-
1
-
-
0003404931
-
-
Cambridge UK
-
Mudge, S. M., Belanger, S. E., & Nielsen, A. M. (The Royal Society of Chemistry, Cambridge, UK, 2008).
-
(2008)
The Royal Society of Chemistry
-
-
Mudge, S.M.1
Belanger, S.E.2
Nielsen, A.M.3
-
2
-
-
84886996793
-
Production of medium chain length fatty alcohols from glucose in Escherichia coli
-
doi: 10.1016/j.ymben.2013.10.006
-
Youngquist, J. T., et al. Production of medium chain length fatty alcohols from glucose in Escherichia coli. Metab Eng 20, 177-186, doi: 10.1016/j.ymben.2013.10.006 (2013).
-
(2013)
Metab Eng
, vol.20
, pp. 177-186
-
-
Youngquist, J.T.1
-
3
-
-
34247602166
-
Palm oil and palm kernel oil as raw materials for basic oleochemicals and biodiesel
-
Rupilius, W., & Ahmad, S. Palm oil and palm kernel oil as raw materials for basic oleochemicals and biodiesel. Eur J Lipid Sci Technol 109, 433-439 (2007).
-
(2007)
Eur J Lipid Sci Technol
, vol.109
, pp. 433-439
-
-
Rupilius, W.1
Ahmad, S.2
-
4
-
-
51649105840
-
How will oil palm expansion affect biodiversity?
-
Fitzherbert, E., et al How Will Oil Palm Expansion Affect Biodiversity?. Trends Ecol Evol 23, 538-545 (2008).
-
(2008)
Trends Ecol Evol
, vol.23
, pp. 538-545
-
-
Fitzherbert, E.1
-
5
-
-
33746655320
-
Environmental economic, and energetic costs and benefits of biodiesel and ethanol biofuels
-
doi: 10.1073/pnas.0604600103
-
Hill, J., Nelson, E., Tilman, D., Polasky, S., & Tiffany, D. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proceedings of the National Academy of Sciences of the United States of America 103, 11206-11210, doi: 10.1073/pnas.0604600103 (2006).
-
(2006)
Proceedings of the National Academy of Sciences of the United States of America
, vol.103
, pp. 11206-11210
-
-
Hill, J.1
Nelson, E.2
Tilman, D.3
Polasky, S.4
Tiffany, D.5
-
6
-
-
80052647009
-
Metabolic engineering of microbial pathways for advanced biofuels production
-
doi: 10.1016/j.copbio.2011.04.024
-
Zhang, F., Rodriguez, S., & Keasling, J. D. Metabolic engineering of microbial pathways for advanced biofuels production. Current opinion in biotechnology 22, 775-783, doi: 10.1016/j.copbio.2011.04.024 (2011).
-
(2011)
Current Opinion in Biotechnology
, vol.22
, pp. 775-783
-
-
Zhang, F.1
Rodriguez, S.2
Keasling, J.D.3
-
7
-
-
84891829362
-
Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals
-
doi: 10.1016/j.ymben.2013.07.003
-
Runguphan, W., & Keasling, J. D. Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals. Metab Eng 21, 103-113, doi: 10.1016/j.ymben.2013.07.003 (2014).
-
(2014)
Metab Eng
, vol.21
, pp. 103-113
-
-
Runguphan, W.1
Keasling, J.D.2
-
8
-
-
84909594452
-
Metabolic engineering of Saccharomyces cerevisiae to improve 1-hexadecanol production
-
doi: 10.1016/j.ymben.2014.10.001
-
Feng, X., Lian, J., & Zhao, H. Metabolic engineering of Saccharomyces cerevisiae to improve 1-hexadecanol production. Metab Eng 27, 10-19, doi: 10.1016/j.ymben.2014.10.001 (2015).
-
(2015)
Metab Eng
, vol.27
, pp. 10-19
-
-
Feng, X.1
Lian, J.2
Zhao, H.3
-
9
-
-
84871952399
-
Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities
-
Akhtar, M., Turner, N., & Jones, P. Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities. Proc Natl Acad Sci 110, 87-92 (2013).
-
(2013)
Proc Natl Acad Sci
, vol.110
, pp. 87-92
-
-
Akhtar, M.1
Turner, N.2
Jones, P.3
-
10
-
-
84861142495
-
Optimization of fatty alcohol biosynthesis pathway for selectively enhanced production of C12/14 and C16/18 fatty alcohols in engineered Escherichia coli
-
Zheng, Y., et al. Optimization of fatty alcohol biosynthesis pathway for selectively enhanced production of C12/14 and C16/18 fatty alcohols in engineered Escherichia coli. Microbial cell factories 11, 65 (2012).
-
(2012)
Microbial Cell Factories
, vol.11
, pp. 65
-
-
Zheng, Y.1
-
11
-
-
0031002077
-
Isolation of mutants of Acinetobacter calcoaceticus deficient in wax ester synthesis and complementation of one mutation with a gene encoding a fatty acyl coenzyme A reductase
-
Reiser, S., & Somerville, C. Isolation of mutants of Acinetobacter calcoaceticus deficient in wax ester synthesis and complementation of one mutation with a gene encoding a fatty acyl coenzyme A reductase. J Bacteriol 179, (1997).
-
(1997)
J Bacteriol
, vol.179
-
-
Reiser, S.1
Somerville, C.2
-
12
-
-
84864186953
-
Metabolic engineering of Saccharomyces cerevisiae: A key cell factory platform for future biorefineries
-
doi: 10.1007/s00018-012-0945-1
-
Hong, K. K., & Nielsen, J. Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries. Cellular and molecular life sciences: CMLS 69, 2671-2690, doi: 10.1007/s00018-012-0945-1 (2012).
-
(2012)
Cellular and Molecular Life Sciences: CMLS
, vol.69
, pp. 2671-2690
-
-
Hong, K.K.1
Nielsen, J.2
-
13
-
-
84933506269
-
Engineering the fatty acid metabolic pathway in Saccharomyces cerevisiae for advanced biofuel production
-
doi: 10.1016/j.meteno.2015.06.005
-
Tang, X., Lee, J., & Chen, W. N. Engineering the fatty acid metabolic pathway in Saccharomyces cerevisiae for advanced biofuel production. Metabolic Engineering Communications 2, 58-66, doi: 10.1016/j.meteno.2015.06.005 (2015).
-
(2015)
Metabolic Engineering Communications
, vol.2
, pp. 58-66
-
-
Tang, X.1
Lee, J.2
Chen, W.N.3
-
14
-
-
84945583610
-
Functional replacement of the Saccharomyces cerevisiae fatty acid synthase with a bacterial type II system allows flexible product profiles
-
doi: 10.1002/bit.25679
-
Fernandez-Moya, R., Leber, C., Cardenas, J., & Da Silva, N. A. Functional replacement of the Saccharomyces cerevisiae fatty acid synthase with a bacterial type II system allows flexible product profiles. Biotechnol Bioeng 112, 2618-2623, doi: 10.1002/bit.25679 (2015).
-
(2015)
Biotechnol Bioeng
, vol.112
, pp. 2618-2623
-
-
Fernandez-Moya, R.1
Leber, C.2
Cardenas, J.3
Da Silva, N.A.4
-
15
-
-
84890806590
-
Engineering of Saccharomyces cerevisiae for the synthesis of short chain fatty acids
-
doi: 10.1002/bit.25021
-
Leber, C., & Da Silva, N. A. Engineering of Saccharomyces cerevisiae for the synthesis of short chain fatty acids. Biotechnol Bioeng 111, 347-358, doi: 10.1002/bit.25021 (2014).
-
(2014)
Biotechnol Bioeng
, vol.111
, pp. 347-358
-
-
Leber, C.1
Da Silva, N.A.2
-
16
-
-
84959536640
-
Disrupted short chain specific beta-oxidation and improved synthase expression increase synthesis of short chain fatty acids in Saccharomyces cerevisiae
-
doi: 10.1002/bit.25839
-
Leber, C., Choi, J. W., Polson, B., & Da Silva, N. A. Disrupted short chain specific beta-oxidation and improved synthase expression increase synthesis of short chain fatty acids in Saccharomyces cerevisiae. Biotechnol Bioeng, doi: 10.1002/bit.25839 (2015).
-
(2015)
Biotechnol Bioeng
-
-
Leber, C.1
Choi, J.W.2
Polson, B.3
Da Silva, N.A.4
-
18
-
-
0031460363
-
Yeast peroxisomes: Function and biogenesis of a versatile cell organelle
-
doi: 10.1016/s0966-842x(97)01156-6
-
van der Klei, I. J., & Veenhuis, M. Yeast peroxisomes: function and biogenesis of a versatile cell organelle. Trends Microbiol 5, 502-509, doi: 10.1016/s0966-842x(97)01156-6 (1997).
-
(1997)
Trends Microbiol
, vol.5
, pp. 502-509
-
-
Van Der Klei, I.J.1
Veenhuis, M.2
-
19
-
-
79851510200
-
Protein import machineries of peroxisomes
-
doi: 10.1016/j.bbamem.2010.07.020
-
Rucktaschel, R., Girzalsky, W., & Erdmann, R. Protein import machineries of peroxisomes. Biochim Biophys Acta 1808, 892-900, doi: 10.1016/j.bbamem.2010.07.020 (2011).
-
(2011)
Biochim Biophys Acta
, vol.1808
, pp. 892-900
-
-
Rucktaschel, R.1
Girzalsky, W.2
Erdmann, R.3
-
20
-
-
0024076281
-
Identification of peroxisomal targeting signals located at the carboxy terminus of four peroxisomal proteins
-
Gould, S. J., Keller, G. A., & Subramani, S. Identification of peroxisomal targeting signals located at the carboxy terminus of four peroxisomal proteins. The Journal of cell biology 107, 897-905 (1988).
-
(1988)
The Journal of Cell Biology
, vol.107
, pp. 897-905
-
-
Gould, S.J.1
Keller, G.A.2
Subramani, S.3
-
21
-
-
0029912063
-
Analysis of the carboxyl-Terminal peroxisomal targeting signal 1 in a homologous context in Saccharomyces cerevisiae
-
Elgersma, Y., et al. Analysis of the carboxyl-Terminal peroxisomal targeting signal 1 in a homologous context in Saccharomyces cerevisiae. J Biol Chem 271, 26375-26382 (1996).
-
(1996)
J Biol Chem
, vol.271
, pp. 26375-26382
-
-
Elgersma, Y.1
-
22
-
-
4744375324
-
Functional similarity between the peroxisomal PTS2 receptor binding protein Pex18p and the N-Terminal half of the PTS1 receptor Pex5p
-
doi: 10.1128/mcb.24.20.8895-8906.2004
-
Schafer, A., Kerssen, D., Veenhuis, M., Kunau, W. H., & Schliebs, W. Functional similarity between the peroxisomal PTS2 receptor binding protein Pex18p and the N-Terminal half of the PTS1 receptor Pex5p. Molecular and cellular biology 24, 8895-8906, doi: 10.1128/mcb.24.20.8895-8906.2004 (2004).
-
(2004)
Molecular and Cellular Biology
, vol.24
, pp. 8895-8906
-
-
Schafer, A.1
Kerssen, D.2
Veenhuis, M.3
Kunau, W.H.4
Schliebs, W.5
-
23
-
-
28544451220
-
Shuttling mechanism of peroxisome targeting signal type 1 receptor Pex5: ATP-independent import and ATP-dependent export
-
doi: 10.1128/mcb.25.24.10822-10832.2005
-
Miyata, N., & Fujiki, Y. Shuttling mechanism of peroxisome targeting signal type 1 receptor Pex5: ATP-independent import and ATP-dependent export. Molecular and cellular biology 25, 10822-10832, doi: 10.1128/mcb.25.24.10822-10832.2005 (2005).
-
(2005)
Molecular and Cellular Biology
, vol.25
, pp. 10822-10832
-
-
Miyata, N.1
Fujiki, Y.2
-
24
-
-
84455192713
-
Structural requirements for interaction of peroxisomal targeting signal 2 and its receptor PEX7
-
doi: 10.1074/jbc.M111.301853
-
Kunze, M., et al. Structural requirements for interaction of peroxisomal targeting signal 2 and its receptor PEX7. J Biol Chem 286, 45048-45062, doi: 10.1074/jbc.M111.301853 (2011).
-
(2011)
J Biol Chem
, vol.286
, pp. 45048-45062
-
-
Kunze, M.1
-
25
-
-
77955491804
-
Insights into peroxisome function from the structure of PEX3 in complex with a soluble fragment of PEX19
-
doi: 10.1074/jbc.M110.138503
-
Schmidt, F., et al. Insights into peroxisome function from the structure of PEX3 in complex with a soluble fragment of PEX19. J Biol Chem 285, 25410-25417, doi: 10.1074/jbc.M110.138503 (2010).
-
(2010)
J Biol Chem
, vol.285
, pp. 25410-25417
-
-
Schmidt, F.1
-
26
-
-
0034677197
-
Saccharomyces cerevisiae Pex3p and Pex19p are required for proper localization and stability of peroxisomal membrane proteins
-
doi: 10.1093/emboj/19.2.223
-
Hettema, E. H., Girzalsky, W., van den Berg, M., Erdmann, R., & Distel, B. Saccharomyces cerevisiae Pex3p and Pex19p are required for proper localization and stability of peroxisomal membrane proteins. The EMBO Journal 19, 223-233, doi: 10.1093/emboj/19.2.223 (2000).
-
(2000)
The EMBO Journal
, vol.19
, pp. 223-233
-
-
Hettema, E.H.1
Girzalsky, W.2
Van Den Berg, M.3
Erdmann, R.4
Distel, B.5
-
27
-
-
22044444453
-
The control of peroxisome number and size during division and proliferation
-
doi: 10.1016/j.ceb.2005.06.003
-
Yan, M., Rayapuram, N., & Subramani, S. The control of peroxisome number and size during division and proliferation. Current opinion in cell biology 17, 376-383, doi: 10.1016/j.ceb.2005.06.003 (2005).
-
(2005)
Current Opinion in Cell Biology
, vol.17
, pp. 376-383
-
-
Yan, M.1
Rayapuram, N.2
Subramani, S.3
-
28
-
-
84907518524
-
Engineering alcohol tolerance in yeast
-
doi: 10.1126/science.1257859
-
Lam, F. H., Ghaderi, A., Fink, G. R., & Stephanopoulos, G. Engineering alcohol tolerance in yeast. Science 346, 71-75, doi: 10.1126/science.1257859 (2014).
-
(2014)
Science
, vol.346
, pp. 71-75
-
-
Lam, F.H.1
Ghaderi, A.2
Fink, G.R.3
Stephanopoulos, G.4
-
29
-
-
84925235492
-
Enhancing fatty acid ethyl ester production in Saccharomyces cerevisiae through metabolic engineering and medium optimization
-
doi: 10.1002/bit.25292
-
Thompson, R. A., & Trinh, C. T. Enhancing fatty acid ethyl ester production in Saccharomyces cerevisiae through metabolic engineering and medium optimization. Biotechnology and bioengineering 111, 2200-2208, doi: 10.1002/bit.25292 (2014).
-
(2014)
Biotechnology and Bioengineering
, vol.111
, pp. 2200-2208
-
-
Thompson, R.A.1
Trinh, C.T.2
-
30
-
-
36348956692
-
DGA1 (diacylglycerol acyltransferase gene) overexpression and leucine biosynthesis significantly increase lipid accumulation in the snf2 disruptant of Saccharomyces cerevisiae
-
doi: 10.1042/BJ20070449
-
Kamisaka, Y., Tomita, N., Kimura, K., Kainou, K., & Uemura, H. DGA1 (diacylglycerol acyltransferase gene) overexpression and leucine biosynthesis significantly increase lipid accumulation in the ? snf2 disruptant of Saccharomyces cerevisiae. The Biochemical journal 408, 61-68, doi: 10.1042/BJ20070449 (2007).
-
(2007)
The Biochemical Journal
, vol.408
, pp. 61-68
-
-
Kamisaka, Y.1
Tomita, N.2
Kimura, K.3
Kainou, K.4
Uemura, H.5
-
31
-
-
84877256074
-
Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols
-
Avalos, J. L., Fink, G. R., & Stephanopoulos, G. Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols. Nat Biotech 31, 335-341 (2013).
-
(2013)
Nat Biotech
, vol.31
, pp. 335-341
-
-
Avalos, J.L.1
Fink, G.R.2
Stephanopoulos, G.3
-
32
-
-
84879292930
-
Targeting enzymes to the right compartment: Metabolic engineering for itaconic acid production by Aspergillus Niger
-
doi: 10.1016/j.ymben.2013.05.003
-
Blumhoff, M. L., Steiger, M. G., Mattanovich, D., & Sauer, M. Targeting enzymes to the right compartment: Metabolic engineering for itaconic acid production by Aspergillus niger. Metabolic engineering 19, 26-32, doi: 10.1016/j.ymben.2013.05.003 (2013).
-
(2013)
Metabolic Engineering
, vol.19
, pp. 26-32
-
-
Blumhoff, M.L.1
Steiger, M.G.2
Mattanovich, D.3
Sauer, M.4
-
33
-
-
80052030821
-
Harnessing yeast subcellular compartments for the production of plant terpenoids
-
doi: 10.1016/j.ymben.2011.05.001
-
Farhi, M., et al. Harnessing yeast subcellular compartments for the production of plant terpenoids. Metabolic engineering 13, 474-481, doi: 10.1016/j.ymben.2011.05.001 (2011).
-
(2011)
Metabolic Engineering
, vol.13
, pp. 474-481
-
-
Farhi, M.1
-
34
-
-
84917739915
-
Compartmentalizing metabolic pathway in Candida glabrata for acetoin production
-
doi: 10.1016/j.ymben.2014.11.008
-
Li, S., Liu, L., & Chen, J. Compartmentalizing metabolic pathway in Candida glabrata for acetoin production. Metabolic engineering 28, 1-7, doi: 10.1016/j.ymben.2014.11.008 (2015).
-
(2015)
Metabolic Engineering
, vol.28
, pp. 1-7
-
-
Li, S.1
Liu, L.2
Chen, J.3
-
35
-
-
84898606075
-
Engineering the Saccharomyces cerevisiae beta-oxidation pathway to increase medium chain fatty acid production as potential biofuel
-
doi: 10.1371/journal.pone.0084853
-
Chen, L., Zhang, J., & Chen, W. N. Engineering the Saccharomyces cerevisiae beta-oxidation pathway to increase medium chain fatty acid production as potential biofuel. PLoS One 9, e84853, doi: 10.1371/journal.pone.0084853 (2014).
-
(2014)
PLoS One
, vol.9
, pp. e84853
-
-
Chen, L.1
Zhang, J.2
Chen, W.N.3
-
36
-
-
83155185481
-
Fatty acyl-CoA reductases of birds
-
Hellenbrand, J., Biester, E.-M., Gruber, J., Hamberg, M., & Frentzen, M. Fatty acyl-CoA reductases of birds. BMC biochemistry 12:64 (2011).
-
(2011)
BMC Biochemistry
, vol.12
, pp. 64
-
-
Hellenbrand, J.1
Biester, E.-M.2
Gruber, J.3
Hamberg, M.4
Frentzen, M.5
-
37
-
-
84894040387
-
Coupled incremental precursor and co-factor supply improves 3-hydroxypropionic acid production in Saccharomyces cerevisiae
-
Chen, Y., Bao, J., Kim, I., Siewers, V., & Nielsen, J. Coupled incremental precursor and co-factor supply improves 3-hydroxypropionic acid production in Saccharomyces cerevisiae. Metab Eng 22C, 104-109 (2014).
-
(2014)
Metab Eng
, vol.22 C
, pp. 104-109
-
-
Chen, Y.1
Bao, J.2
Kim, I.3
Siewers, V.4
Nielsen, J.5
-
38
-
-
34347206860
-
High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method
-
Gietz, R., & Schiestl, R. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nature protocols 2, 31-34 (2007).
-
(2007)
Nature Protocols
, vol.2
, pp. 31-34
-
-
Gietz, R.1
Schiestl, R.2
-
39
-
-
59649108349
-
DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways
-
Shao, Z., Zhao, H., & Zhao, H. DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. Nucleic Acids Res 27, e16 (2009).
-
(2009)
Nucleic Acids Res
, vol.27
, pp. e16
-
-
Shao, Z.1
Zhao, H.2
Zhao, H.3
-
40
-
-
79952642503
-
Rapid characterization and engineering of natural product biosynthetic pathways via DNA assembler
-
doi: 10.1039/c0mb00338g
-
Shao, Z., Luo, Y., & Zhao, H. Rapid characterization and engineering of natural product biosynthetic pathways via DNA assembler. Molecular bioSystems 7, 1056-1059, doi: 10.1039/c0mb00338g (2011).
-
(2011)
Molecular BioSystems
, vol.7
, pp. 1056-1059
-
-
Shao, Z.1
Luo, Y.2
Zhao, H.3
-
41
-
-
84901808659
-
Design and construction of acetyl-CoA overproducing Saccharomyces cerevisiae strains
-
doi: 10.1016/j.ymben.2014.05.010
-
Lian, J., Si, T., Nair, N. U., & Zhao, H. Design and construction of acetyl-CoA overproducing Saccharomyces cerevisiae strains. Metab Eng 24, 139-149, doi: 10.1016/j.ymben.2014.05.010 (2014).
-
(2014)
Metab Eng
, vol.24
, pp. 139-149
-
-
Lian, J.1
Si, T.2
Nair, N.U.3
Zhao, H.4
|