메뉴 건너뛰기




Volumn 07-12-June-2015, Issue , 2015, Pages 4353-4361

Learning to compare image patches via convolutional neural networks

Author keywords

[No Author keywords available]

Indexed keywords

NETWORK ARCHITECTURE; NEURAL NETWORKS; PATTERN RECOGNITION;

EID: 84959179619     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2015.7299064     Document Type: Conference Paper
Times cited : (1658)

References (28)
  • 1
    • 84887398176 scopus 로고    scopus 로고
    • Sparse quantization for patch description
    • X. Boix, M. Gygli, G. Roig, and L. Van Gool. Sparse quantization for patch description. In CVPR, 2013
    • (2013) CVPR
    • Boix, X.1    Gygli, M.2    Roig, G.3    Van Gool, L.4
  • 2
    • 24644437539 scopus 로고
    • Signature verification using a "siamese" time delay neural network
    • J. Bromley, I. Guyon, Y. LeCun, E. Sckinger, and R. Shah. Signature verification using a "siamese" time delay neural network. In NIPS, 1994
    • (1994) NIPS
    • Bromley, J.1    Guyon, I.2    LeCun, Y.3    Sckinger, E.4    Shah, R.5
  • 6
    • 24644436425 scopus 로고    scopus 로고
    • Learning a similarity metric discriminatively, with application to face verification
    • S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity metric discriminatively, with application to face verification. In CVPR, 2005
    • (2005) CVPR
    • Chopra, S.1    Hadsell, R.2    LeCun, Y.3
  • 8
    • 84937857001 scopus 로고    scopus 로고
    • Inference by learning: Speeding-up graphical model optimization via a coarse-to-fine cascade of pruning classifier
    • B. Conejo, N. Komodakis, S. Leprince, and J.-P. Avouac. Inference by learning: Speeding-up graphical model optimization via a coarse-to-fine cascade of pruning classifier. In NIPS, 2014
    • (2014) NIPS
    • Conejo, B.1    Komodakis, N.2    Leprince, S.3    Avouac, J.-P.4
  • 9
    • 84937943470 scopus 로고    scopus 로고
    • Depth map prediction from a single image using a multi-scale deep network
    • D. Eigen, C. Puhrsch, and R. Fergus. Depth map prediction from a single image using a multi-scale deep network. In NIPS, 2014
    • (2014) NIPS
    • Eigen, D.1    Puhrsch, C.2    Fergus, R.3
  • 10
    • 84959203355 scopus 로고    scopus 로고
    • Descriptor matching with convolutional neural networks: A comparison to SIFT
    • abs/1405. 5769
    • P. Fischer, A. Dosovitskiy, and T. Brox. Descriptor matching with convolutional neural networks: a comparison to SIFT. CoRR, abs/1405. 5769, 2014
    • (2014) CoRR
    • Fischer, P.1    Dosovitskiy, A.2    Brox, T.3
  • 11
    • 84906508687 scopus 로고    scopus 로고
    • Spatial pyramid pooling in deep convolutional networks for visual recognition
    • K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling in deep convolutional networks for visual recognition. In ECCV14, pages III: 346-361, 2014
    • (2014) ECCV , vol.14 , pp. III346-361
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 12
    • 34948898052 scopus 로고    scopus 로고
    • Fast, approximately optimal solutions for single and dynamic MRFs
    • N. Komodakis, G. Tziritas, and N. Paragios. Fast, approximately optimal solutions for single and dynamic MRFs. In CVPR, 2007
    • (2007) CVPR
    • Komodakis, N.1    Tziritas, G.2    Paragios, N.3
  • 13
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • F. Pereira, C. Burges, L. Bottou, and K. Weinberger, editors,Curran Associates, Inc
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In F. Pereira, C. Burges, L. Bottou, and K. Weinberger, editors, Advances in Neural Information Processing Systems 25, pages 1097-1105. Curran Associates, Inc., 2012
    • (2012) Advances in Neural Information Processing Systems , vol.25 , pp. 1097-1105
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 15
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D. G. Lowe. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60:91-110, 2004
    • (2004) International Journal of Computer Vision , vol.60 , pp. 91-110
    • Lowe, D.G.1
  • 17
    • 34948866276 scopus 로고    scopus 로고
    • Learning visual similarity measures for comparing never seen objects
    • Minneapolis, United States, June,IEEE Computer society
    • E. Nowak and F. Jurie. Learning Visual Similarity Measures for Comparing Never Seen Objects. In CPVR 2007-IEEE Conference on Computer Vision and Pattern Recog-nition, pages 1-8, Minneapolis, United States, June 2007. IEEE Computer society
    • (2007) CPVR 2007-IEEE Conference on Computer Vision and Pattern Recog-nition , pp. 1-8
    • Nowak, E.1    Jurie, F.2
  • 20
    • 84933585162 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • abs/1409. 1556
    • K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. CoRR, abs/1409. 1556, 2014
    • (2014) CoRR
    • Simonyan, K.1    Zisserman, A.2
  • 21
    • 33749254973 scopus 로고    scopus 로고
    • Photo tourism: Exploring photo collections in 3d
    • July
    • N. Snavely, S. M. Seitz, and R. Szeliski. Photo tourism: Exploring photo collections in 3d. ACM Trans. Graph., 25(3):835-846, July 2006
    • (2006) ACM Trans. Graph , vol.25 , Issue.3 , pp. 835-846
    • Snavely, N.1    Seitz, S.M.2    Szeliski, R.3
  • 22
    • 51849148010 scopus 로고    scopus 로고
    • Modeling the world from internet photo collections
    • Nov
    • N. Snavely, S. M. Seitz, and R. Szeliski. Modeling the world from internet photo collections. Int. J. Comput. Vision, 80(2):189-210, Nov. 2008
    • (2008) Int. J. Comput. Vision , vol.80 , Issue.2 , pp. 189-210
    • Snavely, N.1    Seitz, S.M.2    Szeliski, R.3
  • 28
    • 84959189239 scopus 로고    scopus 로고
    • Computing the stereo matching cost with a convolutional neural network
    • abs/1409. 4326
    • J. Zbontar and Y. LeCun. Computing the stereo matching cost with a convolutional neural network. CoRR, abs/1409. 4326, 2014.
    • (2014) CoRR
    • Zbontar, J.1    LeCun, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.