메뉴 건너뛰기




Volumn , Issue , 2016, Pages

Super-resolution with deep convolutional sufficient statistics

Author keywords

[No Author keywords available]

Indexed keywords

COMPLEX NETWORKS; CONVOLUTION; DEEP NEURAL NETWORKS; NEURAL NETWORKS; OPTICAL RESOLVING POWER; TEXTURES;

EID: 85083954075     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (170)

References (35)
  • 2
    • 84879877798 scopus 로고    scopus 로고
    • Invariant scattering convolution networks. Pattern analysis and machine Intelligence
    • Bruna, J. and Mallat, S. Invariant scattering convolution networks. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 35(8):1872–1886, 2013.
    • (2013) IEEE Transactions on , vol.35 , Issue.8 , pp. 1872-1886
    • Bruna, J.1    Mallat, S.2
  • 3
    • 84919951531 scopus 로고    scopus 로고
    • Signal recovery from pooling representations
    • Bruna, J., Szlam, A., and LeCun, Y. Signal recovery from pooling representations. ICML, 2014.
    • (2014) ICML
    • Bruna, J.1    Szlam, A.2    LeCun, Y.3
  • 4
  • 5
    • 85083954208 scopus 로고    scopus 로고
    • Generative modeling of convolutional neural networks
    • Dai, Jifeng, Lu, Yang, and Wu, Ying Nian. Generative modeling of convolutional neural networks. In ICLR, 2015.
    • (2015) ICLR
    • Dai, J.1    Lu, Y.2    Wu, Y.N.3
  • 6
    • 85198028989 scopus 로고    scopus 로고
    • ImageNet: A large-scale hierarchical image database
    • Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In CVPR, pp. 248–255. IEEE, 2009.
    • (2009) CVPR , pp. 248-255
    • Deng, J.1    Dong, W.2    Socher, R.3    Li, L.-J.4    Li, K.5    Fei-Fei, L.6
  • 8
    • 84906484697 scopus 로고    scopus 로고
    • Learning a deep convolutional network for image super-resolution
    • Springer
    • Dong, C., Loy, Chen C., He, K., and Tang, X. Learning a deep convolutional network for image super-resolution. In Computer Vision–ECCV, pp. 184–199. Springer, 2014.
    • (2014) Computer Vision–ECCV , pp. 184-199
    • Dong, C.1    Loy, C.C.2    He, K.3    Tang, X.4
  • 9
    • 33751379736 scopus 로고    scopus 로고
    • Image denoising via sparse and redundant representations over learned dictionaries
    • Elad, M. and Aharon, M. Image denoising via sparse and redundant representations over learned dictionaries. Image Processing, IEEE Transactions on, 15(12):3736–3745, 2006.
    • (2006) Image Processing, IEEE Transactions on , vol.15 , Issue.12 , pp. 3736-3745
    • Elad, M.1    Aharon, M.2
  • 12
    • 84860644702 scopus 로고    scopus 로고
    • Measuring invariances in deep networks
    • Goodfellow, I., Le, Q., Saxe, A., Lee, H., and Ng, A. Y. Measuring invariances in deep networks. In NIPS, pp. 646–654. 2009.
    • (2009) NIPS , pp. 646-654
    • Goodfellow, I.1    Le, Q.2    Saxe, A.3    Lee, H.4    Ng, A.Y.5
  • 14
    • 77956515664 scopus 로고    scopus 로고
    • Learning fast approximations of sparse coding
    • Gregor, K. and LeCun, Y. Learning fast approximations of sparse coding. In ICML, pp. 399–406, 2010.
    • (2010) ICML , pp. 399-406
    • Gregor, K.1    LeCun, Y.2
  • 21
  • 23
    • 71149119964 scopus 로고    scopus 로고
    • Online dictionary learning for sparse coding
    • Mairal, J., Bach, F., Ponce, J., and Sapiro, G. Online dictionary learning for sparse coding. In ICML, pp. 689–696, 2009.
    • (2009) ICML , pp. 689-696
    • Mairal, J.1    Bach, F.2    Ponce, J.3    Sapiro, G.4
  • 24
    • 84857419890 scopus 로고    scopus 로고
    • Task-driven dictionary learning. Pattern analysis and machine Intelligence
    • Mairal, J., Bach, F., and Ponce, J. Task-driven dictionary learning. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 34(4):791–804, 2012.
    • (2012) IEEE Transactions on , vol.34 , Issue.4 , pp. 791-804
    • Mairal, J.1    Bach, F.2    Ponce, J.3
  • 27
    • 84911449395 scopus 로고    scopus 로고
    • Learning and transferring mid-level image representations using convolutional neural networks
    • Oquab, M., Bottou, L., Laptev, I., and Sivic, J. Learning and transferring mid-level image representations using convolutional neural networks. In CVPR, pp. 1717–1724. IEEE, 2014.
    • (2014) CVPR , pp. 1717-1724
    • Oquab, M.1    Bottou, L.2    Laptev, I.3    Sivic, J.4
  • 28
    • 0034291204 scopus 로고    scopus 로고
    • A parametric texture model based on joint statistics of complex wavelet coefficients
    • Portilla, Javier and Simoncelli, Eero P. A parametric texture model based on joint statistics of complex wavelet coefficients. International Journal of Computer Vision, 40(1):49–70, 2000.
    • (2000) International Journal of Computer Vision , vol.40 , Issue.1 , pp. 49-70
    • Portilla, J.1    Simoncelli, E.P.2
  • 31
    • 84939228352 scopus 로고    scopus 로고
    • Learning efficient sparse and low rank models. Pattern analysis and machine Intelligence
    • Sprechmann, P., Bronstein, A.M., and Sapiro, G. Learning efficient sparse and low rank models. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 37(9):1821–1833, 2015.
    • (2015) IEEE Transactions on , vol.37 , Issue.9 , pp. 1821-1833
    • Sprechmann, P.1    Bronstein, A.M.2    Sapiro, G.3
  • 33
    • 51949105499 scopus 로고    scopus 로고
    • Image super-resolution as sparse representation of raw image patches
    • Yang, J., Wright, J., Huang, T., and Ma, Y. Image super-resolution as sparse representation of raw image patches. In CVPR, pp. 1–8. IEEE, 2008.
    • (2008) CVPR , pp. 1-8
    • Yang, J.1    Wright, J.2    Huang, T.3    Ma, Y.4
  • 35
    • 0032025550 scopus 로고    scopus 로고
    • Filters, random fields and maximum entropy (frame): Towards a unified theory for texture modeling
    • Zhu, S. C., Wu, Y, and Mumford, D. Filters, random fields and maximum entropy (frame): Towards a unified theory for texture modeling. IJCV, 27(2):107–126, 1998.
    • (1998) IJCV , vol.27 , Issue.2 , pp. 107-126
    • Zhu, S.C.1    Wu, Y.2    Mumford, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.