-
1
-
-
84923921660
-
Metabolic engineering strategies for microbial synthesis of oleochemicals
-
Pfleger, B.F., Gossing, M., Nielsen, J., Metabolic engineering strategies for microbial synthesis of oleochemicals. Metab Eng 29 (2015), 1–11.
-
(2015)
Metab Eng
, vol.29
, pp. 1-11
-
-
Pfleger, B.F.1
Gossing, M.2
Nielsen, J.3
-
2
-
-
84959449436
-
Dedicated industrial oilseed crops as metabolic engineering platforms for sustainable industrial feedstock production
-
Zhu, L.-H., Krens, F., Smith, M.A., Li, X., Qi, W., Loo, E.N. van, Iven, T., Feussner, I., Nazarenus, T.J., Huai, D., et al. Dedicated industrial oilseed crops as metabolic engineering platforms for sustainable industrial feedstock production. Sci Rep, 6, 2016, srep22181.
-
(2016)
Sci Rep
, vol.6
, pp. srep22181
-
-
Zhu, L.-H.1
Krens, F.2
Smith, M.A.3
Li, X.4
Qi, W.5
Loo, E.N.V.6
Iven, T.7
Feussner, I.8
Nazarenus, T.J.9
Huai, D.10
-
3
-
-
85028227935
-
Prospects of 2nd generation biodiesel as a sustainable fuel — Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies
-
Bhuiya, M.M.K., Rasul, M.G., Khan, M.M.K., Ashwath, N., Azad, A.K., Prospects of 2nd generation biodiesel as a sustainable fuel — Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies. Renew Sustain Energy Rev 55 (2016), 1109–1128.
-
(2016)
Renew Sustain Energy Rev
, vol.55
, pp. 1109-1128
-
-
Bhuiya, M.M.K.1
Rasul, M.G.2
Khan, M.M.K.3
Ashwath, N.4
Azad, A.K.5
-
4
-
-
84923093066
-
Life cycle assessment of five vegetable oils
-
Schmidt, J.H., Life cycle assessment of five vegetable oils. J Clean Prod 87 (2015), 130–138.
-
(2015)
J Clean Prod
, vol.87
, pp. 130-138
-
-
Schmidt, J.H.1
-
5
-
-
84931087285
-
Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers
-
Isikgor, H., Remzi Becer, F.C., Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym Chem 6 (2015), 4497–4559.
-
(2015)
Polym Chem
, vol.6
, pp. 4497-4559
-
-
Isikgor, H.1
Remzi Becer, F.C.2
-
6
-
-
84918530991
-
Microbial lipid-based lignocellulosic biorefinery: feasibility and challenges
-
Jin, M., Slininger, P.J., Dien, B.S., Waghmode, S., Moser, B.R., Orjuela, A., Sousa, L., da, C., Balan, V., Microbial lipid-based lignocellulosic biorefinery: feasibility and challenges. Trends Biotechnol 33 (2015), 43–54.
-
(2015)
Trends Biotechnol
, vol.33
, pp. 43-54
-
-
Jin, M.1
Slininger, P.J.2
Dien, B.S.3
Waghmode, S.4
Moser, B.R.5
Orjuela, A.6
Sousa, L.7
da, C.8
Balan, V.9
-
7
-
-
85017449220
-
A systematic optimization of medium chain fatty acid biosynthesis via the reverse beta-oxidation cycle in Escherichia coli
-
Wu, J., Zhang, X., Xia, X., Dong, M., A systematic optimization of medium chain fatty acid biosynthesis via the reverse beta-oxidation cycle in Escherichia coli. Metab Eng 41 (2017), 115–124.
-
(2017)
Metab Eng
, vol.41
, pp. 115-124
-
-
Wu, J.1
Zhang, X.2
Xia, X.3
Dong, M.4
-
8
-
-
84920194778
-
Microbial acetyl-CoA metabolism and metabolic engineering
-
Krivoruchko, A., Zhang, Y., Siewers, V., Chen, Y., Nielsen, J., Microbial acetyl-CoA metabolism and metabolic engineering. Metab Eng 28 (2015), 28–42.
-
(2015)
Metab Eng
, vol.28
, pp. 28-42
-
-
Krivoruchko, A.1
Zhang, Y.2
Siewers, V.3
Chen, Y.4
Nielsen, J.5
-
9
-
-
84899154669
-
Improved production of fatty acid ethyl esters in Saccharomyces cerevisiae through up-regulation of the ethanol degradation pathway and expression of the heterologous phosphoketolase pathway
-
Jong, B.W. de, Shi, S., Siewers, V., Nielsen, J., Improved production of fatty acid ethyl esters in Saccharomyces cerevisiae through up-regulation of the ethanol degradation pathway and expression of the heterologous phosphoketolase pathway. Microb Cell Factories, 13, 2014, 39.
-
(2014)
Microb Cell Factories
, vol.13
, pp. 39
-
-
Jong, B.W.D.1
Shi, S.2
Siewers, V.3
Nielsen, J.4
-
10
-
-
85053517843
-
Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories
-
ncomms11709 Achieved the highest so far free fatty acids titer (10 g/L) through optimization of cytosolic acetyl-CoA supply in S. cerevisiae. Investigated different combinations of expression of heterologous and native pathways as well as deletion of competing pathways for improved production of fatty alcohols and alkanes.
-
Zhou, Y.J., Buijs, N.A., Zhu, Z., Qin, J., Siewers, V., Nielsen, J., Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories. Nat Commun, 7, 2016 ncomms11709 Achieved the highest so far free fatty acids titer (10 g/L) through optimization of cytosolic acetyl-CoA supply in S. cerevisiae. Investigated different combinations of expression of heterologous and native pathways as well as deletion of competing pathways for improved production of fatty alcohols and alkanes.
-
(2016)
Nat Commun
, vol.7
-
-
Zhou, Y.J.1
Buijs, N.A.2
Zhu, Z.3
Qin, J.4
Siewers, V.5
Nielsen, J.6
-
11
-
-
85032804740
-
13C metabolic flux analysis for systematic metabolic engineering of S. cerevisiae for overproduction of fatty acids
-
Ghosh, A., Ando, D., Gin, J., Runguphan, W., Denby, C., Wang, G., Baidoo, E.E.K., Shymansky, C., Keasling, J.D., García Martín, H., 13C metabolic flux analysis for systematic metabolic engineering of S. cerevisiae for overproduction of fatty acids. Front Bioeng Biotechnol, 2016, 4.
-
(2016)
Front Bioeng Biotechnol
, pp. 4
-
-
Ghosh, A.1
Ando, D.2
Gin, J.3
Runguphan, W.4
Denby, C.5
Wang, G.6
Baidoo, E.E.K.7
Shymansky, C.8
Keasling, J.D.9
García Martín, H.10
-
12
-
-
84989918349
-
Engineering Yarrowia lipolytica as a platform for synthesis of drop-in transportation fuels and oleochemicals
-
First demonstration of fungal type I FAS engineering to obtain medium-chain-fatty acids. Presents various compartmentalization strategies, rewiring central carbon metabolism, and decoupling the product formation from growth.
-
Xu, P., Qiao, K., Ahn, W.S., Stephanopoulos, G., Engineering Yarrowia lipolytica as a platform for synthesis of drop-in transportation fuels and oleochemicals. Proc Natl Acad Sci 113 (2016), 10848–10853 First demonstration of fungal type I FAS engineering to obtain medium-chain-fatty acids. Presents various compartmentalization strategies, rewiring central carbon metabolism, and decoupling the product formation from growth.
-
(2016)
Proc Natl Acad Sci
, vol.113
, pp. 10848-10853
-
-
Xu, P.1
Qiao, K.2
Ahn, W.S.3
Stephanopoulos, G.4
-
13
-
-
84905060763
-
Enhancement of free fatty acid production in Saccharomyces cerevisiae by control of fatty acyl-CoA metabolism
-
Chen, L., Zhang, J., Lee, J., Chen, W.N., Enhancement of free fatty acid production in Saccharomyces cerevisiae by control of fatty acyl-CoA metabolism. Appl Microbiol Biotechnol 98 (2014), 6739–6750.
-
(2014)
Appl Microbiol Biotechnol
, vol.98
, pp. 6739-6750
-
-
Chen, L.1
Zhang, J.2
Lee, J.3
Chen, W.N.4
-
14
-
-
84924657793
-
Engineering lipid overproduction in the oleaginous yeast Yarrowia lipolytica
-
The study presents a novel, elegant approach to avoid the repression of acetyl-CoA carboxylase by increasing fatty-acyl-CoA desaturation. The result is a Y. lipolytica strain with improved growth, increased tolerance to sugars, and high-level lipid production.
-
Qiao, K., Imam Abidi, S.H., Liu, H., Zhang, H., Chakraborty, S., Watson, N., Kumaran Ajikumar, P., Stephanopoulos, G., Engineering lipid overproduction in the oleaginous yeast Yarrowia lipolytica. Metab Eng 29 (2015), 56–65 The study presents a novel, elegant approach to avoid the repression of acetyl-CoA carboxylase by increasing fatty-acyl-CoA desaturation. The result is a Y. lipolytica strain with improved growth, increased tolerance to sugars, and high-level lipid production.
-
(2015)
Metab Eng
, vol.29
, pp. 56-65
-
-
Qiao, K.1
Imam Abidi, S.H.2
Liu, H.3
Zhang, H.4
Chakraborty, S.5
Watson, N.6
Kumaran Ajikumar, P.7
Stephanopoulos, G.8
-
15
-
-
84938932084
-
Surveying the lipogenesis landscape in Yarrowia lipolytica through understanding the function of a Mga2p regulatory protein mutant
-
Liu, L., Markham, K., Blazeck, J., Zhou, N., Leon, D., Otoupal, P., Alper, H.S., Surveying the lipogenesis landscape in Yarrowia lipolytica through understanding the function of a Mga2p regulatory protein mutant. Metab Eng 31 (2015), 102–111.
-
(2015)
Metab Eng
, vol.31
, pp. 102-111
-
-
Liu, L.1
Markham, K.2
Blazeck, J.3
Zhou, N.4
Leon, D.5
Otoupal, P.6
Alper, H.S.7
-
16
-
-
84905668376
-
Improving fatty acids production by engineering dynamic pathway regulation and metabolic control
-
Xu, P., Li, L., Zhang, F., Stephanopoulos, G., Koffas, M., Improving fatty acids production by engineering dynamic pathway regulation and metabolic control. Proc Natl Acad Sci 111 (2014), 11299–11304.
-
(2014)
Proc Natl Acad Sci
, vol.111
, pp. 11299-11304
-
-
Xu, P.1
Li, L.2
Zhang, F.3
Stephanopoulos, G.4
Koffas, M.5
-
17
-
-
85020218418
-
Introduction of an acetyl-CoA carboxylation bypass into Escherichia coli for enhanced free fatty acid production
-
Shin, K.S., Lee, S.K., Introduction of an acetyl-CoA carboxylation bypass into Escherichia coli for enhanced free fatty acid production. Bioresour Technol, 2017, 169, 10.1016/j.biortech.2017.05.
-
(2017)
Bioresour Technol
, pp. 169
-
-
Shin, K.S.1
Lee, S.K.2
-
18
-
-
84929314719
-
The oxidative pentose phosphate pathway is the primary source of NADPH for lipid overproduction from glucose in Yarrowia lipolytica
-
Wasylenko, T.M., Ahn, W.S., Stephanopoulos, G., The oxidative pentose phosphate pathway is the primary source of NADPH for lipid overproduction from glucose in Yarrowia lipolytica. Metab Eng 30 (2015), 27–39.
-
(2015)
Metab Eng
, vol.30
, pp. 27-39
-
-
Wasylenko, T.M.1
Ahn, W.S.2
Stephanopoulos, G.3
-
19
-
-
85012009458
-
Lipid production in Yarrowia lipolytica is maximized by engineering cytosolic redox metabolism
-
This is the first demonstration that modulation of NADPH recovery pathways in Y. lipolytica can increase the theoretical maximum of lipid accumulation.
-
Qiao, K., Wasylenko, T.M., Zhou, K., Xu, P., Stephanopoulos, G., Lipid production in Yarrowia lipolytica is maximized by engineering cytosolic redox metabolism. Nat Biotechnol 35 (2017), 173–177 This is the first demonstration that modulation of NADPH recovery pathways in Y. lipolytica can increase the theoretical maximum of lipid accumulation.
-
(2017)
Nat Biotechnol
, vol.35
, pp. 173-177
-
-
Qiao, K.1
Wasylenko, T.M.2
Zhou, K.3
Xu, P.4
Stephanopoulos, G.5
-
20
-
-
85018602315
-
Engineering oxidative stress defense pathways to build a robust lipid production platform in Yarrowia lipolytica
-
Xu, P., Qiao, K., Stephanopoulos, G., Engineering oxidative stress defense pathways to build a robust lipid production platform in Yarrowia lipolytica. Biotechnol Bioeng 114 (2017), 1521–1530.
-
(2017)
Biotechnol Bioeng
, vol.114
, pp. 1521-1530
-
-
Xu, P.1
Qiao, K.2
Stephanopoulos, G.3
-
21
-
-
84939271662
-
Engineering Yarrowia lipolytica for production of medium-chain fatty acids
-
Rutter, C.D., Zhang, S., Rao, C.V., Engineering Yarrowia lipolytica for production of medium-chain fatty acids. Appl Microbiol Biotechnol 99 (2015), 7359–7368.
-
(2015)
Appl Microbiol Biotechnol
, vol.99
, pp. 7359-7368
-
-
Rutter, C.D.1
Zhang, S.2
Rao, C.V.3
-
22
-
-
85013200608
-
Expanding the product portfolio of fungal type I fatty acid synthases
-
Introduction of heterologous domains into reaction chamber of S. cerevisiae's fatty acid synthase enables production of short-chain and medium-chain fatty acids.
-
Zhu, Z., Zhou, Y.J., Krivoruchko, A., Grininger, M., Zhao, Z.K., Nielsen, J., Expanding the product portfolio of fungal type I fatty acid synthases. Nat Chem Biol 13 (2017), 360–362 Introduction of heterologous domains into reaction chamber of S. cerevisiae's fatty acid synthase enables production of short-chain and medium-chain fatty acids.
-
(2017)
Nat Chem Biol
, vol.13
, pp. 360-362
-
-
Zhu, Z.1
Zhou, Y.J.2
Krivoruchko, A.3
Grininger, M.4
Zhao, Z.K.5
Nielsen, J.6
-
23
-
-
85015191904
-
Engineering fungal de novo fatty acid synthesis for short chain fatty acid production
-
ncomms14650
-
Gajewski, J., Pavlovic, R., Fischer, M., Boles, E., Grininger, M., Engineering fungal de novo fatty acid synthesis for short chain fatty acid production. Nat Commun, 8, 2017 ncomms14650.
-
(2017)
Nat Commun
, vol.8
-
-
Gajewski, J.1
Pavlovic, R.2
Fischer, M.3
Boles, E.4
Grininger, M.5
-
24
-
-
85020019811
-
Metabolic engineering of Saccharomyces cerevisiae for production of very long chain fatty acid-derived chemicals
-
ncomms15587
-
Yu, T., Zhou, Y.J., Wenning, L., Liu, Q., Krivoruchko, A., Siewers, V., Nielsen, J., David, F., Metabolic engineering of Saccharomyces cerevisiae for production of very long chain fatty acid-derived chemicals. Nat Commun, 8, 2017 ncomms15587.
-
(2017)
Nat Commun
, vol.8
-
-
Yu, T.1
Zhou, Y.J.2
Wenning, L.3
Liu, Q.4
Krivoruchko, A.5
Siewers, V.6
Nielsen, J.7
David, F.8
-
25
-
-
84982699559
-
Engineered production of short chain fatty acid in Escherichia coli using fatty acid synthesis pathway
-
Jawed, K., Mattam, A.J., Fatma, Z., Wajid, S., Abdin, M.Z., Yazdani, S.S., Engineered production of short chain fatty acid in Escherichia coli using fatty acid synthesis pathway. PLOS ONE, 11, 2016, e0160035.
-
(2016)
PLOS ONE
, vol.11
, pp. e0160035
-
-
Jawed, K.1
Mattam, A.J.2
Fatma, Z.3
Wajid, S.4
Abdin, M.Z.5
Yazdani, S.S.6
-
26
-
-
84947714060
-
Modular and selective biosynthesis of gasoline-range alkanes
-
Sheppard, M.J., Kunjapur, A.M., Prather, K.L.J., Modular and selective biosynthesis of gasoline-range alkanes. Metab Eng 33 (2016), 28–40.
-
(2016)
Metab Eng
, vol.33
, pp. 28-40
-
-
Sheppard, M.J.1
Kunjapur, A.M.2
Prather, K.L.J.3
-
27
-
-
84945583610
-
Functional replacement of the Saccharomyces cerevisiae fatty acid synthase with a bacterial type II system allows flexible product profiles
-
Fernandez-Moya, R., Leber, C., Cardenas, J., Da Silva, N.A., Functional replacement of the Saccharomyces cerevisiae fatty acid synthase with a bacterial type II system allows flexible product profiles. Biotechnol Bioeng 112 (2015), 2618–2623.
-
(2015)
Biotechnol Bioeng
, vol.112
, pp. 2618-2623
-
-
Fernandez-Moya, R.1
Leber, C.2
Cardenas, J.3
Da Silva, N.A.4
-
28
-
-
84922429494
-
Synthesis of medium-chain length (C6–C10) fuels and chemicals via β-oxidation reversal in Escherichia coli
-
Kim, S., Clomburg, J.M., Gonzalez, R., Synthesis of medium-chain length (C6–C10) fuels and chemicals via β-oxidation reversal in Escherichia coli. J Ind Microbiol Biotechnol 42 (2015), 465–475.
-
(2015)
J Ind Microbiol Biotechnol
, vol.42
, pp. 465-475
-
-
Kim, S.1
Clomburg, J.M.2
Gonzalez, R.3
-
29
-
-
84922980443
-
Integrated engineering of β-oxidation reversal and ω-oxidation pathways for the synthesis of medium chain ω-functionalized carboxylic acids
-
Clomburg, J.M., Blankschien, M.D., Vick, J.E., Chou, A., Kim, S., Gonzalez, R., Integrated engineering of β-oxidation reversal and ω-oxidation pathways for the synthesis of medium chain ω-functionalized carboxylic acids. Metab Eng 28 (2015), 202–212.
-
(2015)
Metab Eng
, vol.28
, pp. 202-212
-
-
Clomburg, J.M.1
Blankschien, M.D.2
Vick, J.E.3
Chou, A.4
Kim, S.5
Gonzalez, R.6
-
30
-
-
84925666935
-
Reversal of the β-oxidation cycle in Saccharomyces cerevisiae for production of fuels and chemicals
-
Lian, J., Zhao, H., Reversal of the β-oxidation cycle in Saccharomyces cerevisiae for production of fuels and chemicals. ACS Synth Biol 4 (2015), 332–341.
-
(2015)
ACS Synth Biol
, vol.4
, pp. 332-341
-
-
Lian, J.1
Zhao, H.2
-
31
-
-
85000786739
-
Harnessing yeast peroxisomes for biosynthesis of fatty-acid-derived biofuels and chemicals with relieved side-pathway competition
-
The authors show that localizing the pathway for alkane biosynthesis in peroxisomes significantly decreases the degradation of pathway intermediates, fatty aldehydes, and improves the overall alkane production.
-
Zhou, Y.J., Buijs, N.A., Zhu, Z., Gómez, D.O., Boonsombuti, A., Siewers, V., Nielsen, J., Harnessing yeast peroxisomes for biosynthesis of fatty-acid-derived biofuels and chemicals with relieved side-pathway competition. J Am Chem Soc 138 (2016), 15368–15377 The authors show that localizing the pathway for alkane biosynthesis in peroxisomes significantly decreases the degradation of pathway intermediates, fatty aldehydes, and improves the overall alkane production.
-
(2016)
J Am Chem Soc
, vol.138
, pp. 15368-15377
-
-
Zhou, Y.J.1
Buijs, N.A.2
Zhu, Z.3
Gómez, D.O.4
Boonsombuti, A.5
Siewers, V.6
Nielsen, J.7
-
32
-
-
84971301690
-
Pathway compartmentalization in peroxisome of Saccharomyces cerevisiae to produce versatile medium chain fatty alcohols
-
Sheng, J., Stevens, J., Feng, X., Pathway compartmentalization in peroxisome of Saccharomyces cerevisiae to produce versatile medium chain fatty alcohols. Sci Rep, 6, 2016, srep26884.
-
(2016)
Sci Rep
, vol.6
, pp. srep26884
-
-
Sheng, J.1
Stevens, J.2
Feng, X.3
-
33
-
-
85007559982
-
Engineering of a high lipid producing Yarrowia lipolytica strain
-
Friedlander, J., Tsakraklides, V., Kamineni, A., Greenhagen, E.H., Consiglio, A.L., MacEwen, K., Crabtree, D.V., Afshar, J., Nugent, R.L., Hamilton, M.A., et al. Engineering of a high lipid producing Yarrowia lipolytica strain. Biotechnol Biofuels, 9, 2016, 77.
-
(2016)
Biotechnol Biofuels
, vol.9
, pp. 77
-
-
Friedlander, J.1
Tsakraklides, V.2
Kamineni, A.3
Greenhagen, E.H.4
Consiglio, A.L.5
MacEwen, K.6
Crabtree, D.V.7
Afshar, J.8
Nugent, R.L.9
Hamilton, M.A.10
-
34
-
-
84891866157
-
Metabolic engineering for ricinoleic acid production in the oleaginous yeast Yarrowia lipolytica
-
Beopoulos, A., Verbeke, J., Bordes, F., Guicherd, M., Bressy, M., Marty, A., Nicaud, J.-M., Metabolic engineering for ricinoleic acid production in the oleaginous yeast Yarrowia lipolytica. Appl Microbiol Biotechnol 98 (2014), 251–262.
-
(2014)
Appl Microbiol Biotechnol
, vol.98
, pp. 251-262
-
-
Beopoulos, A.1
Verbeke, J.2
Bordes, F.3
Guicherd, M.4
Bressy, M.5
Marty, A.6
Nicaud, J.-M.7
-
35
-
-
84992724435
-
Engineering Yarrowia lipolytica for efficient γ-linolenic acid production
-
Sun, M.-L., Madzak, C., Liu, H.-H., Song, P., Ren, L.-J., Huang, H., Ji, X.-J., Engineering Yarrowia lipolytica for efficient γ-linolenic acid production. Biochem Eng J 117:Part A (2017), 172–180.
-
(2017)
Biochem Eng J
, vol.117
, pp. 172-180
-
-
Sun, M.-L.1
Madzak, C.2
Liu, H.-H.3
Song, P.4
Ren, L.-J.5
Huang, H.6
Ji, X.-J.7
-
36
-
-
84922454029
-
Sustainable source of omega-3 eicosapentaenoic acid from metabolically engineered Yarrowia lipolytica: from fundamental research to commercial production
-
Summarizes the process for developing Y. lipolytica strains for commercial production of an omega-3 acid.
-
Xie, D., Jackson, E.N., Zhu, Q., Sustainable source of omega-3 eicosapentaenoic acid from metabolically engineered Yarrowia lipolytica: from fundamental research to commercial production. Appl Microbiol Biotechnol 99 (2015), 1599–1610 Summarizes the process for developing Y. lipolytica strains for commercial production of an omega-3 acid.
-
(2015)
Appl Microbiol Biotechnol
, vol.99
, pp. 1599-1610
-
-
Xie, D.1
Jackson, E.N.2
Zhu, Q.3
-
37
-
-
84883802093
-
Production of omega-3 eicosapentaenoic acid by metabolic engineering of Yarrowia lipolytica
-
Xue, Z., Sharpe, P.L., Hong, S.-P., Yadav, N.S., Xie, D., Short, D.R., Damude, H.G., Rupert, R.A., Seip, J.E., Wang, J., et al. Production of omega-3 eicosapentaenoic acid by metabolic engineering of Yarrowia lipolytica. Nat Biotechnol 31 (2013), 734–740.
-
(2013)
Nat Biotechnol
, vol.31
, pp. 734-740
-
-
Xue, Z.1
Sharpe, P.L.2
Hong, S.-P.3
Yadav, N.S.4
Xie, D.5
Short, D.R.6
Damude, H.G.7
Rupert, R.A.8
Seip, J.E.9
Wang, J.10
-
38
-
-
85011884621
-
Increasing cocoa butter-like lipid production of Saccharomyces cerevisiae by expression of selected cocoa genes
-
Wei, Y., Gossing, M., Bergenholm, D., Siewers, V., Nielsen, J., Increasing cocoa butter-like lipid production of Saccharomyces cerevisiae by expression of selected cocoa genes. AMB Express, 7, 2017, 34.
-
(2017)
AMB Express
, vol.7
, pp. 34
-
-
Wei, Y.1
Gossing, M.2
Bergenholm, D.3
Siewers, V.4
Nielsen, J.5
-
39
-
-
85011698049
-
Cocoa butter-like lipid production ability of non-oleaginous and oleaginous yeasts under nitrogen-limited culture conditions
-
Wei, Y., Siewers, V., Nielsen, J., Cocoa butter-like lipid production ability of non-oleaginous and oleaginous yeasts under nitrogen-limited culture conditions. Appl Microbiol Biotechnol 101 (2017), 3577–3585.
-
(2017)
Appl Microbiol Biotechnol
, vol.101
, pp. 3577-3585
-
-
Wei, Y.1
Siewers, V.2
Nielsen, J.3
-
40
-
-
84960131804
-
Metabolic engineering of Escherichia coli for the production of hydroxy fatty acids from glucose
-
Cao, Y., Cheng, T., Zhao, G., Niu, W., Guo, J., Xian, M., Liu, H., Metabolic engineering of Escherichia coli for the production of hydroxy fatty acids from glucose. BMC Biotechnol, 16, 2016, 26.
-
(2016)
BMC Biotechnol
, vol.16
, pp. 26
-
-
Cao, Y.1
Cheng, T.2
Zhao, G.3
Niu, W.4
Guo, J.5
Xian, M.6
Liu, H.7
-
41
-
-
84928426504
-
Long-chain alkane production by the yeast Saccharomyces cerevisiae
-
Buijs, N.A., Zhou, Y.J., Siewers, V., Nielsen, J., Long-chain alkane production by the yeast Saccharomyces cerevisiae. Biotechnol Bioeng 112 (2015), 1275–1279.
-
(2015)
Biotechnol Bioeng
, vol.112
, pp. 1275-1279
-
-
Buijs, N.A.1
Zhou, Y.J.2
Siewers, V.3
Nielsen, J.4
-
42
-
-
84982813844
-
Production of 1-decanol by metabolically engineered Yarrowia lipolytica
-
Rutter, C.D., Rao, C.V., Production of 1-decanol by metabolically engineered Yarrowia lipolytica. Metab Eng 38 (2016), 139–147.
-
(2016)
Metab Eng
, vol.38
, pp. 139-147
-
-
Rutter, C.D.1
Rao, C.V.2
-
43
-
-
84979608957
-
High production of fatty alcohols in Escherichia coli with fatty acid starvation
-
Liu, Y., Chen, S., Chen, J., Zhou, J., Wang, Y., Yang, M., Qi, X., Xing, J., Wang, Q., Ma, Y., High production of fatty alcohols in Escherichia coli with fatty acid starvation. Microb Cell Factories, 15, 2016, 129.
-
(2016)
Microb Cell Factories
, vol.15
, pp. 129
-
-
Liu, Y.1
Chen, S.2
Chen, J.3
Zhou, J.4
Wang, Y.5
Yang, M.6
Qi, X.7
Xing, J.8
Wang, Q.9
Ma, Y.10
-
44
-
-
85015199381
-
Dynamic regulation of fatty acid pools for improved production of fatty alcohols in Saccharomyces cerevisiae
-
Teixeira, P.G., Ferreira, R., Zhou, Y.J., Siewers, V., Nielsen, J., Dynamic regulation of fatty acid pools for improved production of fatty alcohols in Saccharomyces cerevisiae. Microb Cell Factories, 16, 2017, 45.
-
(2017)
Microb Cell Factories
, vol.16
, pp. 45
-
-
Teixeira, P.G.1
Ferreira, R.2
Zhou, Y.J.3
Siewers, V.4
Nielsen, J.5
-
45
-
-
85019099241
-
Functional screening of aldehyde decarbonylases for long-chain alkane production by Saccharomyces cerevisiae
-
Kang, M.-K., Zhou, Y.J., Buijs, N.A., Nielsen, J., Functional screening of aldehyde decarbonylases for long-chain alkane production by Saccharomyces cerevisiae. Microb Cell Factories, 16, 2017, 74.
-
(2017)
Microb Cell Factories
, vol.16
, pp. 74
-
-
Kang, M.-K.1
Zhou, Y.J.2
Buijs, N.A.3
Nielsen, J.4
-
46
-
-
84973513749
-
Heterologous biosynthesis and manipulation of alkanes in Escherichia coli
-
The study reports so far the highest titer of alkanes obtained in a microbial process. The authors systematically apply a variety of metabolic engineering strategies to optimize an E. coli strain.
-
Cao, Y.-X., Xiao, W.-H., Zhang, J.-L., Xie, Z.-X., Ding, M.-Z., Yuan, Y.-J., Heterologous biosynthesis and manipulation of alkanes in Escherichia coli. Metab Eng 38 (2016), 19–28 The study reports so far the highest titer of alkanes obtained in a microbial process. The authors systematically apply a variety of metabolic engineering strategies to optimize an E. coli strain.
-
(2016)
Metab Eng
, vol.38
, pp. 19-28
-
-
Cao, Y.-X.1
Xiao, W.-H.2
Zhang, J.-L.3
Xie, Z.-X.4
Ding, M.-Z.5
Yuan, Y.-J.6
-
47
-
-
84937678669
-
Combinatorial metabolic engineering of Saccharomyces cerevisiae for terminal alkene production
-
Chen, B., Lee, D.-Y., Chang, M.W., Combinatorial metabolic engineering of Saccharomyces cerevisiae for terminal alkene production. Metab Eng 31 (2015), 53–61.
-
(2015)
Metab Eng
, vol.31
, pp. 53-61
-
-
Chen, B.1
Lee, D.-Y.2
Chang, M.W.3
-
48
-
-
85006118807
-
Establishing very long-chain fatty alcohol and wax ester biosynthesis in Saccharomyces cerevisiae
-
Wenning, L., Yu, T., David, F., Nielsen, J., Siewers, V., Establishing very long-chain fatty alcohol and wax ester biosynthesis in Saccharomyces cerevisiae. Biotechnol Bioeng 114 (2017), 1025–1035.
-
(2017)
Biotechnol Bioeng
, vol.114
, pp. 1025-1035
-
-
Wenning, L.1
Yu, T.2
David, F.3
Nielsen, J.4
Siewers, V.5
-
49
-
-
84982801326
-
Metabolic engineering of microbial competitive advantage for industrial fermentation processes
-
Shaw, A.J., Lam, F.H., Hamilton, M., Consiglio, A., MacEwen, K., Brevnova, E.E., Greenhagen, E., LaTouf, W.G., South, C.R., Dijken, H. van, et al. Metabolic engineering of microbial competitive advantage for industrial fermentation processes. Science 353 (2016), 583–586.
-
(2016)
Science
, vol.353
, pp. 583-586
-
-
Shaw, A.J.1
Lam, F.H.2
Hamilton, M.3
Consiglio, A.4
MacEwen, K.5
Brevnova, E.E.6
Greenhagen, E.7
LaTouf, W.G.8
South, C.R.9
Dijken, H.V.10
-
50
-
-
84940245468
-
Microbial oils: an introductory overview of current status and future prospects
-
Ratledge, C., Microbial oils: an introductory overview of current status and future prospects. OCL, 20, 2013, D602.
-
(2013)
OCL
, vol.20
, pp. D602
-
-
Ratledge, C.1
-
51
-
-
84978759451
-
Overexpression of Δ12-fatty acid desaturase in the oleaginous yeast Rhodosporidium toruloides for production of linoleic acid-rich lipids
-
Wang, Y., Zhang, S., Pötter, M., Sun, W., Li, L., Yang, X., Jiao, X., Zhao, Z.K., Overexpression of Δ12-fatty acid desaturase in the oleaginous yeast Rhodosporidium toruloides for production of linoleic acid-rich lipids. Appl Biochem Biotechnol 180 (2016), 1497–1507.
-
(2016)
Appl Biochem Biotechnol
, vol.180
, pp. 1497-1507
-
-
Wang, Y.1
Zhang, S.2
Pötter, M.3
Sun, W.4
Li, L.5
Yang, X.6
Jiao, X.7
Zhao, Z.K.8
|