991
-
(2012)
Biochim. Biophys. Acta
, vol.1823
, pp. 83-91
-
-
Dougan, D. A.1
Micevski, D.2
Truscott, K. N.3
-
28
-
-
84961757512
-
The N-end rule: The beginning determines the end
-
pmid: 26743630
-
M. Eldeeb, R. Fahlman, The N-end rule: The beginning determines the end. Protein Pept. Lett. 23, 343–348 (2016). doi: 10.2174/0929866523666160108115809; pmid: 26743630
-
(2016)
Protein Pept. Lett
, vol.23
, pp. 343-348
-
-
Eldeeb, M.1
Fahlman, R.2
-
29
-
-
77955268037
-
The plant N-end rule pathway: Structure and functions
-
pmid: 20627801
-
E. Graciet, F. Wellmer, The plant N-end rule pathway: Structure and functions. Trends Plant Sci. 15, 447–453 (2010). doi: 10.1016/j.tplants.2010.04.011; pmid: 20627801
-
(2010)
Trends Plant Sci
, vol.15
, pp. 447-453
-
-
Graciet, E.1
Wellmer, F.2
-
30
-
-
84892802083
-
The N-terminal methionine of cellular proteins as a degradation signal
-
pmid: 24361105
-
H. K. Kim et al., The N-terminal methionine of cellular proteins as a degradation signal. Cell 156, 158–169 (2014). doi: 10.1016/j.cell.2013.11.031; pmid: 24361105
-
(2014)
Cell
, vol.156
, pp. 158-169
-
-
Kim, H. K.1
-
31
-
-
84863571174
-
The N-end rule pathway counteracts cell death by destroying proapoptotic protein fragments
-
pmid: 22670058
-
K. I. Piatkov, C. S. Brower, A. Varshavsky, The N-end rule pathway counteracts cell death by destroying proapoptotic protein fragments. Proc. Natl. Acad. Sci. U.S.A. 109, E1839–E1847 (2012). doi: 10.1073/pnas.1207786109; pmid: 22670058
-
(2012)
Proc. Natl. Acad. Sci. U.S.A
, vol.109
, pp. E1839-E1847
-
-
Piatkov, K. I.1
Brower, C. S.2
Varshavsky, A.3
-
32
-
-
84895826235
-
Calpain-generated natural protein fragments as short-lived substrates of the N-end rule pathway
-
pmid: 24550490
-
K. I. Piatkov, J.-H. Oh, Y. Liu, A. Varshavsky, Calpain-generated natural protein fragments as short-lived substrates of the N-end rule pathway. Proc. Natl. Acad. Sci. U.S.A. 111, E817–E826 (2014). doi: 10.1073/pnas.1401639111; pmid: 24550490
-
(2014)
Proc. Natl. Acad. Sci. U.S.A
, vol.111
, pp. E817-E826
-
-
Piatkov, K. I.1
Oh, J.-H.2
Liu, Y.3
Varshavsky, A.4
-
33
-
-
84876832401
-
Neurodegenerationassociated protein fragments as short-lived substrates of the N-end rule pathway
-
pmid: 23499006
-
C. S. Brower, K. I. Piatkov, A. Varshavsky, Neurodegenerationassociated protein fragments as short-lived substrates of the N-end rule pathway. Mol. Cell 50, 161–171 (2013). doi: 10.1016/j.molcel.2013.02.009; pmid: 23499006
-
(2013)
Mol. Cell
, vol.50
, pp. 161-171
-
-
Brower, C. S.1
Piatkov, K. I.2
Varshavsky, A.3
-
34
-
-
84887453820
-
PINK1 is degraded through the N-end rule pathway
-
pmid: 24121706
-
K. Yamano, R. J. Youle, PINK1 is degraded through the N-end rule pathway. Autophagy 9, 1758–1769 (2013). doi: 10.4161/auto.24633; pmid: 24121706
-
(2013)
Autophagy
, vol.9
, pp. 1758-1769
-
-
Yamano, K.1
Youle, R. J.2
-
35
-
-
84934298725
-
Amino-terminal arginylation targets endoplasmic reticulum chaperone BiP for autophagy through p62 binding
-
pmid: 26075355
-
H. Cha-Molstad et al., Amino-terminal arginylation targets endoplasmic reticulum chaperone BiP for autophagy through p62 binding. Nat. Cell Biol. 17, 917–929 (2015). doi: 10.1038/ ncb3177; pmid: 26075355
-
(2015)
Nat. Cell Biol
, vol.17
, pp. 917-929
-
-
Cha-Molstad, H.1
-
36
-
-
57749102552
-
Substrate selection by the proteasome during degradation of protein complexes
-
pmid: 19029916
-
S. Prakash, T. Inobe, A. J. Hatch, A. Matouschek, Substrate selection by the proteasome during degradation of protein complexes. Nat. Chem. Biol. 5, 29–36 (2009). doi: 10.1038/ nchembio.130; pmid: 19029916
-
(2009)
Nat. Chem. Biol
, vol.5
, pp. 29-36
-
-
Prakash, S.1
Inobe, T.2
Hatch, A. J.3
Matouschek, A.4
-
37
-
-
84988962992
-
Analyzing N-terminal arginylation through the use of peptide arrays and degradation assays
-
pmid: 27510035
-
B. Wadas, K. I. Piatkov, C. S. Brower, A. Varshavsky, Analyzing N-terminal arginylation through the use of peptide arrays and degradation assays. J. Biol. Chem. 291, 20976–20992 (2016). doi: 10.1074/jbc.M116.747956; pmid: 27510035
-
(2016)
J. Biol. Chem
, vol.291
, pp. 20976-20992
-
-
Wadas, B.1
Piatkov, K. I.2
Brower, C. S.3
Varshavsky, A.4
-
38
-
-
84924769665
-
Control of mammalian G protein signaling by N-terminal acetylation and the N-end rule pathway
-
pmid: 25766235
-
S. E. Park et al., Control of mammalian G protein signaling by N-terminal acetylation and the N-end rule pathway. Science 347, 1249–1252 (2015). doi: 10.1126/science.aaa3844; pmid: 25766235
-
(2015)
Science
, vol.347
, pp. 1249-1252
-
-
Park, S. E.1
-
39
-
-
84995422358
-
First things first: Vital protein marks by N-terminal acetyltransferases
-
pmid: 27498224
-
H. Aksnes, A. Drazic, M. Marie, T. Arnesen, First things first: Vital protein marks by N-terminal acetyltransferases. Trends Biochem. Sci. 41, 746–760 (2016). doi: 10.1016/ j.tibs.2016.07.005; pmid: 27498224
-
(2016)
Trends Biochem. Sci
, vol.41
, pp. 746-760
-
-
Aksnes, H.1
Drazic, A.2
Marie, M.3
Arnesen, T.4
-
40
-
-
84937635572
-
The biological functions of Naa10—From amino-terminal acetylation to human disease
-
pmid: 25987439
-
M. J. Dörfel, G. J. Lyon, The biological functions of Naa10—From amino-terminal acetylation to human disease. Gene 567, 103–131 (2015). doi: 10.1016/j.gene.2015.04.085; pmid: 25987439
-
(2015)
Gene
, vol.567
, pp. 103-131
-
-
Dörfel, M. J.1
Lyon, G. J.2
-
41
-
-
70350666262
-
A fast and efficient translational control system for conditional expression of yeast genes
-
pmid: 19592423
-
P. Kötter, J. E. Weigand, B. Meyer, K.-D. Entian, B. Suess, A fast and efficient translational control system for conditional expression of yeast genes. Nucleic Acids Res. 37, e120 (2009). doi: 10.1093/nar/gkp578; pmid: 19592423
-
(2009)
Nucleic Acids Res
, vol.37
, pp. e120
-
-
Kötter, P.1
Weigand, J. E.2
Meyer, B.3
Entian, K.-D.4
Suess, B.5
-
42
-
-
77954194681
-
Protein N-terminal processing: Substrate specificity of Escherichia coli and human methionine aminopeptidases
-
pmid: 20521764
-
Q. Xiao, F. Zhang, B. A. Nacev, J. O. Liu, D. Pei, Protein N-terminal processing: Substrate specificity of Escherichia coli and human methionine aminopeptidases. Biochemistry 49, 5588–5599 (2010). doi: 10.1021/bi1005464; pmid: 20521764
-
(2010)
Biochemistry
, vol.49
, pp. 5588-5599
-
-
Xiao, Q.1
Zhang, F.2
Nacev, B. A.3
Liu, J. O.4
Pei, D.5
-
43
-
-
84925224926
-
The yeast two-hybrid assay: Still finding connections after 25 years
-
pmid: 25584376
-
M. Vidal, S. Fields, The yeast two-hybrid assay: Still finding connections after 25 years. Nat. Methods 11, 1203–1206 (2014). doi: 10.1038/nmeth.3182; pmid: 25584376
-
(2014)
Nat. Methods
, vol.11
, pp. 1203-1206
-
-
Vidal, M.1
Fields, S.2
-
44
-
-
67649663886
-
Yeast two-hybrid, a powerful tool for systems biology
-
pmid: 19582228
-
A. Brückner, C. Polge, N. Lentze, D. Auerbach, U. Schlattner, Yeast two-hybrid, a powerful tool for systems biology. Int. J. Mol. Sci. 10, 2763–2788 (2009). doi: 10.3390/ ijms10062763; pmid: 19582228
-
(2009)
Int. J. Mol. Sci
, vol.10
, pp. 2763-2788
-
-
Brückner, A.1
Polge, C.2
Lentze, N.3
Auerbach, D.4
Schlattner, U.5
-
45
-
-
77949440090
-
Improving the yeast two-hybrid system with permutated fusions proteins: The Varicella Zoster Virus interactome
-
pmid: 20205919
-
T. Stellberger et al., Improving the yeast two-hybrid system with permutated fusions proteins: The Varicella Zoster Virus interactome. Proteome Sci. 8, 8 (2010). doi: 10.1186/ 1477-5956-8-8; pmid: 20205919
-
(2010)
Proteome Sci
, vol.8
, pp. 8
-
-
Stellberger, T.1
-
46
-
-
0028080090
-
Split ubiquitin as a sensor of protein interactions in vivo
-
pmid: 7937952
-
N. Johnsson, A. Varshavsky, Split ubiquitin as a sensor of protein interactions in vivo. Proc. Natl. Acad. Sci. U.S.A. 91, 10340–10344 (1994). doi: 10.1073/pnas.91.22.10340; pmid: 7937952
-
(1994)
Proc. Natl. Acad. Sci. U.S.A
, vol.91
, pp. 10340-10344
-
-
Johnsson, N.1
Varshavsky, A.2
-
47
-
-
80555153982
-
Detecting protein-protein interactions with the split-ubiquitin sensor
-
pmid: 21938623
-
A. Dünkler, J. Müller, N. Johnsson, Detecting protein-protein interactions with the split-ubiquitin sensor. Methods Mol. Biol. 786, 115–130 (2012). doi: 10.1007/978-1-61779-292-2_7; pmid: 21938623
-
(2012)
Methods Mol. Biol
, vol.786
, pp. 115-130
-
-
Dünkler, A.1
Müller, J.2
Johnsson, N.3
-
48
-
-
0030760565
-
Peptide binding by class I and class II MHC molecules
-
pmid: 9316393
-
M. A. Batalia, E. J. Collins, Peptide binding by class I and class II MHC molecules. Biopolymers 43, 281–302 (1997). doi: 10.1002/(SICI)1097-0282(1997)43:4<281::AIDBIP3>3.0.CO;2-R; pmid: 9316393
-
(1997)
Biopolymers
, vol.43
, pp. 281-302
-
-
Batalia, M. A.1
Collins, E. J.2
-
49
-
-
72949086403
-
Peptide binding to MHC class I and II proteins: New avenues from new methods
-
pmid: 19910050
-
R. Yaneva, C. Schneeweiss, M. Zacharias, S. Springer, Peptide binding to MHC class I and II proteins: New avenues from new methods. Mol. Immunol. 47, 649–657 (2010). doi: 10.1016/j.molimm.2009.10.008; pmid: 19910050
-
(2010)
Mol. Immunol
, vol.47
, pp. 649-657
-
-
Yaneva, R.1
Schneeweiss, C.2
Zacharias, M.3
Springer, S.4
-
50
-
-
10344259661
-
Degradation of the gluconeogenic enzymes fructose-1,6bisphosphatase and malate dehydrogenase is mediated by distinct proteolytic pathways and signaling events
-
pmid: 15358789
-
G.-C. Hung, C. R. Brown, A. B. Wolfe, J. Liu, H.-L. Chiang, Degradation of the gluconeogenic enzymes fructose-1,6bisphosphatase and malate dehydrogenase is mediated by distinct proteolytic pathways and signaling events. J. Biol. Chem. 279, 49138–49150 (2004). doi: 10.1074/jbc. M404544200; pmid: 15358789
-
(2004)
J. Biol. Chem
, vol.279
, pp. 49138-49150
-
-
Hung, G.-C.1
Brown, C. R.2
Wolfe, A. B.3
Liu, J.4
Chiang, H.-L.5
-
51
-
-
1842485068
-
‘Spalog’ and ‘sequelog’: Neutral terms for spatial and sequence similarity
-
pmid: 15028230
-
A. Varshavsky, ‘Spalog’ and ‘sequelog’: Neutral terms for spatial and sequence similarity. Curr. Biol. 14, R181–R183 (2004). doi: 10.1016/j.cub.2004.02.014; pmid: 15028230
-
(2004)
Curr. Biol
, vol.14
, pp. R181-R183
-
-
Varshavsky, A.1
-
52
-
-
72949111831
-
Identification and functional characterization of N-terminally acetylated proteins in Drosophila melanogaster
-
pmid: 19885390
-
S. Goetze et al., Identification and functional characterization of N-terminally acetylated proteins in Drosophila melanogaster. PLOS Biol. 7, e1000236 (2009). doi: 10.1371/journal. pbio.1000236; pmid: 19885390
-
(2009)
PLOS Biol
, vol.7
, pp. e1000236
-
-
Goetze, S.1
|