메뉴 건너뛰기




Volumn 27, Issue , 2016, Pages 198-214

Joint patch clustering-based dictionary learning for multimodal image fusion

Author keywords

Clustering; Dictionary learning; K SVD; Multimodal image fusion; Sparse representation

Indexed keywords

IMAGE MATCHING;

EID: 84938200080     PISSN: 15662535     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.inffus.2015.03.003     Document Type: Article
Times cited : (197)

References (60)
  • 1
    • 33846594428 scopus 로고    scopus 로고
    • Image fusion: Advances in the state of the art
    • A.A. Goshtasby, and S. Nikolov Image fusion: advances in the state of the art Inform. Fusion 8 2 2007 114 118
    • (2007) Inform. Fusion , vol.8 , Issue.2 , pp. 114-118
    • Goshtasby, A.A.1    Nikolov, S.2
  • 3
    • 84897986730 scopus 로고    scopus 로고
    • Medical image fusion: A survey of the state of the art
    • A. James, and B. Dasarathy Medical image fusion: a survey of the state of the art Inform. Fusion 19 2014 4 19
    • (2014) Inform. Fusion , vol.19 , pp. 4-19
    • James, A.1    Dasarathy, B.2
  • 4
    • 74449088952 scopus 로고    scopus 로고
    • MRI and PET image fusion by combining IHS and retina-inspired models
    • S. Daneshvar, and H. Ghassemian MRI and PET image fusion by combining IHS and retina-inspired models Inform. Fusion 11 2 2010 114 123
    • (2010) Inform. Fusion , vol.11 , Issue.2 , pp. 114-123
    • Daneshvar, S.1    Ghassemian, H.2
  • 7
    • 74449087681 scopus 로고    scopus 로고
    • Non-parametric and region-based image fusion with bootstrap sampling
    • M. Zribi Non-parametric and region-based image fusion with bootstrap sampling Inform. Fusion 11 2 2010 85 94
    • (2010) Inform. Fusion , vol.11 , Issue.2 , pp. 85-94
    • Zribi, M.1
  • 8
    • 1942421822 scopus 로고    scopus 로고
    • Gradient-based multiresolution image fusion
    • V.S. Petrovic, and C.S. Xydeas Gradient-based multiresolution image fusion IEEE Trans. Image Process. 13 2 2004 228 237
    • (2004) IEEE Trans. Image Process. , vol.13 , Issue.2 , pp. 228-237
    • Petrovic, V.S.1    Xydeas, C.S.2
  • 9
    • 33846642006 scopus 로고    scopus 로고
    • Pixel-based and region-based image fusion schemes using ICA bases
    • N. Mitianoudis, and T. Stathaki Pixel-based and region-based image fusion schemes using ICA bases Inform. Fusion 8 2 2007 131 142
    • (2007) Inform. Fusion , vol.8 , Issue.2 , pp. 131-142
    • Mitianoudis, N.1    Stathaki, T.2
  • 10
    • 85008041946 scopus 로고    scopus 로고
    • Optimal contrast correction for ICA-based fusion of multimodal images
    • N. Mitianousdis, and T. Stathaki Optimal contrast correction for ICA-based fusion of multimodal images IEEE Sens. J. 8 12 2008 2016 2026
    • (2008) IEEE Sens. J. , vol.8 , Issue.12 , pp. 2016-2026
    • Mitianousdis, N.1    Stathaki, T.2
  • 11
    • 78650564982 scopus 로고    scopus 로고
    • Performance comparison of different multi-resolution transforms for image fusion
    • S. Li, B. Yang, and J. Hu Performance comparison of different multi-resolution transforms for image fusion Inform. Fusion 12 2 2011 74 84
    • (2011) Inform. Fusion , vol.12 , Issue.2 , pp. 74-84
    • Li, S.1    Yang, B.2    Hu, J.3
  • 12
    • 0028975378 scopus 로고
    • Multisensor image fusion using the wavelet transform
    • H. Li, B. Manjunath, and S. Mitra Multisensor image fusion using the wavelet transform Graph. Models Image Process. 57 3 1995 235 245
    • (1995) Graph. Models Image Process. , vol.57 , Issue.3 , pp. 235-245
    • Li, H.1    Manjunath, B.2    Mitra, S.3
  • 13
    • 3042554837 scopus 로고    scopus 로고
    • A wavelet-based image fusion tutorial
    • G. Pajares, and J. Cruz A wavelet-based image fusion tutorial Pattern Recogn. 37 9 2004 1855 1872
    • (2004) Pattern Recogn. , vol.37 , Issue.9 , pp. 1855-1872
    • Pajares, G.1    Cruz, J.2
  • 14
    • 33846604533 scopus 로고    scopus 로고
    • Pixel- and region-based image fusion with complex wavelets
    • J.J. Lewis, R.J. Ocallaghan, and S.G. Nikolov Pixel- and region-based image fusion with complex wavelets Inform. Fusion 8 2 2007 119 130
    • (2007) Inform. Fusion , vol.8 , Issue.2 , pp. 119-130
    • Lewis, J.J.1    Ocallaghan, R.J.2    Nikolov, S.G.3
  • 16
    • 33846636743 scopus 로고    scopus 로고
    • Remote sensing image fusion using the curvelet transform
    • F. Nencini, A. Garzelli, S. Baronti, and L. Alparone Remote sensing image fusion using the curvelet transform Inform. Fusion 8 2 2007 143 156
    • (2007) Inform. Fusion , vol.8 , Issue.2 , pp. 143-156
    • Nencini, F.1    Garzelli, A.2    Baronti, S.3    Alparone, L.4
  • 19
    • 79651472918 scopus 로고    scopus 로고
    • A novel algorithm of image fusion using shearlets
    • Q. Miao, C. Shi, P. Xu, M. Yang, and Y. Shi A novel algorithm of image fusion using shearlets Opt. Commun. 284 2011 1540 1547
    • (2011) Opt. Commun. , vol.284 , pp. 1540-1547
    • Miao, Q.1    Shi, C.2    Xu, P.3    Yang, M.4    Shi, Y.5
  • 20
    • 84897979082 scopus 로고    scopus 로고
    • Multi-modal medical image fusion using the inter-scale and intra-scale dependencies between image shift-invariant shearlet coefficients
    • L. Wang, B. Li, and L. Tian Multi-modal medical image fusion using the inter-scale and intra-scale dependencies between image shift-invariant shearlet coefficients Inform. Fusion 19 2014 20 28
    • (2014) Inform. Fusion , vol.19 , pp. 20-28
    • Wang, L.1    Li, B.2    Tian, L.3
  • 21
    • 33749161371 scopus 로고    scopus 로고
    • The nonsubsampled contourlet transform: Theory, design, and applications
    • L.D. Cunha, and J.P. Zhou The nonsubsampled contourlet transform: theory, design, and applications IEEE Trans. Image Process. 15 10 2006 3089 3101
    • (2006) IEEE Trans. Image Process. , vol.15 , Issue.10 , pp. 3089-3101
    • Cunha, L.D.1    Zhou, J.P.2
  • 22
    • 62749094298 scopus 로고    scopus 로고
    • Multi-focus image fusion using the nonsubsampled contourlet transform
    • Q. Zhang, and B.L. Guo Multi-focus image fusion using the nonsubsampled contourlet transform Signal Process. 89 7 2009 1334 1346
    • (2009) Signal Process. , vol.89 , Issue.7 , pp. 1334-1346
    • Zhang, Q.1    Guo, B.L.2
  • 23
    • 80053987231 scopus 로고    scopus 로고
    • Pixel-level image fusion with simultaneous orthogonal matching pursuit
    • B. Yang, and S. Li Pixel-level image fusion with simultaneous orthogonal matching pursuit Inform. Fusion 13 1 2012 10 19
    • (2012) Inform. Fusion , vol.13 , Issue.1 , pp. 10-19
    • Yang, B.1    Li, S.2
  • 24
    • 81755185999 scopus 로고    scopus 로고
    • Multimodal image fusion with joint sparsity model
    • H. Yin, and S. Li Multimodal image fusion with joint sparsity model Opt. Eng. 50 6 2011 067007
    • (2011) Opt. Eng. , vol.50 , Issue.6 , pp. 067007
    • Yin, H.1    Li, S.2
  • 27
    • 59749104367 scopus 로고    scopus 로고
    • From sparse solutions of systems of equations to sparse modeling of signals and images
    • A.M. Bruckstein, D.L. Donoho, and M. Elad From sparse solutions of systems of equations to sparse modeling of signals and images SIAM Rev. 51 1 2007 34 81
    • (2007) SIAM Rev. , vol.51 , Issue.1 , pp. 34-81
    • Bruckstein, A.M.1    Donoho, D.L.2    Elad, M.3
  • 28
    • 77952717202 scopus 로고    scopus 로고
    • Sparse representation for computer vision and pattern recognition
    • J. Wright, Y. Ma, J. Mairal, G. Sapiro, T.S. Huang, and S. Yan Sparse representation for computer vision and pattern recognition Proc. IEEE 98 6 2010 1031 1044
    • (2010) Proc. IEEE , vol.98 , Issue.6 , pp. 1031-1044
    • Wright, J.1    Ma, Y.2    Mairal, J.3    Sapiro, G.4    Huang, T.S.5    Yan, S.6
  • 30
    • 33750383209 scopus 로고    scopus 로고
    • The K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation
    • M. Aharon, M. Elad, and A. Bruckstein The K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation IEEE Trans. Signal Process. 54 11 2006 4311 4322
    • (2006) IEEE Trans. Signal Process. , vol.54 , Issue.11 , pp. 4311-4322
    • Aharon, M.1    Elad, M.2    Bruckstein, A.3
  • 31
    • 33751379736 scopus 로고    scopus 로고
    • Image denoising via sparse and redundant representations over learned dictionaries
    • M. Elad, and M. Aharon Image denoising via sparse and redundant representations over learned dictionaries IEEE Trans. Image Process. 15 12 2006 3736 3745
    • (2006) IEEE Trans. Image Process. , vol.15 , Issue.12 , pp. 3736-3745
    • Elad, M.1    Aharon, M.2
  • 32
    • 39149089704 scopus 로고    scopus 로고
    • Sparse representation for color image restoration
    • J. Mairal, M. Sapiro, and G. Sapiro Sparse representation for color image restoration IEEE Trans. Image Process. 17 1 2008 53 68
    • (2008) IEEE Trans. Image Process. , vol.17 , Issue.1 , pp. 53-68
    • Mairal, J.1    Sapiro, M.2    Sapiro, G.3
  • 33
    • 79959594311 scopus 로고    scopus 로고
    • Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization
    • W.S. Dong, L. Zhang, G.M. Shi, and X.L. Wu Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization IEEE Trans. Image Process. 20 7 2011 1838 1857
    • (2011) IEEE Trans. Image Process. , vol.20 , Issue.7 , pp. 1838-1857
    • Dong, W.S.1    Zhang, L.2    Shi, G.M.3    Wu, X.L.4
  • 34
    • 77949422825 scopus 로고    scopus 로고
    • Multifocus image fusion and restoration with sparse representation
    • B. Yang, and S. Li Multifocus image fusion and restoration with sparse representation IEEE Trans. Instrum. Meas. 59 4 2010 884 892
    • (2010) IEEE Trans. Instrum. Meas. , vol.59 , Issue.4 , pp. 884-892
    • Yang, B.1    Li, S.2
  • 35
    • 84885423284 scopus 로고    scopus 로고
    • Simultaneous image fusion and super-resolution using sparse representation
    • H. Yin, S. Li, and L. Fang Simultaneous image fusion and super-resolution using sparse representation Inform. Fusion 14 3 2013 229 240
    • (2013) Inform. Fusion , vol.14 , Issue.3 , pp. 229-240
    • Yin, H.1    Li, S.2    Fang, L.3
  • 36
    • 84872337930 scopus 로고    scopus 로고
    • Research on fusion method for infrared and visible images via compressive sensing
    • M. Ding, L. Wei, and B. Wang Research on fusion method for infrared and visible images via compressive sensing Infrared Phys. Technol. 57 2013 56 67
    • (2013) Infrared Phys. Technol. , vol.57 , pp. 56-67
    • Ding, M.1    Wei, L.2    Wang, B.3
  • 37
    • 80051765671 scopus 로고    scopus 로고
    • Image features extraction and fusion based on joint sparse representation
    • N. Yu, T. Qiu, F. Bi, and A. Wang Image features extraction and fusion based on joint sparse representation IEEE J. Sel. Top. Signal Process. 5 5 2011 1074 1082
    • (2011) IEEE J. Sel. Top. Signal Process. , vol.5 , Issue.5 , pp. 1074-1082
    • Yu, N.1    Qiu, T.2    Bi, F.3    Wang, A.4
  • 39
    • 84870520820 scopus 로고    scopus 로고
    • Group-sparse representation with dictionary learning for medical image denoising and fusion
    • S. Li, H. Yin, and L. Fang Group-sparse representation with dictionary learning for medical image denoising and fusion IEEE Trans. Biomed. Eng. 59 12 2012 3450 3459
    • (2012) IEEE Trans. Biomed. Eng. , vol.59 , Issue.12 , pp. 3450-3459
    • Li, S.1    Yin, H.2    Fang, L.3
  • 40
    • 84880463196 scopus 로고    scopus 로고
    • Dictionary learning method for joint sparse representation-based image fusion
    • Q. Zhang, Y. Fu, H. Li, and J. Zou Dictionary learning method for joint sparse representation-based image fusion Opt. Eng. 52 5 2013 057006
    • (2013) Opt. Eng. , vol.52 , Issue.5 , pp. 057006
    • Zhang, Q.1    Fu, Y.2    Li, H.3    Zou, J.4
  • 41
    • 67649872330 scopus 로고    scopus 로고
    • Clustering-based denoising with locally learned dictionaries
    • P. Chatterjee, and P. Milanfar Clustering-based denoising with locally learned dictionaries IEEE Trans. Image Process. 18 7 2009 1438 1451
    • (2009) IEEE Trans. Image Process. , vol.18 , Issue.7 , pp. 1438-1451
    • Chatterjee, P.1    Milanfar, P.2
  • 42
    • 33847712243 scopus 로고    scopus 로고
    • Kernel regression for image processing and reconstruction
    • H. Takeda, S. Farsiu, and P. Milanfar Kernel regression for image processing and reconstruction IEEE Trans. Image Process. 16 2 2007 349 366
    • (2007) IEEE Trans. Image Process. , vol.16 , Issue.2 , pp. 349-366
    • Takeda, H.1    Farsiu, S.2    Milanfar, P.3
  • 43
    • 0027842081 scopus 로고
    • Matching pursuits with time-frequency dictionaries
    • S.G. Mallat, and Z. Zhang Matching pursuits with time-frequency dictionaries IEEE Trans. Signal Process. 41 12 1993 3397 3415
    • (1993) IEEE Trans. Signal Process. , vol.41 , Issue.12 , pp. 3397-3415
    • Mallat, S.G.1    Zhang, Z.2
  • 44
    • 78349258863 scopus 로고    scopus 로고
    • Double sparsity: Learning sparse dictionaries for sparse signal approximation
    • R. Rubinstein, M. Zibulevsky, and M. Elad Double sparsity: learning sparse dictionaries for sparse signal approximation IEEE Trans. Signal Process. 58 3 2010 1553 1564
    • (2010) IEEE Trans. Signal Process. , vol.58 , Issue.3 , pp. 1553-1564
    • Rubinstein, R.1    Zibulevsky, M.2    Elad, M.3
  • 47
    • 34547760736 scopus 로고    scopus 로고
    • Image denoising by sparse 3-D transform-domain collaborative filtering
    • K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian Image denoising by sparse 3-D transform-domain collaborative filtering IEEE Trans. Image Process. 16 8 2007 2080 2095
    • (2007) IEEE Trans. Image Process. , vol.16 , Issue.8 , pp. 2080-2095
    • Dabov, K.1    Foi, A.2    Katkovnik, V.3    Egiazarian, K.4
  • 48
    • 30844445842 scopus 로고    scopus 로고
    • Strauss, algorithms for simultaneous sparse approximation. Part I: Greedy pursuit
    • J.A. Tropp, A.C. Gilbert, and M.J. Strauss Strauss, algorithms for simultaneous sparse approximation. Part I: greedy pursuit Signal Process. 86 3 2006 572 588
    • (2006) Signal Process. , vol.86 , Issue.3 , pp. 572-588
    • Tropp, J.A.1    Gilbert, A.C.2    Strauss, M.J.3
  • 49
    • 0020102027 scopus 로고
    • Least squares quantization in PCM
    • S. Lloyd Least squares quantization in PCM IEEE Trans. Inform. Theory 28 2 1982 129 137
    • (1982) IEEE Trans. Inform. Theory , vol.28 , Issue.2 , pp. 129-137
    • Lloyd, S.1
  • 50
    • 70349620393 scopus 로고    scopus 로고
    • A plurality of sparse representations is better than the sparsest one alone
    • M. Elad, and I. Yavneh A plurality of sparse representations is better than the sparsest one alone IEEE Trans. Inform. Theory 55 10 2009 4701 4714
    • (2009) IEEE Trans. Inform. Theory , vol.55 , Issue.10 , pp. 4701-4714
    • Elad, M.1    Yavneh, I.2
  • 51
    • 84873635400 scopus 로고    scopus 로고
    • Sparse representation based image interpolation with nonlocal autoregressive modeling
    • W. Dong, L. Zhang, R. Lukac, and G. Shi Sparse representation based image interpolation with nonlocal autoregressive modeling IEEE Trans. Image Process. 22 4 2013 1382 1394
    • (2013) IEEE Trans. Image Process. , vol.22 , Issue.4 , pp. 1382-1394
    • Dong, W.1    Zhang, L.2    Lukac, R.3    Shi, G.4
  • 52
    • 84873906242 scopus 로고    scopus 로고
    • Nonlocally centralized sparse representation for image restoration
    • W. Dong, L. Zhang, G. Shi, and X. Li Nonlocally centralized sparse representation for image restoration IEEE Trans. Image Process. 22 4 2013 1620 1630
    • (2013) IEEE Trans. Image Process. , vol.22 , Issue.4 , pp. 1620-1630
    • Dong, W.1    Zhang, L.2    Shi, G.3    Li, X.4
  • 53
    • 0041958932 scopus 로고
    • Ideal spatial adaptation via wavelet shrinkage
    • D.L. Donoho, and I.M. Johnstone Ideal spatial adaptation via wavelet shrinkage Biometrika 81 3 1994 425 455
    • (1994) Biometrika , vol.81 , Issue.3 , pp. 425-455
    • Donoho, D.L.1    Johnstone, I.M.2
  • 54
    • 0037187687 scopus 로고    scopus 로고
    • Information measure for performance of image fusion
    • G.H. Qu, D.L. Zhang, and P.F. Yan Information measure for performance of image fusion Electron. Lett. 38 7 2002 313 315
    • (2002) Electron. Lett. , vol.38 , Issue.7 , pp. 313-315
    • Qu, G.H.1    Zhang, D.L.2    Yan, P.F.3
  • 56
    • 33846619107 scopus 로고    scopus 로고
    • Subjective tests for image fusion evaluation and objective metric validation
    • V. Petrovic Subjective tests for image fusion evaluation and objective metric validation Inform. Fusion 8 2 2007 208 216
    • (2007) Inform. Fusion , vol.8 , Issue.2 , pp. 208-216
    • Petrovic, V.1
  • 57
    • 0033908184 scopus 로고    scopus 로고
    • Objective image fusion performance measure
    • C.S. Xydeas, and V. Petrovic Objective image fusion performance measure Electron. Lett. 36 4 2000 308 309
    • (2000) Electron. Lett. , vol.36 , Issue.4 , pp. 308-309
    • Xydeas, C.S.1    Petrovic, V.2
  • 58
    • 31144478351 scopus 로고    scopus 로고
    • Image information and visual quality
    • H.R. Sheikh, and A.C. Bovik Image information and visual quality IEEE Trans. Image Process. 15 2 2006 430 444
    • (2006) IEEE Trans. Image Process. , vol.15 , Issue.2 , pp. 430-444
    • Sheikh, H.R.1    Bovik, A.C.2
  • 59
    • 84880331058 scopus 로고    scopus 로고
    • A new image fusion performance metric based on visual information fidelity
    • Y. Han, Y. Cai, Y. Cao, and X. Xu A new image fusion performance metric based on visual information fidelity Inform. Fusion 14 2 2013 127 135
    • (2013) Inform. Fusion , vol.14 , Issue.2 , pp. 127-135
    • Han, Y.1    Cai, Y.2    Cao, Y.3    Xu, X.4
  • 60
    • 84893859140 scopus 로고    scopus 로고
    • MRI and PET image fusion using fuzzy logic and image local features
    • Article ID 708075
    • U. Javed, M.M. Riza, A. Ghafoor, S.S. Ali, and T.A. Cheema MRI and PET image fusion using fuzzy logic and image local features Sci. World J. 2014 1 8 Article ID 708075
    • (2014) Sci. World J. , pp. 1-8
    • Javed, U.1    Riza, M.M.2    Ghafoor, A.3    Ali, S.S.4    Cheema, T.A.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.