메뉴 건너뛰기




Volumn 3, Issue , 2012, Pages 1799-1807

Multiple choice learning: Learning to produce multiple structured outputs

Author keywords

[No Author keywords available]

Indexed keywords

CONVENTIONAL APPROACH; MAXIMUM A POSTERIORI; MULTIPLE CHOICE; MULTIPLE HYPOTHESIS; MULTIPLE OUTPUTS; PREDICTION ACCURACY; PREDICTION PROBLEM; STRUCTURED PREDICTION;

EID: 84877765715     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (205)

References (29)
  • 1
    • 84866657764 scopus 로고    scopus 로고
    • SLIC superpixels compared to state-of-the-art superpixel methods
    • (To Appear). 6
    • R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Ssstrunk. SLIC Superpixels Compared to State-of-the-art Superpixel Methods. PAMI, (To Appear) 2012. 6
    • (2012) PAMI
    • Achanta, R.1    Shaji, A.2    Smith, K.3    Lucchi, A.4    Fua, P.5    Ssstrunk, S.6
  • 2
    • 77955985702 scopus 로고    scopus 로고
    • ICoseg: Interactive co-segmentation with intelligent scribble guidance
    • 6
    • D. Batra, A. Kowdle, D. Parikh, J. Luo, and T. Chen. iCoseg: Interactive Co-segmentation with Intelligent Scribble Guidance. In CVPR, 2010. 6
    • (2010) CVPR
    • Batra, D.1    Kowdle, A.2    Parikh, D.3    Luo, J.4    Chen, T.5
  • 4
    • 70350619001 scopus 로고    scopus 로고
    • Learning to localize objects with structured output regression
    • 5
    • M. B. Blaschko and C. H. Lampert. Learning to Localize Objects with Structured Output Regression. In ECCV, 2008. 5
    • (2008) ECCV
    • Blaschko, M.B.1    Lampert, C.H.2
  • 5
    • 0344077921 scopus 로고    scopus 로고
    • Interactive graph cuts for optimal boundary and region segmentation of objects in N-D images
    • Y. Boykov and M.-P. Jolly. Interactive Graph Cuts for Optimal Boundary and Region Segmentation of Objects in N-D Images. ICCV, 2001. 1
    • (2001) ICCV , pp. 1
    • Boykov, Y.1    Jolly, M.-P.2
  • 6
    • 0035509961 scopus 로고    scopus 로고
    • Efficient approximate energy minimization via graph cuts
    • 6
    • Y. Boykov, O. Veksler, and R. Zabih. Efficient Approximate Energy Minimization via Graph Cuts. PAMI, 20(12):1222-1239, 2001. 6
    • (2001) PAMI , vol.20 , Issue.12 , pp. 1222-1239
    • Boykov, Y.1    Veksler, O.2    Zabih, R.3
  • 7
    • 51349094337 scopus 로고    scopus 로고
    • Minimizing and learning energy functions for side-chain prediction
    • 7, 8
    • O. S.-F. Chen Yanover and Y. Weiss. Minimizing and Learning Energy Functions for Side-Chain Prediction. Journal of Computational Biology, 15(7):899-911, 2008. 7, 8
    • (2008) Journal of Computational Biology , vol.15 , Issue.7 , pp. 899-911
    • Chen Yanover, O.S.-F.1    Weiss, Y.2
  • 8
    • 0040044720 scopus 로고    scopus 로고
    • Discriminative reranking for natural language parsing
    • 2
    • M. Collins. Discriminative Reranking for Natural Language Parsing. In ICML, pages 175-182, 2000. 2
    • (2000) ICML , pp. 175-182
    • Collins, M.1
  • 9
    • 84872307432 scopus 로고    scopus 로고
    • Contextual sequence prediction with application to control library optimization
    • 5
    • D. Dey, T. Y. Liu, M. Hebert, and J. A. Bagnell. Contextual sequence prediction with application to control library optimization. In Robotics: Science and Systems, 2012. 5
    • (2012) Robotics: Science and Systems
    • Dey, D.1    Liu, T.Y.2    Hebert, M.3    Bagnell, J.A.4
  • 11
    • 78649417672 scopus 로고    scopus 로고
    • An LP view of the M-best MAP problem
    • 2
    • M. Fromer and A. Globerson. An LP View of the M-best MAP problem. In NIPS, 2009. 2
    • (2009) NIPS
    • Fromer, M.1    Globerson, A.2
  • 13
    • 84855759493 scopus 로고    scopus 로고
    • 8
    • IBM Corporation. IBM ILOG CPLEX Optimization Studio. http://www-01.ibm. com/software/integration/optimization/cplex-optimization-studio/, 2012. 8
    • (2012) IBM ILOG CPLEX Optimization Studio
  • 14
    • 69549111057 scopus 로고    scopus 로고
    • Cutting-plane training of structural SVMs
    • 5
    • T. Joachims, T. Finley, and C.-N. Yu. Cutting-Plane Training of Structural SVMs. Machine Learning, 77(1):27-59, 2009. 5
    • (2009) Machine Learning , vol.77 , Issue.1 , pp. 27-59
    • Joachims, T.1    Finley, T.2    Yu, C.-N.3
  • 15
    • 52949120342 scopus 로고    scopus 로고
    • Measuring uncertainty in graph cut solutions
    • 6
    • P. Kohli and P. H. S. Torr. Measuring Uncertainty in Graph Cut Solutions. CVIU, 112(1):30-38, 2008. 6
    • (2008) CVIU , vol.112 , Issue.1 , pp. 30-38
    • Kohli, P.1    Torr, P.H.S.2
  • 16
    • 33750129298 scopus 로고    scopus 로고
    • Convergent tree-reweighted message passing for energy minimization
    • 8
    • V. Kolmogorov. Convergent Tree-Reweighted Message Passing for Energy Minimization. PAMI, 28(10):1568-1583, 2006. 8
    • (2006) PAMI , vol.28 , Issue.10 , pp. 1568-1583
    • Kolmogorov, V.1
  • 17
    • 0742286180 scopus 로고    scopus 로고
    • What energy functions can be minimized via graph cuts?
    • 6
    • V. Kolmogorov and R. Zabih. What Energy Functions can be Minimized via Graph Cuts? PAMI, 26(2):147-159, 2004. 6
    • (2004) PAMI , vol.26 , Issue.2 , pp. 147-159
    • Kolmogorov, V.1    Zabih, R.2
  • 18
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • 1
    • J. D. Lafferty, A. McCallum, and F. C. N. Pereira. Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data. In ICML, 2001. 1
    • (2001) ICML
    • Lafferty, J.D.1    McCallum, A.2    Pereira, F.C.N.3
  • 19
    • 85162413154 scopus 로고    scopus 로고
    • Maximum margin multi-label structured prediction
    • 5
    • C. H. Lampert. Maximum Margin Multi-Label Structured Prediction. In NIPS, 2011. 5
    • (2011) NIPS
    • Lampert, C.H.1
  • 20
    • 0000685484 scopus 로고
    • A procedure for computing the k best solutions to discrete optimization problems and its application to the shortest path problem
    • 2
    • E. L. Lawler. A Procedure for Computing the K Best Solutions to Discrete Optimization Problems and Its Application to the Shortest Path Problem. Management Science, 18:401-405, 1972. 2
    • (1972) Management Science , vol.18 , pp. 401-405
    • Lawler, E.L.1
  • 21
    • 0000551189 scopus 로고    scopus 로고
    • Popular ensemble methods: An empirical study
    • 5
    • D.W. Opitz and R. Maclin. Popular Ensemble Methods: An Empirical Study. J. Artif. Intell. Res. (JAIR), 11:169-198, 1999. 5
    • (1999) J. Artif. Intell. Res. (JAIR) , vol.11 , pp. 169-198
    • Opitz, D.W.1    Maclin, R.2
  • 22
    • 85133336275 scopus 로고    scopus 로고
    • BLEU: A method for automatic evaluation of machine translation
    • 2
    • K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. BLEU: a Method for Automatic Evaluation of Machine Translation. In ACL, 2002. 2
    • (2002) ACL
    • Papineni, K.1    Roukos, S.2    Ward, T.3    Zhu, W.-J.4
  • 23
    • 84856682999 scopus 로고    scopus 로고
    • N-best maximal decoders for part models
    • 2
    • D. Park and D. Ramanan. N-Best Maximal Decoders for Part Models. In ICCV, 2011. 2
    • (2011) ICCV
    • Park, D.1    Ramanan, D.2
  • 24
    • 84859063677 scopus 로고    scopus 로고
    • Top-down K-best a* parsing
    • 2
    • A. Pauls, D. Klein, and C. Quirk. Top-Down K-Best A* Parsing. In ACL, 2010. 2
    • (2010) ACL
    • Pauls, A.1    Klein, D.2    Quirk, C.3
  • 25
    • 84877632511 scopus 로고    scopus 로고
    • "GrabCut" - Interactive foreground extraction using iterated graph cuts
    • 1
    • C. Rother, V. Kolmogorov, and A. Blake. "GrabCut" - Interactive Foreground Extraction using Iterated Graph Cuts. SIGGRAPH, 2004. 1
    • (2004) SIGGRAPH
    • Rother, C.1    Kolmogorov, V.2    Blake, A.3
  • 26
    • 85024106824 scopus 로고    scopus 로고
    • Discriminative reranking for machine translation
    • 2
    • L. Shen, A. Sarkar, and F. J. Och. Discriminative Reranking for Machine Translation. In HLT-NAACL, pages 177-184, 2004. 2
    • (2004) HLT-NAACL , pp. 177-184
    • Shen, L.1    Sarkar, A.2    Och, F.J.3
  • 28
    • 24944537843 scopus 로고    scopus 로고
    • Large margin methods for structured and interdependent output variables
    • 1, 2, 3
    • I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large Margin Methods for Structured and Interdependent Output Variables. JMLR, 6:1453-1484, 2005. 1, 2, 3
    • (2005) JMLR , vol.6 , pp. 1453-1484
    • Tsochantaridis, I.1    Joachims, T.2    Hofmann, T.3    Altun, Y.4
  • 29
    • 84860606249 scopus 로고    scopus 로고
    • Finding the M most probable configurations using loopy belief propagation
    • 2, 6
    • C. Yanover and Y. Weiss. Finding the M Most Probable Configurations Using Loopy Belief Propagation. In NIPS, 2003. 2, 6
    • (2003) NIPS
    • Yanover, C.1    Weiss, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.