메뉴 건너뛰기




Volumn , Issue , 2017, Pages

A residual convolutional neural network for pan-shaprening

Author keywords

CNN; pan sharpening; Residuals; spectral distortion

Indexed keywords

NEURAL NETWORKS; REMOTE SENSING; SPECTRAL RESOLUTION; SPECTROSCOPY;

EID: 85025614872     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/RSIP.2017.7958807     Document Type: Conference Paper
Times cited : (77)

References (17)
  • 2
    • 84993982662 scopus 로고    scopus 로고
    • Pansharpening by convolutional neural networks
    • Jul
    • G. Masi, D. Cozzolino, L. Verdoliva, and G. Scarpa, "Pansharpening by Convolutional Neural Networks," Remote Sensing, vol. 8, no. 7, p. 594-615, Jul. 2016
    • (2016) Remote Sensing , vol.8 , Issue.7 , pp. 594-615
    • Masi, G.1    Cozzolino, D.2    Verdoliva, L.3    Scarpa, G.4
  • 3
    • 0024471260 scopus 로고
    • Extracting spectral contrast in landsat thematic mapper image data using selective principal component analysis
    • March
    • P. S. Chavez Jr. and A.Y. Kwarteng. "Extracting spectral contrast in Landsat Thematic Mapper image data using selective principal component analysis." Photogrammetric Engineering and Remote Sensing, vol. 55, no. 5, pp. 339-348, March 1989
    • (1989) Photogrammetric Engineering and Remote Sensing , vol.55 , Issue.5 , pp. 339-348
    • Chavez, P.S.1    Kwarteng, A.Y.2
  • 4
    • 65049091833 scopus 로고    scopus 로고
    • Improving component substitution pansharpening through multivariate regression of ms + pan data
    • Oct
    • B. Aiazzi, S. Baronti, and M. Selva, "Improving Component Substitution Pansharpening Through Multivariate Regression of MS + Pan Data," IEEE Transactions on Geoscience and Remote Sensing, vol. 45, no. 10, pp. 3230-3239, Oct. 2007.
    • (2007) IEEE Transactions on Geoscience and Remote Sensing , vol.45 , Issue.10 , pp. 3230-3239
    • Aiazzi, B.1    Baronti, S.2    Selva, M.3
  • 5
    • 0024700097 scopus 로고
    • A theory for multiresolution signal decomposition: The wavelet representation
    • Jul
    • S. Mallat, "A theory for multiresolution signal decomposition: The wavelet representation," IEEE Trans. Pattern Anal. Mach. Intell., vol. 11, no. 7, pp. 674-693, Jul. 1989
    • (1989) IEEE Trans. Pattern Anal. Mach. Intell , vol.11 , Issue.7 , pp. 674-693
    • Mallat, S.1
  • 7
    • 0020737631 scopus 로고
    • The laplacian pyramid as a compact image code
    • Apr
    • P. Burt and E. Adelson, "The Laplacian Pyramid as a Compact Image Code," IEEE Transactions on Communications, vol. 31, no. 4, pp. 532-540, Apr. 1983.
    • (1983) IEEE Transactions on Communications , vol.31 , Issue.4 , pp. 532-540
    • Burt, P.1    Adelson, E.2
  • 13
    • 27844607355 scopus 로고    scopus 로고
    • Introduction of sensor spectral response into image fusion methods. Application to wavelet-based methods
    • Oct
    • X. Otazu, M. Gonzalez-Audicana, O. Fors, and J. Nunez, "Introduction of sensor spectral response into image fusion methods. Application to wavelet-based methods," IEEE Transactions on Geoscience and Remote Sensing, vol. 43, no. 10, pp. 2376-2385, Oct. 2005.
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.10 , pp. 2376-2385
    • Otazu, X.1    Gonzalez-Audicana, M.2    Fors, O.3    Nunez, J.4
  • 16
    • 0031284883 scopus 로고    scopus 로고
    • Fusion of satellite images of different spatial resolutions: Assessing the quality of resulting images
    • June
    • L. Wald, T. Ranchin, and M. Mangolini, Fusion of satellite images of different spatial resolutions: assessing the quality of resulting images, A Photogrammetric Engineering and Remote Sensing, vol. 63, no. 6, pp. 691-699, June 1997
    • (1997) A Photogrammetric Engineering and Remote Sensing , vol.63 , Issue.6 , pp. 691-699
    • Wald, L.1    Ranchin, T.2    Mangolini, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.