-
1
-
-
84893376517
-
Deep generative stochastic networks trainable by backprop
-
Bengio, Y., Thibodeau-Laufer, E., Alain, G., and Yosinski, J. Deep generative stochastic networks trainable by backprop. In ICML, 2013.
-
(2013)
ICML
-
-
Bengio, Y.1
Thibodeau-Laufer, E.2
Alain, G.3
Yosinski, J.4
-
2
-
-
84879877798
-
Invariant scattering convolution networks. Pattern analysis and machine Intelligence
-
Bruna, J. and Mallat, S. Invariant scattering convolution networks. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 35(8):1872–1886, 2013.
-
(2013)
IEEE Transactions on
, vol.35
, Issue.8
, pp. 1872-1886
-
-
Bruna, J.1
Mallat, S.2
-
3
-
-
84919951531
-
Signal recovery from pooling representations
-
Bruna, J., Szlam, A., and LeCun, Y. Signal recovery from pooling representations. ICML, 2014.
-
(2014)
ICML
-
-
Bruna, J.1
Szlam, A.2
LeCun, Y.3
-
4
-
-
84906509108
-
Deep network cascade for image super-resolution
-
Springer
-
Cui, Z., Chang, H., Shan, S., Zhong, B., and Chen, X. Deep network cascade for image super-resolution. In Computer Vision–ECCV, pp. 49–64. Springer, 2014.
-
(2014)
Computer Vision–ECCV
, pp. 49-64
-
-
Cui, Z.1
Chang, H.2
Shan, S.3
Zhong, B.4
Chen, X.5
-
5
-
-
85083954208
-
Generative modeling of convolutional neural networks
-
Dai, Jifeng, Lu, Yang, and Wu, Ying Nian. Generative modeling of convolutional neural networks. In ICLR, 2015.
-
(2015)
ICLR
-
-
Dai, J.1
Lu, Y.2
Wu, Y.N.3
-
6
-
-
85198028989
-
ImageNet: A large-scale hierarchical image database
-
Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In CVPR, pp. 248–255. IEEE, 2009.
-
(2009)
CVPR
, pp. 248-255
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Li, L.-J.4
Li, K.5
Fei-Fei, L.6
-
7
-
-
84965154087
-
-
arXiv preprint
-
Denton, E., Chintala, S., Szlam, A., and Fergus, R. Deep generative image models using a laplacian pyramid of adversarial networks. arXiv preprint arXiv:1506.05751, 2015.
-
(2015)
Deep Generative Image Models Using A Laplacian Pyramid of Adversarial Networks
-
-
Denton, E.1
Chintala, S.2
Szlam, A.3
Fergus, R.4
-
8
-
-
84906484697
-
Learning a deep convolutional network for image super-resolution
-
Springer
-
Dong, C., Loy, Chen C., He, K., and Tang, X. Learning a deep convolutional network for image super-resolution. In Computer Vision–ECCV, pp. 184–199. Springer, 2014.
-
(2014)
Computer Vision–ECCV
, pp. 184-199
-
-
Dong, C.1
Loy, C.C.2
He, K.3
Tang, X.4
-
9
-
-
33751379736
-
Image denoising via sparse and redundant representations over learned dictionaries
-
Elad, M. and Aharon, M. Image denoising via sparse and redundant representations over learned dictionaries. Image Processing, IEEE Transactions on, 15(12):3736–3745, 2006.
-
(2006)
Image Processing, IEEE Transactions on
, vol.15
, Issue.12
, pp. 3736-3745
-
-
Elad, M.1
Aharon, M.2
-
10
-
-
0036500772
-
Example-based super-resolution
-
Freeman, W T, Jones, T R, and Pasztor, E C. Example-based super-resolution. Computer Graphics and Applications, IEEE, 22(2):56–65, 2002.
-
(2002)
Computer Graphics and Applications, IEEE
, vol.22
, Issue.2
, pp. 56-65
-
-
Freeman, W.T.1
Jones, T.R.2
Pasztor, E.C.3
-
12
-
-
84860644702
-
Measuring invariances in deep networks
-
Goodfellow, I., Le, Q., Saxe, A., Lee, H., and Ng, A. Y. Measuring invariances in deep networks. In NIPS, pp. 646–654. 2009.
-
(2009)
NIPS
, pp. 646-654
-
-
Goodfellow, I.1
Le, Q.2
Saxe, A.3
Lee, H.4
Ng, A.Y.5
-
13
-
-
84937849144
-
Generative adversarial nets
-
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. Generative adversarial nets. In NIPS, pp. 2672–2680, 2014.
-
(2014)
NIPS
, pp. 2672-2680
-
-
Goodfellow, I.1
Pouget-Abadie, J.2
Mirza, M.3
Xu, B.4
Warde-Farley, D.5
Ozair, S.6
Courville, A.7
Bengio, Y.8
-
14
-
-
77956515664
-
Learning fast approximations of sparse coding
-
Gregor, K. and LeCun, Y. Learning fast approximations of sparse coding. In ICML, pp. 399–406, 2010.
-
(2010)
ICML
, pp. 399-406
-
-
Gregor, K.1
LeCun, Y.2
-
15
-
-
84965100881
-
-
arXiv preprint
-
Gregor, K., Danihelka, I., Graves, A., and Wierstra, D. DRAW: A recurrent neural network for image generation. arXiv preprint arXiv:1502.04623, 2015.
-
(2015)
DRAW: A Recurrent Neural Network for Image Generation
-
-
Gregor, K.1
Danihelka, I.2
Graves, A.3
Wierstra, D.4
-
16
-
-
85070946595
-
-
arXiv preprint
-
Hénaff, O. J., Ballé, J., Rabinowitz, N. C., and Simoncelli, E. P. The local low-dimensionality of natural images. arXiv preprint arXiv:1412.6626, 2014.
-
(2014)
The Local Low-Dimensionality of Natural Images
-
-
Hénaff, O.J.1
Ballé, J.2
Rabinowitz, N.C.3
Simoncelli, E.P.4
-
21
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-based learning applied to document recognition. In Proceedings of the IEEE, pp. 2278–2324, 1998.
-
(1998)
Proceedings of the IEEE
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
22
-
-
35148893484
-
A tutorial on energy-based learning
-
LeCun, Yann, Chopra, Sumit, Hadsell, Raia, Ranzato, M, and Huang, F. A tutorial on energy-based learning. Predicting structured data, 1:0, 2006.
-
(2006)
Predicting Structured Data
, vol.1
, pp. 0
-
-
LeCun, Y.1
Chopra, S.2
Hadsell, R.3
Ranzato, M.4
Huang, F.5
-
23
-
-
71149119964
-
Online dictionary learning for sparse coding
-
Mairal, J., Bach, F., Ponce, J., and Sapiro, G. Online dictionary learning for sparse coding. In ICML, pp. 689–696, 2009.
-
(2009)
ICML
, pp. 689-696
-
-
Mairal, J.1
Bach, F.2
Ponce, J.3
Sapiro, G.4
-
24
-
-
84857419890
-
Task-driven dictionary learning. Pattern analysis and machine Intelligence
-
Mairal, J., Bach, F., and Ponce, J. Task-driven dictionary learning. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 34(4):791–804, 2012.
-
(2012)
IEEE Transactions on
, vol.34
, Issue.4
, pp. 791-804
-
-
Mairal, J.1
Bach, F.2
Ponce, J.3
-
26
-
-
80053445973
-
Learning deep energy models
-
Ngiam, Jiquan, Chen, Zhenghao, Koh, Pang W, and Ng, Andrew Y. Learning deep energy models. In Proceedings of the 28th International Conference on Machine Learning (ICML-11), pp. 1105–1112, 2011.
-
(2011)
Proceedings of the 28th International Conference on Machine Learning (ICML-11)
, pp. 1105-1112
-
-
Ngiam, J.1
Chen, Z.2
Koh, P.W.3
Ng, A.Y.4
-
27
-
-
84911449395
-
Learning and transferring mid-level image representations using convolutional neural networks
-
Oquab, M., Bottou, L., Laptev, I., and Sivic, J. Learning and transferring mid-level image representations using convolutional neural networks. In CVPR, pp. 1717–1724. IEEE, 2014.
-
(2014)
CVPR
, pp. 1717-1724
-
-
Oquab, M.1
Bottou, L.2
Laptev, I.3
Sivic, J.4
-
28
-
-
0034291204
-
A parametric texture model based on joint statistics of complex wavelet coefficients
-
Portilla, Javier and Simoncelli, Eero P. A parametric texture model based on joint statistics of complex wavelet coefficients. International Journal of Computer Vision, 40(1):49–70, 2000.
-
(2000)
International Journal of Computer Vision
, vol.40
, Issue.1
, pp. 49-70
-
-
Portilla, J.1
Simoncelli, E.P.2
-
30
-
-
85018934798
-
-
arXiv preprint
-
Sohl-Dickstein, J, Weiss, E A, Maheswaranathan, N, and Ganguli, S. Deep unsupervised learning using nonequilibrium thermodynamics. arXiv preprint arXiv:1503.03585, 2015.
-
(2015)
Deep Unsupervised Learning Using Nonequilibrium Thermodynamics
-
-
Sohl-Dickstein, J.1
Weiss, E.A.2
Maheswaranathan, N.3
Ganguli, S.4
-
31
-
-
84939228352
-
Learning efficient sparse and low rank models. Pattern analysis and machine Intelligence
-
Sprechmann, P., Bronstein, A.M., and Sapiro, G. Learning efficient sparse and low rank models. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 37(9):1821–1833, 2015.
-
(2015)
IEEE Transactions on
, vol.37
, Issue.9
, pp. 1821-1833
-
-
Sprechmann, P.1
Bronstein, A.M.2
Sapiro, G.3
-
32
-
-
85062834621
-
-
arXiv preprint
-
Xie, J., Lu, Y., Zhu, S., and Wu, Y. A theory of generative convnet. arXiv preprint arXiv:1602:03264, 2016.
-
(2016)
A Theory of Generative Convnet
-
-
Xie, J.1
Lu, Y.2
Zhu, S.3
Wu, Y.4
-
33
-
-
51949105499
-
Image super-resolution as sparse representation of raw image patches
-
Yang, J., Wright, J., Huang, T., and Ma, Y. Image super-resolution as sparse representation of raw image patches. In CVPR, pp. 1–8. IEEE, 2008.
-
(2008)
CVPR
, pp. 1-8
-
-
Yang, J.1
Wright, J.2
Huang, T.3
Ma, Y.4
-
34
-
-
84864128043
-
Coupled dictionary training for image super-resolution
-
Yang, J., Wang, Z., Lin, Z., Cohen, S., and Huang, T. S. Coupled dictionary training for image super-resolution. Image Processing, IEEE Transactions on, 21(8):3467–3478, 2012.
-
(2012)
Image Processing, IEEE Transactions on
, vol.21
, Issue.8
, pp. 3467-3478
-
-
Yang, J.1
Wang, Z.2
Lin, Z.3
Cohen, S.4
Huang, T.S.5
-
35
-
-
0032025550
-
Filters, random fields and maximum entropy (frame): Towards a unified theory for texture modeling
-
Zhu, S. C., Wu, Y, and Mumford, D. Filters, random fields and maximum entropy (frame): Towards a unified theory for texture modeling. IJCV, 27(2):107–126, 1998.
-
(1998)
IJCV
, vol.27
, Issue.2
, pp. 107-126
-
-
Zhu, S.C.1
Wu, Y.2
Mumford, D.3
|