메뉴 건너뛰기




Volumn 6, Issue , 2016, Pages

Pathway compartmentalization in peroxisome of saccharomyces cerevisiae to produce versatile medium chain fatty alcohols

Author keywords

[No Author keywords available]

Indexed keywords

ACETYL COENZYME A CARBOXYLASE; ALDEHYDE DEHYDROGENASE; FATTY ALCOHOL; HEXADECANAL DEHYDROGENASE (ACYLATING); HEXADECANOL; LAURYL ALCOHOL; N-DECYL ALCOHOL; PEROXISOMAL TARGETING SIGNAL 2 RECEPTOR; PEX7 PROTEIN, S CEREVISIAE; SACCHAROMYCES CEREVISIAE PROTEIN; SIGNAL PEPTIDE;

EID: 84971301690     PISSN: None     EISSN: 20452322     Source Type: Journal    
DOI: 10.1038/srep26884     Document Type: Article
Times cited : (64)

References (41)
  • 2
    • 84886996793 scopus 로고    scopus 로고
    • Production of medium chain length fatty alcohols from glucose in Escherichia coli
    • doi: 10.1016/j.ymben.2013.10.006
    • Youngquist, J. T., et al. Production of medium chain length fatty alcohols from glucose in Escherichia coli. Metab Eng 20, 177-186, doi: 10.1016/j.ymben.2013.10.006 (2013).
    • (2013) Metab Eng , vol.20 , pp. 177-186
    • Youngquist, J.T.1
  • 3
    • 34247602166 scopus 로고    scopus 로고
    • Palm oil and palm kernel oil as raw materials for basic oleochemicals and biodiesel
    • Rupilius, W., & Ahmad, S. Palm oil and palm kernel oil as raw materials for basic oleochemicals and biodiesel. Eur J Lipid Sci Technol 109, 433-439 (2007).
    • (2007) Eur J Lipid Sci Technol , vol.109 , pp. 433-439
    • Rupilius, W.1    Ahmad, S.2
  • 4
    • 51649105840 scopus 로고    scopus 로고
    • How will oil palm expansion affect biodiversity?
    • Fitzherbert, E., et al How Will Oil Palm Expansion Affect Biodiversity?. Trends Ecol Evol 23, 538-545 (2008).
    • (2008) Trends Ecol Evol , vol.23 , pp. 538-545
    • Fitzherbert, E.1
  • 6
    • 80052647009 scopus 로고    scopus 로고
    • Metabolic engineering of microbial pathways for advanced biofuels production
    • doi: 10.1016/j.copbio.2011.04.024
    • Zhang, F., Rodriguez, S., & Keasling, J. D. Metabolic engineering of microbial pathways for advanced biofuels production. Current opinion in biotechnology 22, 775-783, doi: 10.1016/j.copbio.2011.04.024 (2011).
    • (2011) Current Opinion in Biotechnology , vol.22 , pp. 775-783
    • Zhang, F.1    Rodriguez, S.2    Keasling, J.D.3
  • 7
    • 84891829362 scopus 로고    scopus 로고
    • Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals
    • doi: 10.1016/j.ymben.2013.07.003
    • Runguphan, W., & Keasling, J. D. Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals. Metab Eng 21, 103-113, doi: 10.1016/j.ymben.2013.07.003 (2014).
    • (2014) Metab Eng , vol.21 , pp. 103-113
    • Runguphan, W.1    Keasling, J.D.2
  • 8
    • 84909594452 scopus 로고    scopus 로고
    • Metabolic engineering of Saccharomyces cerevisiae to improve 1-hexadecanol production
    • doi: 10.1016/j.ymben.2014.10.001
    • Feng, X., Lian, J., & Zhao, H. Metabolic engineering of Saccharomyces cerevisiae to improve 1-hexadecanol production. Metab Eng 27, 10-19, doi: 10.1016/j.ymben.2014.10.001 (2015).
    • (2015) Metab Eng , vol.27 , pp. 10-19
    • Feng, X.1    Lian, J.2    Zhao, H.3
  • 9
    • 84871952399 scopus 로고    scopus 로고
    • Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities
    • Akhtar, M., Turner, N., & Jones, P. Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities. Proc Natl Acad Sci 110, 87-92 (2013).
    • (2013) Proc Natl Acad Sci , vol.110 , pp. 87-92
    • Akhtar, M.1    Turner, N.2    Jones, P.3
  • 10
    • 84861142495 scopus 로고    scopus 로고
    • Optimization of fatty alcohol biosynthesis pathway for selectively enhanced production of C12/14 and C16/18 fatty alcohols in engineered Escherichia coli
    • Zheng, Y., et al. Optimization of fatty alcohol biosynthesis pathway for selectively enhanced production of C12/14 and C16/18 fatty alcohols in engineered Escherichia coli. Microbial cell factories 11, 65 (2012).
    • (2012) Microbial Cell Factories , vol.11 , pp. 65
    • Zheng, Y.1
  • 11
    • 0031002077 scopus 로고    scopus 로고
    • Isolation of mutants of Acinetobacter calcoaceticus deficient in wax ester synthesis and complementation of one mutation with a gene encoding a fatty acyl coenzyme A reductase
    • Reiser, S., & Somerville, C. Isolation of mutants of Acinetobacter calcoaceticus deficient in wax ester synthesis and complementation of one mutation with a gene encoding a fatty acyl coenzyme A reductase. J Bacteriol 179, (1997).
    • (1997) J Bacteriol , vol.179
    • Reiser, S.1    Somerville, C.2
  • 12
    • 84864186953 scopus 로고    scopus 로고
    • Metabolic engineering of Saccharomyces cerevisiae: A key cell factory platform for future biorefineries
    • doi: 10.1007/s00018-012-0945-1
    • Hong, K. K., & Nielsen, J. Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries. Cellular and molecular life sciences: CMLS 69, 2671-2690, doi: 10.1007/s00018-012-0945-1 (2012).
    • (2012) Cellular and Molecular Life Sciences: CMLS , vol.69 , pp. 2671-2690
    • Hong, K.K.1    Nielsen, J.2
  • 13
    • 84933506269 scopus 로고    scopus 로고
    • Engineering the fatty acid metabolic pathway in Saccharomyces cerevisiae for advanced biofuel production
    • doi: 10.1016/j.meteno.2015.06.005
    • Tang, X., Lee, J., & Chen, W. N. Engineering the fatty acid metabolic pathway in Saccharomyces cerevisiae for advanced biofuel production. Metabolic Engineering Communications 2, 58-66, doi: 10.1016/j.meteno.2015.06.005 (2015).
    • (2015) Metabolic Engineering Communications , vol.2 , pp. 58-66
    • Tang, X.1    Lee, J.2    Chen, W.N.3
  • 14
    • 84945583610 scopus 로고    scopus 로고
    • Functional replacement of the Saccharomyces cerevisiae fatty acid synthase with a bacterial type II system allows flexible product profiles
    • doi: 10.1002/bit.25679
    • Fernandez-Moya, R., Leber, C., Cardenas, J., & Da Silva, N. A. Functional replacement of the Saccharomyces cerevisiae fatty acid synthase with a bacterial type II system allows flexible product profiles. Biotechnol Bioeng 112, 2618-2623, doi: 10.1002/bit.25679 (2015).
    • (2015) Biotechnol Bioeng , vol.112 , pp. 2618-2623
    • Fernandez-Moya, R.1    Leber, C.2    Cardenas, J.3    Da Silva, N.A.4
  • 15
    • 84890806590 scopus 로고    scopus 로고
    • Engineering of Saccharomyces cerevisiae for the synthesis of short chain fatty acids
    • doi: 10.1002/bit.25021
    • Leber, C., & Da Silva, N. A. Engineering of Saccharomyces cerevisiae for the synthesis of short chain fatty acids. Biotechnol Bioeng 111, 347-358, doi: 10.1002/bit.25021 (2014).
    • (2014) Biotechnol Bioeng , vol.111 , pp. 347-358
    • Leber, C.1    Da Silva, N.A.2
  • 16
    • 84959536640 scopus 로고    scopus 로고
    • Disrupted short chain specific beta-oxidation and improved synthase expression increase synthesis of short chain fatty acids in Saccharomyces cerevisiae
    • doi: 10.1002/bit.25839
    • Leber, C., Choi, J. W., Polson, B., & Da Silva, N. A. Disrupted short chain specific beta-oxidation and improved synthase expression increase synthesis of short chain fatty acids in Saccharomyces cerevisiae. Biotechnol Bioeng, doi: 10.1002/bit.25839 (2015).
    • (2015) Biotechnol Bioeng
    • Leber, C.1    Choi, J.W.2    Polson, B.3    Da Silva, N.A.4
  • 18
    • 0031460363 scopus 로고    scopus 로고
    • Yeast peroxisomes: Function and biogenesis of a versatile cell organelle
    • doi: 10.1016/s0966-842x(97)01156-6
    • van der Klei, I. J., & Veenhuis, M. Yeast peroxisomes: function and biogenesis of a versatile cell organelle. Trends Microbiol 5, 502-509, doi: 10.1016/s0966-842x(97)01156-6 (1997).
    • (1997) Trends Microbiol , vol.5 , pp. 502-509
    • Van Der Klei, I.J.1    Veenhuis, M.2
  • 19
    • 79851510200 scopus 로고    scopus 로고
    • Protein import machineries of peroxisomes
    • doi: 10.1016/j.bbamem.2010.07.020
    • Rucktaschel, R., Girzalsky, W., & Erdmann, R. Protein import machineries of peroxisomes. Biochim Biophys Acta 1808, 892-900, doi: 10.1016/j.bbamem.2010.07.020 (2011).
    • (2011) Biochim Biophys Acta , vol.1808 , pp. 892-900
    • Rucktaschel, R.1    Girzalsky, W.2    Erdmann, R.3
  • 20
    • 0024076281 scopus 로고
    • Identification of peroxisomal targeting signals located at the carboxy terminus of four peroxisomal proteins
    • Gould, S. J., Keller, G. A., & Subramani, S. Identification of peroxisomal targeting signals located at the carboxy terminus of four peroxisomal proteins. The Journal of cell biology 107, 897-905 (1988).
    • (1988) The Journal of Cell Biology , vol.107 , pp. 897-905
    • Gould, S.J.1    Keller, G.A.2    Subramani, S.3
  • 21
    • 0029912063 scopus 로고    scopus 로고
    • Analysis of the carboxyl-Terminal peroxisomal targeting signal 1 in a homologous context in Saccharomyces cerevisiae
    • Elgersma, Y., et al. Analysis of the carboxyl-Terminal peroxisomal targeting signal 1 in a homologous context in Saccharomyces cerevisiae. J Biol Chem 271, 26375-26382 (1996).
    • (1996) J Biol Chem , vol.271 , pp. 26375-26382
    • Elgersma, Y.1
  • 22
    • 4744375324 scopus 로고    scopus 로고
    • Functional similarity between the peroxisomal PTS2 receptor binding protein Pex18p and the N-Terminal half of the PTS1 receptor Pex5p
    • doi: 10.1128/mcb.24.20.8895-8906.2004
    • Schafer, A., Kerssen, D., Veenhuis, M., Kunau, W. H., & Schliebs, W. Functional similarity between the peroxisomal PTS2 receptor binding protein Pex18p and the N-Terminal half of the PTS1 receptor Pex5p. Molecular and cellular biology 24, 8895-8906, doi: 10.1128/mcb.24.20.8895-8906.2004 (2004).
    • (2004) Molecular and Cellular Biology , vol.24 , pp. 8895-8906
    • Schafer, A.1    Kerssen, D.2    Veenhuis, M.3    Kunau, W.H.4    Schliebs, W.5
  • 23
    • 28544451220 scopus 로고    scopus 로고
    • Shuttling mechanism of peroxisome targeting signal type 1 receptor Pex5: ATP-independent import and ATP-dependent export
    • doi: 10.1128/mcb.25.24.10822-10832.2005
    • Miyata, N., & Fujiki, Y. Shuttling mechanism of peroxisome targeting signal type 1 receptor Pex5: ATP-independent import and ATP-dependent export. Molecular and cellular biology 25, 10822-10832, doi: 10.1128/mcb.25.24.10822-10832.2005 (2005).
    • (2005) Molecular and Cellular Biology , vol.25 , pp. 10822-10832
    • Miyata, N.1    Fujiki, Y.2
  • 24
    • 84455192713 scopus 로고    scopus 로고
    • Structural requirements for interaction of peroxisomal targeting signal 2 and its receptor PEX7
    • doi: 10.1074/jbc.M111.301853
    • Kunze, M., et al. Structural requirements for interaction of peroxisomal targeting signal 2 and its receptor PEX7. J Biol Chem 286, 45048-45062, doi: 10.1074/jbc.M111.301853 (2011).
    • (2011) J Biol Chem , vol.286 , pp. 45048-45062
    • Kunze, M.1
  • 25
    • 77955491804 scopus 로고    scopus 로고
    • Insights into peroxisome function from the structure of PEX3 in complex with a soluble fragment of PEX19
    • doi: 10.1074/jbc.M110.138503
    • Schmidt, F., et al. Insights into peroxisome function from the structure of PEX3 in complex with a soluble fragment of PEX19. J Biol Chem 285, 25410-25417, doi: 10.1074/jbc.M110.138503 (2010).
    • (2010) J Biol Chem , vol.285 , pp. 25410-25417
    • Schmidt, F.1
  • 26
    • 0034677197 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae Pex3p and Pex19p are required for proper localization and stability of peroxisomal membrane proteins
    • doi: 10.1093/emboj/19.2.223
    • Hettema, E. H., Girzalsky, W., van den Berg, M., Erdmann, R., & Distel, B. Saccharomyces cerevisiae Pex3p and Pex19p are required for proper localization and stability of peroxisomal membrane proteins. The EMBO Journal 19, 223-233, doi: 10.1093/emboj/19.2.223 (2000).
    • (2000) The EMBO Journal , vol.19 , pp. 223-233
    • Hettema, E.H.1    Girzalsky, W.2    Van Den Berg, M.3    Erdmann, R.4    Distel, B.5
  • 27
    • 22044444453 scopus 로고    scopus 로고
    • The control of peroxisome number and size during division and proliferation
    • doi: 10.1016/j.ceb.2005.06.003
    • Yan, M., Rayapuram, N., & Subramani, S. The control of peroxisome number and size during division and proliferation. Current opinion in cell biology 17, 376-383, doi: 10.1016/j.ceb.2005.06.003 (2005).
    • (2005) Current Opinion in Cell Biology , vol.17 , pp. 376-383
    • Yan, M.1    Rayapuram, N.2    Subramani, S.3
  • 28
    • 84907518524 scopus 로고    scopus 로고
    • Engineering alcohol tolerance in yeast
    • doi: 10.1126/science.1257859
    • Lam, F. H., Ghaderi, A., Fink, G. R., & Stephanopoulos, G. Engineering alcohol tolerance in yeast. Science 346, 71-75, doi: 10.1126/science.1257859 (2014).
    • (2014) Science , vol.346 , pp. 71-75
    • Lam, F.H.1    Ghaderi, A.2    Fink, G.R.3    Stephanopoulos, G.4
  • 29
    • 84925235492 scopus 로고    scopus 로고
    • Enhancing fatty acid ethyl ester production in Saccharomyces cerevisiae through metabolic engineering and medium optimization
    • doi: 10.1002/bit.25292
    • Thompson, R. A., & Trinh, C. T. Enhancing fatty acid ethyl ester production in Saccharomyces cerevisiae through metabolic engineering and medium optimization. Biotechnology and bioengineering 111, 2200-2208, doi: 10.1002/bit.25292 (2014).
    • (2014) Biotechnology and Bioengineering , vol.111 , pp. 2200-2208
    • Thompson, R.A.1    Trinh, C.T.2
  • 30
    • 36348956692 scopus 로고    scopus 로고
    • DGA1 (diacylglycerol acyltransferase gene) overexpression and leucine biosynthesis significantly increase lipid accumulation in the snf2 disruptant of Saccharomyces cerevisiae
    • doi: 10.1042/BJ20070449
    • Kamisaka, Y., Tomita, N., Kimura, K., Kainou, K., & Uemura, H. DGA1 (diacylglycerol acyltransferase gene) overexpression and leucine biosynthesis significantly increase lipid accumulation in the ? snf2 disruptant of Saccharomyces cerevisiae. The Biochemical journal 408, 61-68, doi: 10.1042/BJ20070449 (2007).
    • (2007) The Biochemical Journal , vol.408 , pp. 61-68
    • Kamisaka, Y.1    Tomita, N.2    Kimura, K.3    Kainou, K.4    Uemura, H.5
  • 31
    • 84877256074 scopus 로고    scopus 로고
    • Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols
    • Avalos, J. L., Fink, G. R., & Stephanopoulos, G. Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols. Nat Biotech 31, 335-341 (2013).
    • (2013) Nat Biotech , vol.31 , pp. 335-341
    • Avalos, J.L.1    Fink, G.R.2    Stephanopoulos, G.3
  • 32
    • 84879292930 scopus 로고    scopus 로고
    • Targeting enzymes to the right compartment: Metabolic engineering for itaconic acid production by Aspergillus Niger
    • doi: 10.1016/j.ymben.2013.05.003
    • Blumhoff, M. L., Steiger, M. G., Mattanovich, D., & Sauer, M. Targeting enzymes to the right compartment: Metabolic engineering for itaconic acid production by Aspergillus niger. Metabolic engineering 19, 26-32, doi: 10.1016/j.ymben.2013.05.003 (2013).
    • (2013) Metabolic Engineering , vol.19 , pp. 26-32
    • Blumhoff, M.L.1    Steiger, M.G.2    Mattanovich, D.3    Sauer, M.4
  • 33
    • 80052030821 scopus 로고    scopus 로고
    • Harnessing yeast subcellular compartments for the production of plant terpenoids
    • doi: 10.1016/j.ymben.2011.05.001
    • Farhi, M., et al. Harnessing yeast subcellular compartments for the production of plant terpenoids. Metabolic engineering 13, 474-481, doi: 10.1016/j.ymben.2011.05.001 (2011).
    • (2011) Metabolic Engineering , vol.13 , pp. 474-481
    • Farhi, M.1
  • 34
    • 84917739915 scopus 로고    scopus 로고
    • Compartmentalizing metabolic pathway in Candida glabrata for acetoin production
    • doi: 10.1016/j.ymben.2014.11.008
    • Li, S., Liu, L., & Chen, J. Compartmentalizing metabolic pathway in Candida glabrata for acetoin production. Metabolic engineering 28, 1-7, doi: 10.1016/j.ymben.2014.11.008 (2015).
    • (2015) Metabolic Engineering , vol.28 , pp. 1-7
    • Li, S.1    Liu, L.2    Chen, J.3
  • 35
    • 84898606075 scopus 로고    scopus 로고
    • Engineering the Saccharomyces cerevisiae beta-oxidation pathway to increase medium chain fatty acid production as potential biofuel
    • doi: 10.1371/journal.pone.0084853
    • Chen, L., Zhang, J., & Chen, W. N. Engineering the Saccharomyces cerevisiae beta-oxidation pathway to increase medium chain fatty acid production as potential biofuel. PLoS One 9, e84853, doi: 10.1371/journal.pone.0084853 (2014).
    • (2014) PLoS One , vol.9 , pp. e84853
    • Chen, L.1    Zhang, J.2    Chen, W.N.3
  • 37
    • 84894040387 scopus 로고    scopus 로고
    • Coupled incremental precursor and co-factor supply improves 3-hydroxypropionic acid production in Saccharomyces cerevisiae
    • Chen, Y., Bao, J., Kim, I., Siewers, V., & Nielsen, J. Coupled incremental precursor and co-factor supply improves 3-hydroxypropionic acid production in Saccharomyces cerevisiae. Metab Eng 22C, 104-109 (2014).
    • (2014) Metab Eng , vol.22 C , pp. 104-109
    • Chen, Y.1    Bao, J.2    Kim, I.3    Siewers, V.4    Nielsen, J.5
  • 38
    • 34347206860 scopus 로고    scopus 로고
    • High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method
    • Gietz, R., & Schiestl, R. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nature protocols 2, 31-34 (2007).
    • (2007) Nature Protocols , vol.2 , pp. 31-34
    • Gietz, R.1    Schiestl, R.2
  • 39
    • 59649108349 scopus 로고    scopus 로고
    • DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways
    • Shao, Z., Zhao, H., & Zhao, H. DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. Nucleic Acids Res 27, e16 (2009).
    • (2009) Nucleic Acids Res , vol.27 , pp. e16
    • Shao, Z.1    Zhao, H.2    Zhao, H.3
  • 40
    • 79952642503 scopus 로고    scopus 로고
    • Rapid characterization and engineering of natural product biosynthetic pathways via DNA assembler
    • doi: 10.1039/c0mb00338g
    • Shao, Z., Luo, Y., & Zhao, H. Rapid characterization and engineering of natural product biosynthetic pathways via DNA assembler. Molecular bioSystems 7, 1056-1059, doi: 10.1039/c0mb00338g (2011).
    • (2011) Molecular BioSystems , vol.7 , pp. 1056-1059
    • Shao, Z.1    Luo, Y.2    Zhao, H.3
  • 41
    • 84901808659 scopus 로고    scopus 로고
    • Design and construction of acetyl-CoA overproducing Saccharomyces cerevisiae strains
    • doi: 10.1016/j.ymben.2014.05.010
    • Lian, J., Si, T., Nair, N. U., & Zhao, H. Design and construction of acetyl-CoA overproducing Saccharomyces cerevisiae strains. Metab Eng 24, 139-149, doi: 10.1016/j.ymben.2014.05.010 (2014).
    • (2014) Metab Eng , vol.24 , pp. 139-149
    • Lian, J.1    Si, T.2    Nair, N.U.3    Zhao, H.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.