메뉴 건너뛰기




Volumn 24, Issue , 2015, Pages 147-164

A general framework for image fusion based on multi-scale transform and sparse representation

Author keywords

Image fusion; Multi scale transform; Sparse representation

Indexed keywords

DISCRETE WAVELET TRANSFORMS; MEDICAL IMAGING; WAVELET DECOMPOSITION; WAVELET TRANSFORMS;

EID: 85027936737     PISSN: 15662535     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.inffus.2014.09.004     Document Type: Article
Times cited : (1230)

References (30)
  • 1
    • 33846594428 scopus 로고    scopus 로고
    • Image fusion: Advances in the state of the art
    • A. Goshtasby, and S. Nikolov Image fusion: advances in the state of the art Inform. Fusion 8 2 2007 114 118
    • (2007) Inform. Fusion , vol.8 , Issue.2 , pp. 114-118
    • Goshtasby, A.1    Nikolov, S.2
  • 2
    • 0020737631 scopus 로고
    • The laplacian pyramid as a compact image code
    • P. Burt, and E. Adelson The laplacian pyramid as a compact image code IEEE Trans. Commun. 31 4 1983 532 540
    • (1983) IEEE Trans. Commun. , vol.31 , Issue.4 , pp. 532-540
    • Burt, P.1    Adelson, E.2
  • 3
    • 0024870392 scopus 로고
    • Image fusion by a ratio of low pass pyramid
    • A. Toet Image fusion by a ratio of low pass pyramid Pattern Recogn. Lett. 9 4 1989 245 253
    • (1989) Pattern Recogn. Lett. , vol.9 , Issue.4 , pp. 245-253
    • Toet, A.1
  • 4
    • 1942421822 scopus 로고    scopus 로고
    • Gradient-based multiresolution image fusion
    • V. Petrovic, and C. Xydeas Gradient-based multiresolution image fusion IEEE Trans. Image Process. 13 2 2004 228 237
    • (2004) IEEE Trans. Image Process. , vol.13 , Issue.2 , pp. 228-237
    • Petrovic, V.1    Xydeas, C.2
  • 5
    • 0028975378 scopus 로고
    • Multisensor image fusion using the wavelet transform
    • H. Li, B. Manjunath, and S. Mitra Multisensor image fusion using the wavelet transform Graph. Models Image Process. 57 3 1995 235 245
    • (1995) Graph. Models Image Process. , vol.57 , Issue.3 , pp. 235-245
    • Li, H.1    Manjunath, B.2    Mitra, S.3
  • 8
    • 33846636743 scopus 로고    scopus 로고
    • Remote sensing image fusion using the curvelet transform
    • F. Nencini, A. Garzelli, S. Baronti, and L. Alparone Remote sensing image fusion using the curvelet transform Inform. Fusion 8 2 2007 143 156
    • (2007) Inform. Fusion , vol.8 , Issue.2 , pp. 143-156
    • Nencini, F.1    Garzelli, A.2    Baronti, S.3    Alparone, L.4
  • 9
    • 62749094298 scopus 로고    scopus 로고
    • Multifocus image fusion using the nonsubsampled contourlet transform
    • Q. Zhang, and B. Guo Multifocus image fusion using the nonsubsampled contourlet transform Signal Process. 89 7 2009 1334 1346
    • (2009) Signal Process. , vol.89 , Issue.7 , pp. 1334-1346
    • Zhang, Q.1    Guo, B.2
  • 10
    • 0242270987 scopus 로고    scopus 로고
    • A general framework for multiresolution image fusion: From pixels to regions
    • G. Piella A general framework for multiresolution image fusion: from pixels to regions Inform. Fusion 4 4 2003 259 280
    • (2003) Inform. Fusion , vol.4 , Issue.4 , pp. 259-280
    • Piella, G.1
  • 11
    • 78650564982 scopus 로고    scopus 로고
    • Performance comparison of different multi-resolution transforms for image fusion
    • S. Li, B. Yang, and J. Hu Performance comparison of different multi-resolution transforms for image fusion Inform. Fusion 12 2 2011 74 84
    • (2011) Inform. Fusion , vol.12 , Issue.2 , pp. 74-84
    • Li, S.1    Yang, B.2    Hu, J.3
  • 12
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive field properties by learning a sparse code for natural images
    • B.A. Olshausen, and D.J. Field Emergence of simple-cell receptive field properties by learning a sparse code for natural images Nature 381 6583 1996 607 609
    • (1996) Nature , vol.381 , Issue.6583 , pp. 607-609
    • Olshausen, B.A.1    Field, D.J.2
  • 13
    • 33751379736 scopus 로고    scopus 로고
    • Image denoising via sparse and redundant representations over learned dictionaries
    • M. Elad, and M. Aharon Image denoising via sparse and redundant representations over learned dictionaries IEEE Trans. Image Process. 15 2 2006 3736 3745
    • (2006) IEEE Trans. Image Process. , vol.15 , Issue.2 , pp. 3736-3745
    • Elad, M.1    Aharon, M.2
  • 14
    • 77949422825 scopus 로고    scopus 로고
    • Multifocus image fusion and restoration with sparse representation
    • B. Yang, and S. Li Multifocus image fusion and restoration with sparse representation IEEE Trans. Instrum. Meas. 59 4 2010 884 892
    • (2010) IEEE Trans. Instrum. Meas. , vol.59 , Issue.4 , pp. 884-892
    • Yang, B.1    Li, S.2
  • 15
    • 80053987231 scopus 로고    scopus 로고
    • Pixel-level image fusion with simultaneous orthogonal matching pursuit
    • B. Yang, and S. Li Pixel-level image fusion with simultaneous orthogonal matching pursuit Inform. Fusion 13 1 2012 10 19
    • (2012) Inform. Fusion , vol.13 , Issue.1 , pp. 10-19
    • Yang, B.1    Li, S.2
  • 16
    • 80051765671 scopus 로고    scopus 로고
    • Image features extraction and fusion based on joint sparse representation
    • N. Yu, T. Qiu, F. Bi, and A. Wang Image features extraction and fusion based on joint sparse representation IEEE J. Sel. Topics Signal Process. 5 5 2011 1074 1082
    • (2011) IEEE J. Sel. Topics Signal Process. , vol.5 , Issue.5 , pp. 1074-1082
    • Yu, N.1    Qiu, T.2    Bi, F.3    Wang, A.4
  • 17
    • 84891313062 scopus 로고    scopus 로고
    • Multi-focus image fusion based on sparse representation with adaptive sparse domain selection
    • Y. Liu, Z. Wang, Multi-focus image fusion based on sparse representation with adaptive sparse domain selection, in: Proceedings of 7th International Conference on Image and Graphics, 2013, pp. 591-596.
    • (2013) Proceedings of 7th International Conference on Image and Graphics , pp. 591-596
    • Liu, Y.1    Wang, Z.2
  • 18
    • 84885423284 scopus 로고    scopus 로고
    • Simultaneous image fusion and super-resolution using sparse representation
    • H. Yin, S. Li, and L. Fang Simultaneous image fusion and super-resolution using sparse representation Inform. Fusion 14 3 2013 229 240
    • (2013) Inform. Fusion , vol.14 , Issue.3 , pp. 229-240
    • Yin, H.1    Li, S.2    Fang, L.3
  • 19
    • 0034299822 scopus 로고    scopus 로고
    • Multi-frame compression: Theory and design
    • K. Engan, S.O. Aase, and J.H. Husoy Multi-frame compression: theory and design Signal Process. 80 10 2000 2121 2140
    • (2000) Signal Process. , vol.80 , Issue.10 , pp. 2121-2140
    • Engan, K.1    Aase, S.O.2    Husoy, J.H.3
  • 20
    • 33750383209 scopus 로고    scopus 로고
    • K-svd: An algorithm for designing overcomplete dictionaries for sparse representation
    • M. Aharon, M. Elad, and A. Bruckstein K-svd: an algorithm for designing overcomplete dictionaries for sparse representation IEEE Trans. Signal Process. 54 11 2006 4311 4322
    • (2006) IEEE Trans. Signal Process. , vol.54 , Issue.11 , pp. 4311-4322
    • Aharon, M.1    Elad, M.2    Bruckstein, A.3
  • 21
    • 0027842081 scopus 로고
    • Matching pursuits with time-frequency dictionaries
    • S. Mallat, and Z. Zhang Matching pursuits with time-frequency dictionaries IEEE Trans. Signal Process. 41 12 1993 3397 3415
    • (1993) IEEE Trans. Signal Process. , vol.41 , Issue.12 , pp. 3397-3415
    • Mallat, S.1    Zhang, Z.2
  • 22
    • 70349620393 scopus 로고    scopus 로고
    • A plurality of sparse representations is better than the sparsest one alone
    • M. Elad, and I. Yavneh A plurality of sparse representations is better than the sparsest one alone IEEE Trans. Inf. Theory 55 10 2009 4701 4714
    • (2009) IEEE Trans. Inf. Theory , vol.55 , Issue.10 , pp. 4701-4714
    • Elad, M.1    Yavneh, I.2
  • 23
    • 0033908184 scopus 로고    scopus 로고
    • Objective image fusion performance measure
    • C.S. Xydeas, and V.S. Petrovic Objective image fusion performance measure Electron. Lett. 36 4 2000 308 309
    • (2000) Electron. Lett. , vol.36 , Issue.4 , pp. 308-309
    • Xydeas, C.S.1    Petrovic, V.S.2
  • 24
    • 63849287542 scopus 로고    scopus 로고
    • Performance assessment of combinative pixel-level image fusion based on an absolute feature measurement
    • J. Zhao, R. Laganiere, and Z. Liu Performance assessment of combinative pixel-level image fusion based on an absolute feature measurement Int. J. Innovative Comput. Inf. Control 6 A3 2007 1433 1447
    • (2007) Int. J. Innovative Comput. Inf. Control , vol.6 , Issue.3 , pp. 1433-1447
    • Zhao, J.1    Laganiere, R.2    Liu, Z.3
  • 25
    • 1942436689 scopus 로고    scopus 로고
    • Image quality assessment: From error visibility to structural similarity
    • Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli Image quality assessment: from error visibility to structural similarity IEEE Trans. Image Process. 13 4 2004 600 612
    • (2004) IEEE Trans. Image Process. , vol.13 , Issue.4 , pp. 600-612
    • Wang, Z.1    Bovik, A.2    Sheikh, H.3    Simoncelli, E.4
  • 27
    • 85028162181 scopus 로고    scopus 로고
    • X. Qu, 2012. < http://www.quxiaobo.org/index.html >.
    • (2012)
    • Qu, X.1
  • 28
    • 81855191848 scopus 로고    scopus 로고
    • Objective assessment of multiresolution image fusion algorithms for context enhancement in night vision: A comparative study
    • Z. Liu, E. Blasch, Z. Xue, J. Zhao, R. Laganiere, and W. Wu Objective assessment of multiresolution image fusion algorithms for context enhancement in night vision: a comparative study IEEE Trans. Pattern Anal. Mach. Intell. 34 1 2012 94 109
    • (2012) IEEE Trans. Pattern Anal. Mach. Intell. , vol.34 , Issue.1 , pp. 94-109
    • Liu, Z.1    Blasch, E.2    Xue, Z.3    Zhao, J.4    Laganiere, R.5    Wu, W.6
  • 29
    • 84878331557 scopus 로고    scopus 로고
    • Image fusion with guided filtering
    • S. Li, X. Kang, and J. Hu Image fusion with guided filtering IEEE Trans. Image Process. 22 7 2013 2864 2875
    • (2013) IEEE Trans. Image Process. , vol.22 , Issue.7 , pp. 2864-2875
    • Li, S.1    Kang, X.2    Hu, J.3
  • 30
    • 85028144207 scopus 로고    scopus 로고
    • X. Kang, 2013. < http://xudongkang.weebly.com/index.html >.
    • (2013)
    • Kang, X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.