메뉴 건너뛰기




Volumn 07-12-June-2015, Issue , 2015, Pages 5135-5143

Fast and flexible convolutional sparse coding

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; COMPUTER VISION; CONVOLUTION; IMAGE CODING; LEARNING SYSTEMS; PATTERN RECOGNITION;

EID: 84959235606     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2015.7299149     Document Type: Conference Paper
Times cited : (301)

References (24)
  • 1
    • 84897734209 scopus 로고    scopus 로고
    • Frame-based image deblurring with unknown boundary conditions using the alternating direction method of multipliers
    • M. S. Almeida and M. A. Figueiredo. Frame-based image deblurring with unknown boundary conditions using the alternating direction method of multipliers. In Proc. ICIP, pages 582-585, 2013.
    • (2013) Proc. ICIP , pp. 582-585
    • Almeida, M.S.1    Figueiredo, M.A.2
  • 2
    • 80051762104 scopus 로고    scopus 로고
    • Distributed optimization and statistical learning via the alternating direction method of multipliers
    • S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning, 3(1):1-122, 2011.
    • (2011) Foundations and Trends in Machine Learning , vol.3 , Issue.1 , pp. 1-122
    • Boyd, S.1    Parikh, N.2    Chu, E.3    Peleato, B.4    Eckstein, J.5
  • 3
    • 84887381827 scopus 로고    scopus 로고
    • Fast convolutional sparse coding
    • H. Bristow, A. Eriksson, and S. Lucey. Fast convolutional sparse coding. In Proc. CVPR, pages 391-398, 2013.
    • (2013) Proc. CVPR , pp. 391-398
    • Bristow, H.1    Eriksson, A.2    Lucey, S.3
  • 5
    • 59749104367 scopus 로고    scopus 로고
    • From sparse solutions of systems of equations to sparse modeling of signals and images
    • A. M. Bruckstein, D. L. Donoho, and M. Elad. From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM review, 51(1):34-81, 2009.
    • (2009) SIAM Review , vol.51 , Issue.1 , pp. 34-81
    • Bruckstein, A.M.1    Donoho, D.L.2    Elad, M.3
  • 6
    • 85032752418 scopus 로고    scopus 로고
    • Convex optimization for big data: Scalable, randomized, and parallel algorithms for big data analytics
    • V. Cevher, S. Becker, and M. Schmidt. Convex optimization for big data: Scalable, randomized, and parallel algorithms for big data analytics. IEEE Signal Processing Magazine, 31(5):32-43, 2014.
    • (2014) IEEE Signal Processing Magazine , vol.31 , Issue.5 , pp. 32-43
    • Cevher, V.1    Becker, S.2    Schmidt, M.3
  • 7
    • 84879853859 scopus 로고    scopus 로고
    • Deep learning with hierarchical convolutional factor analysis
    • B. Chen, G. Polatkan, G. Sapiro, D. Blei, D. Dunson, and L. Carin. Deep learning with hierarchical convolutional factor analysis. IEEE Trans. PAMI, 35(8):1887-1901, 2013.
    • (2013) IEEE Trans. PAMI , vol.35 , Issue.8 , pp. 1887-1901
    • Chen, B.1    Polatkan, G.2    Sapiro, G.3    Blei, D.4    Dunson, D.5    Carin, L.6
  • 9
    • 80053205731 scopus 로고    scopus 로고
    • Shiftinvariance sparse coding for audio classification
    • R. B. Grosse, R. Raina, H. Kwong, and A. Y. Ng. Shiftinvariance sparse coding for audio classification. In Proc. UAI, pages 149-158, 2007.
    • (2007) Proc. UAI , pp. 149-158
    • Grosse, R.B.1    Raina, R.2    Kwong, H.3    Ng, A.Y.4
  • 11
    • 84908191566 scopus 로고    scopus 로고
    • Imaging in scattering media using correlation image sensors and sparse convolutional coding
    • Oct
    • F. Heide, L. Xiao, A. Kolb, M. B. Hullin, and W. Heidrich. Imaging in scattering media using correlation image sensors and sparse convolutional coding. OSA Opt. Exp., 22(21):26338-26350, Oct 2014.
    • (2014) OSA Opt. Exp. , vol.22 , Issue.21 , pp. 26338-26350
    • Heide, F.1    Xiao, L.2    Kolb, A.3    Hullin, M.B.4    Heidrich, W.5
  • 12
    • 84901716502 scopus 로고    scopus 로고
    • Robust and accurate transient light transport decomposition via convolutional sparse coding
    • X. Hu, Y. Deng, X. Lin, J. Suo, Q. Dai, C. Barsi, and R. Raskar. Robust and accurate transient light transport decomposition via convolutional sparse coding. OSA Opt. Lett., 39(11):3177-3180, 2014.
    • (2014) OSA Opt. Lett. , vol.39 , Issue.11 , pp. 3177-3180
    • Hu, X.1    Deng, Y.2    Lin, X.3    Suo, J.4    Dai, Q.5    Barsi, C.6    Raskar, R.7
  • 15
    • 84897985593 scopus 로고    scopus 로고
    • Dual-coded compressive hyperspectral imaging
    • X. Lin, G. Wetzstein, Y. Liu, and Q. Dai. Dual-coded compressive hyperspectral imaging. OSA Opt. Lett., 39(7):2044-2047, 2014.
    • (2014) OSA Opt. Lett. , vol.39 , Issue.7 , pp. 2044-2047
    • Lin, X.1    Wetzstein, G.2    Liu, Y.3    Dai, Q.4
  • 16
    • 71149119964 scopus 로고    scopus 로고
    • Online dictionary learning for sparse coding
    • ACM
    • J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online dictionary learning for sparse coding. In Proc. ICML, pages 689-696. ACM, 2009.
    • (2009) Proc. ICML , pp. 689-696
    • Mairal, J.1    Bach, F.2    Ponce, J.3    Sapiro, G.4
  • 17
    • 84880766672 scopus 로고    scopus 로고
    • Compressive light field photography using overcomplete dictionaries and optimized projections
    • K. Marwah, G. Wetzstein, Y. Bando, and R. Raskar. Compressive light field photography using overcomplete dictionaries and optimized projections. ACM Trans. Graph. (SIG-GRAPH), 32(4):46:1-46:12, 2013.
    • (2013) ACM Trans. Graph. (SIG-GRAPH) , vol.32 , Issue.4 , pp. 461-4612
    • Marwah, K.1    Wetzstein, G.2    Bando, Y.3    Raskar, R.4
  • 18
    • 0030779611 scopus 로고    scopus 로고
    • Sparse coding with an overcomplete basis set: A strategy employed by v1
    • B. A. Olshausen and D. J. Field. Sparse coding with an overcomplete basis set: A strategy employed by v1? Vision Re-search, 37(23):3311-3325, 1997.
    • (1997) Vision Re-search , vol.37 , Issue.23 , pp. 3311-3325
    • Olshausen, B.A.1    Field, D.J.2
  • 23
    • 84856686379 scopus 로고    scopus 로고
    • Adaptive deconvolutional networks for mid and high level feature learning
    • M. D. Zeiler, G. W. Taylor, and R. Fergus. Adaptive deconvolutional networks for mid and high level feature learning. In Proc. ICCV, pages 2018-2025, 2011.
    • (2011) Proc. ICCV , pp. 2018-2025
    • Zeiler, M.D.1    Taylor, G.W.2    Fergus, R.3
  • 24
    • 84856650948 scopus 로고    scopus 로고
    • From learning models of natural image patches to whole image restoration
    • D. Zoran and Y. Weiss. From learning models of natural image patches to whole image restoration. In Proc. ICCV, pages 479-486, 2011.
    • (2011) Proc. ICCV , pp. 479-486
    • Zoran, D.1    Weiss, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.