메뉴 건너뛰기




Volumn 13, Issue 10, 2017, Pages

ISG15 governs mitochondrial function in macrophages following vaccinia virus infection

Author keywords

[No Author keywords available]

Indexed keywords

ADENOSINE TRIPHOSPHATE; ARGINASE 1; AUTOPHAGY RELATED PROTEIN 5; AUTOPHAGY RELATED PROTEIN 7; BETA INTERFERON; CITRATE SYNTHASE; DYNAMIN I; INTERFERON; INTERFERON STIMULATED GENE 15; INTERLEUKIN 12P40; INTERLEUKIN 1BETA; INTERLEUKIN 6; MESSENGER RNA; MICROTUBULE ASSOCIATED PROTEIN; MITOCHONDRIAL DNA; MITOCHONDRIAL PROTEIN; NITRIC OXIDE; PROTEINASE K; REACTIVE OXYGEN METABOLITE; REGULATOR PROTEIN; TUMOR NECROSIS FACTOR; UNCLASSIFIED DRUG; ARG1 PROTEIN, MOUSE; ARGINASE; CYTOKINE; G1P2 PROTEIN, MOUSE; UBIQUITIN;

EID: 85032634740     PISSN: 15537366     EISSN: 15537374     Source Type: Journal    
DOI: 10.1371/journal.ppat.1006651     Document Type: Article
Times cited : (71)

References (89)
  • 1
    • 84858175904 scopus 로고    scopus 로고
    • The ISG15 conjugation system
    • 2235088
    • Durfee LA, Huibregtse JM, The ISG15 conjugation system. Methods Mol Biol. 2012;832:141–9. doi: 10.1007/978-1-61779-474-2_9 22350882.
    • (2012) Methods Mol Biol , vol.832 , pp. 141-149
    • Durfee, L.A.1    Huibregtse, J.M.2
  • 2
    • 84943820341 scopus 로고    scopus 로고
    • ISG15 uncut: Dissecting enzymatic and non-enzymatic functions of USP18 in vivo
    • 2580550
    • Ketscher L, Knobeloch KP, ISG15 uncut: Dissecting enzymatic and non-enzymatic functions of USP18 in vivo. Cytokine. 2015;76(2):569–71. doi: 10.1016/j.cyto.2015.03.006 25805508.
    • (2015) Cytokine , vol.76 , Issue.2 , pp. 569-571
    • Ketscher, L.1    Knobeloch, K.P.2
  • 3
    • 84922393475 scopus 로고    scopus 로고
    • Ubiquitin-like protein ISG15 (interferon-stimulated gene of 15 kDa) in host defense against heart failure in a mouse model of virus-induced cardiomyopathy
    • 2516509
    • Rahnefeld A, Klingel K, Schuermann A, Diny NL, Althof N, Lindner A, et al. Ubiquitin-like protein ISG15 (interferon-stimulated gene of 15 kDa) in host defense against heart failure in a mouse model of virus-induced cardiomyopathy. Circulation. 2014;130(18):1589–600. doi: 10.1161/CIRCULATIONAHA.114.009847 25165091.
    • (2014) Circulation , vol.130 , Issue.18 , pp. 1589-1600
    • Rahnefeld, A.1    Klingel, K.2    Schuermann, A.3    Diny, N.L.4    Althof, N.5    Lindner, A.6
  • 5
    • 77953114765 scopus 로고    scopus 로고
    • The ISG15 conjugation system broadly targets newly synthesized proteins: implications for the antiviral function of ISG15
    • 2054200
    • Durfee LA, Lyon N, Seo K, Huibregtse JM, The ISG15 conjugation system broadly targets newly synthesized proteins: implications for the antiviral function of ISG15. Mol Cell. 2010;38(5):722–32. doi: 10.1016/j.molcel.2010.05.002 20542004.
    • (2010) Mol Cell , vol.38 , Issue.5 , pp. 722-732
    • Durfee, L.A.1    Lyon, N.2    Seo, K.3    Huibregtse, J.M.4
  • 6
    • 85029445495 scopus 로고    scopus 로고
    • ISGylation—a key to lock the cell gates for preventing the spread of threats
    • 2884247
    • Villarroya-Beltri C, Guerra S, Sanchez-Madrid F, ISGylation—a key to lock the cell gates for preventing the spread of threats. J Cell Sci. 2017. doi: 10.1242/jcs.205468 28842471.
    • (2017) J Cell Sci
    • Villarroya-Beltri, C.1    Guerra, S.2    Sanchez-Madrid, F.3
  • 7
    • 77950839509 scopus 로고    scopus 로고
    • The interferon-induced gene ISG15 blocks retrovirus release from cells late in the budding process
    • 2016421
    • Pincetic A, Kuang Z, Seo EJ, Leis J, The interferon-induced gene ISG15 blocks retrovirus release from cells late in the budding process. J Virol. 2010;84(9):4725–36. doi: 10.1128/JVI.02478-09 20164219.
    • (2010) J Virol , vol.84 , Issue.9 , pp. 4725-4736
    • Pincetic, A.1    Kuang, Z.2    Seo, E.J.3    Leis, J.4
  • 8
    • 77954753259 scopus 로고    scopus 로고
    • Herc5 attenuates influenza A virus by catalyzing ISGylation of viral NS1 protein
    • 20385878, Epub 2010/04/14
    • Tang Y, Zhong G, Zhu L, Liu X, Shan Y, Feng H, et al. Herc5 attenuates influenza A virus by catalyzing ISGylation of viral NS1 protein. J Immunol. 2010;184(10):5777–90. Epub 2010/04/14. doi: 10.4049/jimmunol.0903588 20385878.
    • (2010) J Immunol , vol.184 , Issue.10 , pp. 5777-5790
    • Tang, Y.1    Zhong, G.2    Zhu, L.3    Liu, X.4    Shan, Y.5    Feng, H.6
  • 9
    • 76649140147 scopus 로고    scopus 로고
    • ISG15 conjugation system targets the viral NS1 protein in influenza A virus-infected cells
    • 2013386
    • Zhao C, Hsiang TY, Kuo RL, Krug RM, ISG15 conjugation system targets the viral NS1 protein in influenza A virus-infected cells. Proc Natl Acad Sci U S A. 2010;107(5):2253–8. doi: 10.1073/pnas.0909144107 20133869.
    • (2010) Proc Natl Acad Sci U S A , vol.107 , Issue.5 , pp. 2253-2258
    • Zhao, C.1    Hsiang, T.Y.2    Kuo, R.L.3    Krug, R.M.4
  • 10
    • 84986182412 scopus 로고    scopus 로고
    • Influenza B virus non-structural protein 1 counteracts ISG15 antiviral activity by sequestering ISGylated viral proteins
    • 2758733
    • Zhao C, Sridharan H, Chen R, Baker DP, Wang S, Krug RM, Influenza B virus non-structural protein 1 counteracts ISG15 antiviral activity by sequestering ISGylated viral proteins. Nat Commun. 2016;7:12754. doi: 10.1038/ncomms12754 27587337.
    • (2016) Nat Commun , vol.7 , pp. 12754
    • Zhao, C.1    Sridharan, H.2    Chen, R.3    Baker, D.P.4    Wang, S.5    Krug, R.M.6
  • 11
    • 31944435603 scopus 로고    scopus 로고
    • Innate antiviral response targets HIV-1 release by the induction of ubiquitin-like protein ISG15
    • 1643447
    • Okumura A, Lu G, Pitha-Rowe I, Pitha PM, Innate antiviral response targets HIV-1 release by the induction of ubiquitin-like protein ISG15. Proc Natl Acad Sci U S A. 2006;103(5):1440–5. doi: 10.1073/pnas.0510518103 16434471.
    • (2006) Proc Natl Acad Sci U S A , vol.103 , Issue.5 , pp. 1440-1445
    • Okumura, A.1    Lu, G.2    Pitha-Rowe, I.3    Pitha, P.M.4
  • 12
    • 44049102828 scopus 로고    scopus 로고
    • ISG15 inhibits Nedd4 ubiquitin E3 activity and enhances the innate antiviral response
    • 1828709
    • Malakhova OA, Zhang DE, ISG15 inhibits Nedd4 ubiquitin E3 activity and enhances the innate antiviral response. J Biol Chem. 2008;283(14):8783–7. doi: 10.1074/jbc.C800030200 18287095.
    • (2008) J Biol Chem , vol.283 , Issue.14 , pp. 8783-8787
    • Malakhova, O.A.1    Zhang, D.E.2
  • 13
    • 79952151589 scopus 로고    scopus 로고
    • Antiviral Properties of ISG15
    • 2199461
    • Lenschow DJ, Antiviral Properties of ISG15. Viruses. 2010;2(10):2154–68. doi: 10.3390/v2102154 21994614.
    • (2010) Viruses , vol.2 , Issue.10 , pp. 2154-2168
    • Lenschow, D.J.1
  • 16
    • 84922326351 scopus 로고    scopus 로고
    • Selective inactivation of USP18 isopeptidase activity in vivo enhances ISG15 conjugation and viral resistance
    • 2560592
    • Ketscher L, Hannss R, Morales DJ, Basters A, Guerra S, Goldmann T, et al. Selective inactivation of USP18 isopeptidase activity in vivo enhances ISG15 conjugation and viral resistance. Proc Natl Acad Sci U S A. 2015;112(5):1577–82. doi: 10.1073/pnas.1412881112 25605921.
    • (2015) Proc Natl Acad Sci U S A , vol.112 , Issue.5 , pp. 1577-1582
    • Ketscher, L.1    Hannss, R.2    Morales, D.J.3    Basters, A.4    Guerra, S.5    Goldmann, T.6
  • 17
    • 84866748115 scopus 로고    scopus 로고
    • Mycobacterial disease and impaired IFN-gamma immunity in humans with inherited ISG15 deficiency
    • 2285982
    • Bogunovic D, Byun M, Durfee LA, Abhyankar A, Sanal O, Mansouri D, et al. Mycobacterial disease and impaired IFN-gamma immunity in humans with inherited ISG15 deficiency. Science. 2012;337(6102):1684–8. doi: 10.1126/science.1224026 22859821.
    • (2012) Science , vol.337 , Issue.6102 , pp. 1684-1688
    • Bogunovic, D.1    Byun, M.2    Durfee, L.A.3    Abhyankar, A.4    Sanal, O.5    Mansouri, D.6
  • 18
    • 84922880395 scopus 로고    scopus 로고
    • Human intracellular ISG15 prevents interferon-alpha/beta over-amplification and auto-inflammation
    • 2530705
    • Zhang X, Bogunovic D, Payelle-Brogard B, Francois-Newton V, Speer SD, Yuan C, et al. Human intracellular ISG15 prevents interferon-alpha/beta over-amplification and auto-inflammation. Nature. 2015;517(7532):89–93. doi: 10.1038/nature13801 25307056.
    • (2015) Nature , vol.517 , Issue.7532 , pp. 89-93
    • Zhang, X.1    Bogunovic, D.2    Payelle-Brogard, B.3    Francois-Newton, V.4    Speer, S.D.5    Yuan, C.6
  • 19
    • 84970959689 scopus 로고    scopus 로고
    • ISG15 deficiency and increased viral resistance in humans but not mice
    • 2719397
    • Speer SD, Li Z, Buta S, Payelle-Brogard B, Qian L, Vigant F, et al. ISG15 deficiency and increased viral resistance in humans but not mice. Nat Commun. 2016;7:11496. doi: 10.1038/ncomms11496 27193971.
    • (2016) Nat Commun , vol.7 , pp. 11496
    • Speer, S.D.1    Li, Z.2    Buta, S.3    Payelle-Brogard, B.4    Qian, L.5    Vigant, F.6
  • 20
    • 48249105524 scopus 로고    scopus 로고
    • Vaccinia virus E3 protein prevents the antiviral action of ISG15
    • 1860427
    • Guerra S, Caceres A, Knobeloch KP, Horak I, Esteban M, Vaccinia virus E3 protein prevents the antiviral action of ISG15. PLoS Pathog. 2008;4(7):e1000096. doi: 10.1371/journal.ppat.1000096 18604270.
    • (2008) PLoS Pathog , vol.4 , Issue.7 , pp. e1000096
    • Guerra, S.1    Caceres, A.2    Knobeloch, K.P.3    Horak, I.4    Esteban, M.5
  • 21
    • 84893471553 scopus 로고    scopus 로고
    • ISG15 is counteracted by vaccinia virus E3 protein and controls the proinflammatory response against viral infection
    • 2425761
    • Eduardo-Correia B, Martinez-Romero C, Garcia-Sastre A, Guerra S, ISG15 is counteracted by vaccinia virus E3 protein and controls the proinflammatory response against viral infection. J Virol. 2014;88(4):2312–8. doi: 10.1128/JVI.03293-13 24257616.
    • (2014) J Virol , vol.88 , Issue.4 , pp. 2312-2318
    • Eduardo-Correia, B.1    Martinez-Romero, C.2    Garcia-Sastre, A.3    Guerra, S.4
  • 23
    • 84918523966 scopus 로고    scopus 로고
    • ISG15 is a critical microenvironmental factor for pancreatic cancer stem cells
    • 2536802
    • Sainz B, Jr.Martin B, Tatari M, Heeschen C, Guerra S, ISG15 is a critical microenvironmental factor for pancreatic cancer stem cells. Cancer Res. 2014;74(24):7309–20. doi: 10.1158/0008-5472.CAN-14-1354 25368022.
    • (2014) Cancer Res , vol.74 , Issue.24 , pp. 7309-7320
    • Sainz, B.1    Martin, B.2    Tatari, M.3    Heeschen, C.4    Guerra, S.5
  • 24
    • 84904394690 scopus 로고    scopus 로고
    • Macrophage activation and polarization: nomenclature and experimental guidelines
    • 2503595
    • Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity. 2014;41(1):14–20. doi: 10.1016/j.immuni.2014.06.008 25035950.
    • (2014) Immunity , vol.41 , Issue.1 , pp. 14-20
    • Murray, P.J.1    Allen, J.E.2    Biswas, S.K.3    Fisher, E.A.4    Gilroy, D.W.5    Goerdt, S.6
  • 25
    • 77956976681 scopus 로고    scopus 로고
    • Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm
    • 2085622
    • Biswas SK, Mantovani A, Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol. 2010;11(10):889–96. doi: 10.1038/ni.1937 20856220.
    • (2010) Nat Immunol , vol.11 , Issue.10 , pp. 889-896
    • Biswas, S.K.1    Mantovani, A.2
  • 26
    • 28544446111 scopus 로고    scopus 로고
    • Monocyte and macrophage heterogeneity
    • 1632274
    • Gordon S, Taylor PR, Monocyte and macrophage heterogeneity. Nature reviews Immunology. 2005;5(12):953–64. doi: 10.1038/nri1733 16322748.
    • (2005) Nature reviews Immunology , vol.5 , Issue.12 , pp. 953-964
    • Gordon, S.1    Taylor, P.R.2
  • 27
    • 84857883847 scopus 로고    scopus 로고
    • Macrophage plasticity and polarization: in vivo veritas
    • 2237804
    • Sica A, Mantovani A, Macrophage plasticity and polarization: in vivo veritas. J Clin Invest. 2012;122(3):787–95. doi: 10.1172/JCI59643 22378047.
    • (2012) J Clin Invest , vol.122 , Issue.3 , pp. 787-795
    • Sica, A.1    Mantovani, A.2
  • 28
    • 56149103896 scopus 로고    scopus 로고
    • Macrophage polarization in bacterial infections
    • 1876882
    • Benoit M, Desnues B, Mege JL, Macrophage polarization in bacterial infections. J Immunol. 2008;181(6):3733–9. 18768823.
    • (2008) J Immunol , vol.181 , Issue.6 , pp. 3733-3739
    • Benoit, M.1    Desnues, B.2    Mege, J.L.3
  • 29
    • 84976321970 scopus 로고    scopus 로고
    • Mitochondrial respiratory-chain adaptations in macrophages contribute to antibacterial host defense
    • 2734841
    • Garaude J, Acin-Perez R, Martinez-Cano S, Enamorado M, Ugolini M, Nistal-Villan E, et al. Mitochondrial respiratory-chain adaptations in macrophages contribute to antibacterial host defense. Nat Immunol. 2016;17(9):1037–45. doi: 10.1038/ni.3509 27348412.
    • (2016) Nat Immunol , vol.17 , Issue.9 , pp. 1037-1045
    • Garaude, J.1    Acin-Perez, R.2    Martinez-Cano, S.3    Enamorado, M.4    Ugolini, M.5    Nistal-Villan, E.6
  • 30
    • 84953720358 scopus 로고    scopus 로고
    • Reprogramming mitochondrial metabolism in macrophages as an anti-inflammatory signal
    • 2664336
    • Mills EL, O'Neill LA, Reprogramming mitochondrial metabolism in macrophages as an anti-inflammatory signal. Eur J Immunol. 2016;46(1):13–21. doi: 10.1002/eji.201445427 26643360.
    • (2016) Eur J Immunol , vol.46 , Issue.1 , pp. 13-21
    • Mills, E.L.1    O'Neill, L.A.2
  • 31
    • 77956213727 scopus 로고    scopus 로고
    • Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation
    • 2049835
    • Rodriguez-Prados JC, Traves PG, Cuenca J, Rico D, Aragones J, Martin-Sanz P, et al. Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation. Journal of immunology. 2010;185(1):605–14. doi: 10.4049/jimmunol.0901698 20498354.
    • (2010) Journal of immunology , vol.185 , Issue.1 , pp. 605-614
    • Rodriguez-Prados, J.C.1    Traves, P.G.2    Cuenca, J.3    Rico, D.4    Aragones, J.5    Martin-Sanz, P.6
  • 32
    • 24644474832 scopus 로고    scopus 로고
    • Proteomic identification of proteins conjugated to ISG15 in mouse and human cells
    • 1613979
    • Giannakopoulos NV, Luo JK, Papov V, Zou W, Lenschow DJ, Jacobs BS, et al. Proteomic identification of proteins conjugated to ISG15 in mouse and human cells. Biochem Biophys Res Commun. 2005;336(2):496–506. doi: 10.1016/j.bbrc.2005.08.132 16139798.
    • (2005) Biochem Biophys Res Commun , vol.336 , Issue.2 , pp. 496-506
    • Giannakopoulos, N.V.1    Luo, J.K.2    Papov, V.3    Zou, W.4    Lenschow, D.J.5    Jacobs, B.S.6
  • 33
    • 84887194533 scopus 로고    scopus 로고
    • Proteomic analysis at the subcellular level for host targets against influenza A virus (H1N1)
    • 2416151
    • Zhao H, Yang J, Li K, Ding X, Lin R, Ma Y, et al. Proteomic analysis at the subcellular level for host targets against influenza A virus (H1N1). Antiviral Res. 2013;100(3):673–87. doi: 10.1016/j.antiviral.2013.10.005 24161511.
    • (2013) Antiviral Res , vol.100 , Issue.3 , pp. 673-687
    • Zhao, H.1    Yang, J.2    Li, K.3    Ding, X.4    Lin, R.5    Ma, Y.6
  • 34
    • 84890116192 scopus 로고    scopus 로고
    • EMRE is an essential component of the mitochondrial calcium uniporter complex
    • 2423180
    • Sancak Y, Markhard AL, Kitami T, Kovacs-Bogdan E, Kamer KJ, Udeshi ND, et al. EMRE is an essential component of the mitochondrial calcium uniporter complex. Science. 2013;342(6164):1379–82. doi: 10.1126/science.1242993 24231807.
    • (2013) Science , vol.342 , Issue.6164 , pp. 1379-1382
    • Sancak, Y.1    Markhard, A.L.2    Kitami, T.3    Kovacs-Bogdan, E.4    Kamer, K.J.5    Udeshi, N.D.6
  • 35
    • 80455143571 scopus 로고    scopus 로고
    • The mitochondrial contact site complex, a determinant of mitochondrial architecture
    • 2200919
    • Harner M, Korner C, Walther D, Mokranjac D, Kaesmacher J, Welsch U, et al. The mitochondrial contact site complex, a determinant of mitochondrial architecture. EMBO J. 2011;30(21):4356–70. doi: 10.1038/emboj.2011.379 22009199.
    • (2011) EMBO J , vol.30 , Issue.21 , pp. 4356-4370
    • Harner, M.1    Korner, C.2    Walther, D.3    Mokranjac, D.4    Kaesmacher, J.5    Welsch, U.6
  • 36
    • 84930683415 scopus 로고    scopus 로고
    • QIL1 is a novel mitochondrial protein required for MICOS complex stability and cristae morphology
    • 2599710
    • Guarani V, McNeill EM, Paulo JA, Huttlin EL, Frohlich F, Gygi SP, et al. QIL1 is a novel mitochondrial protein required for MICOS complex stability and cristae morphology. Elife. 2015;4. doi: 10.7554/eLife.06265 25997101.
    • (2015) Elife , vol.4
    • Guarani, V.1    McNeill, E.M.2    Paulo, J.A.3    Huttlin, E.L.4    Frohlich, F.5    Gygi, S.P.6
  • 37
    • 84856244072 scopus 로고    scopus 로고
    • Mitophagy plays an essential role in reducing mitochondrial production of reactive oxygen species and mutation of mitochondrial DNA by maintaining mitochondrial quantity and quality in yeast
    • 2215701
    • Kurihara Y, Kanki T, Aoki Y, Hirota Y, Saigusa T, Uchiumi T, et al. Mitophagy plays an essential role in reducing mitochondrial production of reactive oxygen species and mutation of mitochondrial DNA by maintaining mitochondrial quantity and quality in yeast. J Biol Chem. 2012;287(5):3265–72. doi: 10.1074/jbc.M111.280156 22157017.
    • (2012) J Biol Chem , vol.287 , Issue.5 , pp. 3265-3272
    • Kurihara, Y.1    Kanki, T.2    Aoki, Y.3    Hirota, Y.4    Saigusa, T.5    Uchiumi, T.6
  • 38
    • 84906874843 scopus 로고    scopus 로고
    • Mitochondrial dynamics and the innate antiviral immune response
    • 2505199
    • Pourcelot M, Arnoult D, Mitochondrial dynamics and the innate antiviral immune response. FEBS J. 2014;281(17):3791–802. doi: 10.1111/febs.12940 25051991.
    • (2014) FEBS J , vol.281 , Issue.17 , pp. 3791-3802
    • Pourcelot, M.1    Arnoult, D.2
  • 39
    • 84884909413 scopus 로고    scopus 로고
    • Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency
    • 2405536
    • Cogliati S, Frezza C, Soriano ME, Varanita T, Quintana-Cabrera R, Corrado M, et al. Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency. Cell. 2013;155(1):160–71. doi: 10.1016/j.cell.2013.08.032 24055366.
    • (2013) Cell , vol.155 , Issue.1 , pp. 160-171
    • Cogliati, S.1    Frezza, C.2    Soriano, M.E.3    Varanita, T.4    Quintana-Cabrera, R.5    Corrado, M.6
  • 40
    • 84959516439 scopus 로고    scopus 로고
    • Metabolic regulation of mitochondrial dynamics
    • 2685826
    • Mishra P, Chan DC, Metabolic regulation of mitochondrial dynamics. J Cell Biol. 2016;212(4):379–87. doi: 10.1083/jcb.201511036 26858267.
    • (2016) J Cell Biol , vol.212 , Issue.4 , pp. 379-387
    • Mishra, P.1    Chan, D.C.2
  • 41
    • 84961288140 scopus 로고    scopus 로고
    • Interferon-stimulated gene 15 (ISG15) and ISG15-linked proteins can associate with members of the selective autophagic process, histone deacetylase 6 (HDAC6) and SQSTM1/p62
    • 2542910
    • Nakashima H, Nguyen T, Goins WF, Chiocca EA, Interferon-stimulated gene 15 (ISG15) and ISG15-linked proteins can associate with members of the selective autophagic process, histone deacetylase 6 (HDAC6) and SQSTM1/p62. J Biol Chem. 2015;290(3):1485–95. doi: 10.1074/jbc.M114.593871 25429107.
    • (2015) J Biol Chem , vol.290 , Issue.3 , pp. 1485-1495
    • Nakashima, H.1    Nguyen, T.2    Goins, W.F.3    Chiocca, E.A.4
  • 42
    • 84954393355 scopus 로고    scopus 로고
    • Mitochondrial and lysosomal biogenesis are activated following PINK1/parkin-mediated mitophagy
    • 2650943
    • Ivankovic D, Chau KY, Schapira AH, Gegg ME, Mitochondrial and lysosomal biogenesis are activated following PINK1/parkin-mediated mitophagy. J Neurochem. 2016;136(2):388–402. doi: 10.1111/jnc.13412 26509433.
    • (2016) J Neurochem , vol.136 , Issue.2 , pp. 388-402
    • Ivankovic, D.1    Chau, K.Y.2    Schapira, A.H.3    Gegg, M.E.4
  • 43
    • 84940121426 scopus 로고    scopus 로고
    • Reshaping of Human Macrophage Polarization through Modulation of Glucose Catabolic Pathways
    • 2620962
    • Izquierdo E, Cuevas VD, Fernandez-Arroyo S, Riera-Borrull M, Orta-Zavalza E, Joven J, et al. Reshaping of Human Macrophage Polarization through Modulation of Glucose Catabolic Pathways. J Immunol. 2015;195(5):2442–51. doi: 10.4049/jimmunol.1403045 26209622.
    • (2015) J Immunol , vol.195 , Issue.5 , pp. 2442-2451
    • Izquierdo, E.1    Cuevas, V.D.2    Fernandez-Arroyo, S.3    Riera-Borrull, M.4    Orta-Zavalza, E.5    Joven, J.6
  • 44
    • 84859464555 scopus 로고    scopus 로고
    • Orchestration of metabolism by macrophages
    • 2248272
    • Biswas SK, Mantovani A, Orchestration of metabolism by macrophages. Cell Metab. 2012;15(4):432–7. doi: 10.1016/j.cmet.2011.11.013 22482726.
    • (2012) Cell Metab , vol.15 , Issue.4 , pp. 432-437
    • Biswas, S.K.1    Mantovani, A.2
  • 45
    • 84876771596 scopus 로고    scopus 로고
    • The immune system as a sensor of the metabolic state
    • 2360168
    • Odegaard JI, Chawla A, The immune system as a sensor of the metabolic state. Immunity. 2013;38(4):644–54. doi: 10.1016/j.immuni.2013.04.001 23601683.
    • (2013) Immunity , vol.38 , Issue.4 , pp. 644-654
    • Odegaard, J.I.1    Chawla, A.2
  • 46
    • 84919452312 scopus 로고    scopus 로고
    • Metabolic reprograming in macrophage polarization
    • 2522890
    • Galvan-Pena S, O'Neill LA, Metabolic reprograming in macrophage polarization. Front Immunol. 2014;5:420. doi: 10.3389/fimmu.2014.00420 25228902.
    • (2014) Front Immunol , vol.5 , pp. 420
    • Galvan-Pena, S.1    O'Neill, L.A.2
  • 47
    • 84941248339 scopus 로고    scopus 로고
    • Current Concept and Update of the Macrophage Plasticity Concept: Intracellular Mechanisms of Reprogramming and M3 Macrophage "Switch" Phenotype
    • 2636641
    • Malyshev I, Malyshev Y, Current Concept and Update of the Macrophage Plasticity Concept: Intracellular Mechanisms of Reprogramming and M3 Macrophage "Switch" Phenotype. Biomed Res Int. 2015;2015:341308. doi: 10.1155/2015/341308 26366410.
    • (2015) Biomed Res Int , vol.2015 , pp. 341308
    • Malyshev, I.1    Malyshev, Y.2
  • 48
    • 0242354098 scopus 로고    scopus 로고
    • Inhibitory effects of Bcl-2 on mitochondrial respiration
    • 1453582
    • Vrbacky M, Krijt J, Drahota Z, Melkova Z, Inhibitory effects of Bcl-2 on mitochondrial respiration. Physiol Res. 2003;52(5):545–54. 14535829.
    • (2003) Physiol Res , vol.52 , Issue.5 , pp. 545-554
    • Vrbacky, M.1    Krijt, J.2    Drahota, Z.3    Melkova, Z.4
  • 49
    • 84897946902 scopus 로고    scopus 로고
    • Changes in the mitochondrial network during ectromelia virus infection of permissive L929 cells
    • 2466017
    • Gregorczyk KP, Szulc-Dabrowska L, Wyzewski Z, Struzik J, Niemialtowski M, Changes in the mitochondrial network during ectromelia virus infection of permissive L929 cells. Acta Biochim Pol. 2014;61(1):171–7. 24660173.
    • (2014) Acta Biochim Pol , vol.61 , Issue.1 , pp. 171-177
    • Gregorczyk, K.P.1    Szulc-Dabrowska, L.2    Wyzewski, Z.3    Struzik, J.4    Niemialtowski, M.5
  • 50
    • 84888326516 scopus 로고    scopus 로고
    • Viruses as modulators of mitochondrial functions
    • 2426003
    • Anand SK, Tikoo SK, Viruses as modulators of mitochondrial functions. Adv Virol. 2013;2013:738794. doi: 10.1155/2013/738794 24260034.
    • (2013) Adv Virol , vol.2013 , pp. 738794
    • Anand, S.K.1    Tikoo, S.K.2
  • 51
    • 84888016188 scopus 로고    scopus 로고
    • The antiviral activities of ISG15
    • 2409585
    • Morales DJ, Lenschow DJ, The antiviral activities of ISG15. J Mol Biol. 2013;425(24):4995–5008. doi: 10.1016/j.jmb.2013.09.041 24095857.
    • (2013) J Mol Biol , vol.425 , Issue.24 , pp. 4995-5008
    • Morales, D.J.1    Lenschow, D.J.2
  • 52
    • 77951481221 scopus 로고    scopus 로고
    • Antiviral activity of innate immune protein ISG15
    • 1968046
    • Harty RN, Pitha PM, Okumura A, Antiviral activity of innate immune protein ISG15. J Innate Immun. 2009;1(5):397–404. doi: 10.1159/000226245 19680460.
    • (2009) J Innate Immun , vol.1 , Issue.5 , pp. 397-404
    • Harty, R.N.1    Pitha, P.M.2    Okumura, A.3
  • 53
    • 84975044477 scopus 로고    scopus 로고
    • Type 1 Interferons Induce Changes in Core Metabolism that Are Critical for Immune Function
    • 2733273
    • Wu D, Sanin DE, Everts B, Chen Q, Qiu J, Buck MD, et al. Type 1 Interferons Induce Changes in Core Metabolism that Are Critical for Immune Function. Immunity. 2016;44(6):1325–36. doi: 10.1016/j.immuni.2016.06.006 27332732.
    • (2016) Immunity , vol.44 , Issue.6 , pp. 1325-1336
    • Wu, D.1    Sanin, D.E.2    Everts, B.3    Chen, Q.4    Qiu, J.5    Buck, M.D.6
  • 54
    • 84862869409 scopus 로고    scopus 로고
    • The mitochondrial pathway and reactive oxygen species are critical contributors to interferon-alpha/beta-mediated apoptosis in Ubp43-deficient hematopoietic cells
    • 2268364
    • Yim HY, Yang Y, Lim JS, Lee MS, Zhang DE, Kim KI, The mitochondrial pathway and reactive oxygen species are critical contributors to interferon-alpha/beta-mediated apoptosis in Ubp43-deficient hematopoietic cells. Biochem Biophys Res Commun. 2012;423(2):436–40. 22683641.
    • (2012) Biochem Biophys Res Commun , vol.423 , Issue.2 , pp. 436-440
    • Yim, H.Y.1    Yang, Y.2    Lim, J.S.3    Lee, M.S.4    Zhang, D.E.5    Kim, K.I.6
  • 55
    • 84937511049 scopus 로고    scopus 로고
    • Viruses and the autophagy pathway
    • 2585814
    • Jackson WT, Viruses and the autophagy pathway. Virology. 2015;479–480:450–6. doi: 10.1016/j.virol.2015.03.042 25858140.
    • (2015) Virology , vol.479-480 , pp. 450-456
    • Jackson, W.T.1
  • 56
    • 84880178772 scopus 로고    scopus 로고
    • Autophagy: a potential therapeutic target in lung diseases
    • 2370961
    • Nakahira K, Choi AM, Autophagy: a potential therapeutic target in lung diseases. Am J Physiol Lung Cell Mol Physiol. 2013;305(2):L93–107. doi: 10.1152/ajplung.00072.2013 23709618.
    • (2013) Am J Physiol Lung Cell Mol Physiol , vol.305 , Issue.2 , pp. L93-107
    • Nakahira, K.1    Choi, A.M.2
  • 57
    • 84893980349 scopus 로고    scopus 로고
    • New function of type I IFN: induction of autophagy
    • 2442879
    • Schmeisser H, Bekisz J, Zoon KC, New function of type I IFN: induction of autophagy. J Interferon Cytokine Res. 2014;34(2):71–8. doi: 10.1089/jir.2013.0128 24428799.
    • (2014) J Interferon Cytokine Res , vol.34 , Issue.2 , pp. 71-78
    • Schmeisser, H.1    Bekisz, J.2    Zoon, K.C.3
  • 59
    • 84946848015 scopus 로고    scopus 로고
    • Modification of BECN1 by ISG15 plays a crucial role in autophagy regulation by type I IFN/interferon
    • 2590644
    • Xu D, Zhang T, Xiao J, Zhu K, Wei R, Wu Z, et al. Modification of BECN1 by ISG15 plays a crucial role in autophagy regulation by type I IFN/interferon. Autophagy. 2015;11(4):617–28. doi: 10.1080/15548627.2015.1023982 25906440.
    • (2015) Autophagy , vol.11 , Issue.4 , pp. 617-628
    • Xu, D.1    Zhang, T.2    Xiao, J.3    Zhu, K.4    Wei, R.5    Wu, Z.6
  • 60
    • 84940717958 scopus 로고    scopus 로고
    • Mitochondrial dynamics and viral infections: A close nexus
    • 2559552
    • Khan M, Syed GH, Kim SJ, Siddiqui A, Mitochondrial dynamics and viral infections: A close nexus. Biochim Biophys Acta. 2015;1853(10 Pt B):2822–33. doi: 10.1016/j.bbamcr.2014.12.040 25595529.
    • (2015) Biochim Biophys Acta , vol.1853 , pp. 2822-2833
    • Khan, M.1    Syed, G.H.2    Kim, S.J.3    Siddiqui, A.4
  • 61
    • 84897450679 scopus 로고    scopus 로고
    • De novo fatty acid biosynthesis contributes significantly to establishment of a bioenergetically favorable environment for vaccinia virus infection
    • 2465165
    • Greseth MD, Traktman P, De novo fatty acid biosynthesis contributes significantly to establishment of a bioenergetically favorable environment for vaccinia virus infection. PLoS Pathog. 2014;10(3):e1004021. doi: 10.1371/journal.ppat.1004021 24651651.
    • (2014) PLoS Pathog , vol.10 , Issue.3 , pp. e1004021
    • Greseth, M.D.1    Traktman, P.2
  • 62
    • 84913613942 scopus 로고    scopus 로고
    • Promiscuous methionyl-tRNA synthetase mediates adaptive mistranslation to protect cells against oxidative stress
    • 2509722
    • Lee JY, Kim DG, Kim BG, Yang WS, Hong J, Kang T, et al. Promiscuous methionyl-tRNA synthetase mediates adaptive mistranslation to protect cells against oxidative stress. J Cell Sci. 2014;127(Pt 19):4234–45. doi: 10.1242/jcs.152470 25097229.
    • (2014) J Cell Sci , vol.127 , pp. 4234-4245
    • Lee, J.Y.1    Kim, D.G.2    Kim, B.G.3    Yang, W.S.4    Hong, J.5    Kang, T.6
  • 63
    • 84894073629 scopus 로고    scopus 로고
    • Reactive oxygen species in inflammation and tissue injury
    • 2399188
    • Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB, Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal. 2014;20(7):1126–67. doi: 10.1089/ars.2012.5149 23991888.
    • (2014) Antioxid Redox Signal , vol.20 , Issue.7 , pp. 1126-1167
    • Mittal, M.1    Siddiqui, M.R.2    Tran, K.3    Reddy, S.P.4    Malik, A.B.5
  • 64
    • 79960478547 scopus 로고    scopus 로고
    • Chemistry and biology of reactive oxygen species in signaling or stress responses
    • 2176909
    • Dickinson BC, Chang CJ, Chemistry and biology of reactive oxygen species in signaling or stress responses. Nat Chem Biol. 2011;7(8):504–11. doi: 10.1038/nchembio.607 21769097.
    • (2011) Nat Chem Biol , vol.7 , Issue.8 , pp. 504-511
    • Dickinson, B.C.1    Chang, C.J.2
  • 65
    • 84965127146 scopus 로고    scopus 로고
    • The Reactive Oxygen Species in Macrophage Polarization: Reflecting Its Dual Role in Progression and Treatment of Human Diseases
    • 2714399
    • Tan HY, Wang N, Li S, Hong M, Wang X, Feng Y, The Reactive Oxygen Species in Macrophage Polarization: Reflecting Its Dual Role in Progression and Treatment of Human Diseases. Oxid Med Cell Longev. 2016;2016:2795090. doi: 10.1155/2016/2795090 27143992.
    • (2016) Oxid Med Cell Longev , vol.2016 , pp. 2795090
    • Tan, H.Y.1    Wang, N.2    Li, S.3    Hong, M.4    Wang, X.5    Feng, Y.6
  • 66
    • 77954667437 scopus 로고    scopus 로고
    • Modulation of the arginase pathway in the context of microbial pathogenesis: a metabolic enzyme moonlighting as an immune modulator
    • 2058555
    • Das P, Lahiri A, Lahiri A, Chakravortty D, Modulation of the arginase pathway in the context of microbial pathogenesis: a metabolic enzyme moonlighting as an immune modulator. PLoS Pathog. 2010;6(6):e1000899. doi: 10.1371/journal.ppat.1000899 20585552.
    • (2010) PLoS Pathog , vol.6 , Issue.6 , pp. e1000899
    • Das, P.1    Lahiri, A.2    Lahiri, A.3    Chakravortty, D.4
  • 67
    • 66349084135 scopus 로고    scopus 로고
    • Arginase-1-expressing macrophages suppress Th2 cytokine-driven inflammation and fibrosis
    • 1936012
    • Pesce JT, Ramalingam TR, Mentink-Kane MM, Wilson MS, El Kasmi KC, Smith AM, et al. Arginase-1-expressing macrophages suppress Th2 cytokine-driven inflammation and fibrosis. PLoS Pathog. 2009;5(4):e1000371. doi: 10.1371/journal.ppat.1000371 19360123.
    • (2009) PLoS Pathog , vol.5 , Issue.4 , pp. e1000371
    • Pesce, J.T.1    Ramalingam, T.R.2    Mentink-Kane, M.M.3    Wilson, M.S.4    El Kasmi, K.C.5    Smith, A.M.6
  • 68
    • 70350055199 scopus 로고    scopus 로고
    • Arginase: an emerging key player in the mammalian immune system
    • 1976498
    • Munder M, Arginase: an emerging key player in the mammalian immune system. Br J Pharmacol. 2009;158(3):638–51. doi: 10.1111/j.1476-5381.2009.00291.x 19764983.
    • (2009) Br J Pharmacol , vol.158 , Issue.3 , pp. 638-651
    • Munder, M.1
  • 69
    • 84946076891 scopus 로고    scopus 로고
    • Myeloid Cell Arg1 Inhibits Control of Arthritogenic Alphavirus Infection by Suppressing Antiviral T Cells
    • 2643676
    • Burrack KS, Tan JJ, McCarthy MK, Her Z, Berger JN, Ng LF, et al. Myeloid Cell Arg1 Inhibits Control of Arthritogenic Alphavirus Infection by Suppressing Antiviral T Cells. PLoS Pathog. 2015;11(10):e1005191. doi: 10.1371/journal.ppat.1005191 26436766.
    • (2015) PLoS Pathog , vol.11 , Issue.10 , pp. e1005191
    • Burrack, K.S.1    Tan, J.J.2    McCarthy, M.K.3    Her, Z.4    Berger, J.N.5    Ng, L.F.6
  • 70
    • 84867289691 scopus 로고    scopus 로고
    • Genetic ablation of arginase 1 in macrophages and neutrophils enhances clearance of an arthritogenic alphavirus
    • 2297292
    • Stoermer KA, Burrack A, Oko L, Montgomery SA, Borst LB, Gill RG, et al. Genetic ablation of arginase 1 in macrophages and neutrophils enhances clearance of an arthritogenic alphavirus. J Immunol. 2012;189(8):4047–59. doi: 10.4049/jimmunol.1201240 22972923.
    • (2012) J Immunol , vol.189 , Issue.8 , pp. 4047-4059
    • Stoermer, K.A.1    Burrack, A.2    Oko, L.3    Montgomery, S.A.4    Borst, L.B.5    Gill, R.G.6
  • 71
    • 80055100405 scopus 로고    scopus 로고
    • ISG15 is critical in the control of Chikungunya virus infection independent of UbE1L mediated conjugation
    • 2202865
    • Werneke SW, Schilte C, Rohatgi A, Monte KJ, Michault A, Arenzana-Seisdedos F, et al. ISG15 is critical in the control of Chikungunya virus infection independent of UbE1L mediated conjugation. PLoS Pathog. 2011;7(10):e1002322. doi: 10.1371/journal.ppat.1002322 22028657.
    • (2011) PLoS Pathog , vol.7 , Issue.10 , pp. e1002322
    • Werneke, S.W.1    Schilte, C.2    Rohatgi, A.3    Monte, K.J.4    Michault, A.5    Arenzana-Seisdedos, F.6
  • 72
    • 70349260534 scopus 로고    scopus 로고
    • The interferon system and vaccinia virus evasion mechanisms
    • 1970881
    • Perdiguero B, Esteban M, The interferon system and vaccinia virus evasion mechanisms. J Interferon Cytokine Res. 2009;29(9):581–98. doi: 10.1089/jir.2009.0073 19708815.
    • (2009) J Interferon Cytokine Res , vol.29 , Issue.9 , pp. 581-598
    • Perdiguero, B.1    Esteban, M.2
  • 73
    • 85007579741 scopus 로고    scopus 로고
    • Vaccinia Virus Protein C6 Inhibits Type I IFN Signalling in the Nucleus and Binds to the Transactivation Domain of STAT2
    • 2790716
    • Stuart JH, Sumner RP, Lu Y, Snowden JS, Smith GL, Vaccinia Virus Protein C6 Inhibits Type I IFN Signalling in the Nucleus and Binds to the Transactivation Domain of STAT2. PLoS Pathog. 2016;12(12):e1005955. doi: 10.1371/journal.ppat.1005955 27907166.
    • (2016) PLoS Pathog , vol.12 , Issue.12 , pp. e1005955
    • Stuart, J.H.1    Sumner, R.P.2    Lu, Y.3    Snowden, J.S.4    Smith, G.L.5
  • 74
    • 0038364254 scopus 로고    scopus 로고
    • Cellular gene expression survey of vaccinia virus infection of human HeLa cells
    • 12743306, Epub 2003/05/14
    • Guerra S, Lopez-Fernandez LA, Pascual-Montano A, Munoz M, Harshman K, Esteban M, Cellular gene expression survey of vaccinia virus infection of human HeLa cells. Journal of virology. 2003;77(11):6493–506. Epub 2003/05/14. doi: 10.1128/JVI.77.11.6493-6506.2003 12743306.
    • (2003) Journal of virology , vol.77 , Issue.11 , pp. 6493-6506
    • Guerra, S.1    Lopez-Fernandez, L.A.2    Pascual-Montano, A.3    Munoz, M.4    Harshman, K.5    Esteban, M.6
  • 75
    • 34248208646 scopus 로고    scopus 로고
    • The release of vaccinia virus from infected cells requires RhoA-mDia modulation of cortical actin
    • 18005701, Epub 2007/11/17
    • Arakawa Y, Cordeiro JV, Schleich S, Newsome TP, Way M, The release of vaccinia virus from infected cells requires RhoA-mDia modulation of cortical actin. Cell host & microbe. 2007;1(3):227–40. Epub 2007/11/17. doi: 10.1016/j.chom.2007.04.006 18005701.
    • (2007) Cell host & microbe , vol.1 , Issue.3 , pp. 227-240
    • Arakawa, Y.1    Cordeiro, J.V.2    Schleich, S.3    Newsome, T.P.4    Way, M.5
  • 76
    • 22544474366 scopus 로고    scopus 로고
    • ISG15, an interferon-stimulated ubiquitin-like protein, is not essential for STAT1 signaling and responses against vesicular stomatitis and lymphocytic choriomeningitis virus
    • 1602477
    • Osiak A, Utermohlen O, Niendorf S, Horak I, Knobeloch KP, ISG15, an interferon-stimulated ubiquitin-like protein, is not essential for STAT1 signaling and responses against vesicular stomatitis and lymphocytic choriomeningitis virus. Mol Cell Biol. 2005;25(15):6338–45. doi: 10.1128/MCB.25.15.6338-6345.2005 16024773.
    • (2005) Mol Cell Biol , vol.25 , Issue.15 , pp. 6338-6345
    • Osiak, A.1    Utermohlen, O.2    Niendorf, S.3    Horak, I.4    Knobeloch, K.P.5
  • 77
    • 34147104389 scopus 로고    scopus 로고
    • Assay of mitochondrial ATP synthesis in animal cells and tissues
    • 1744569
    • Vives-Bauza C, Yang L, Manfredi G, Assay of mitochondrial ATP synthesis in animal cells and tissues. Methods Cell Biol. 2007;80:155–71. doi: 10.1016/S0091-679X(06)80007-5 17445693.
    • (2007) Methods Cell Biol , vol.80 , pp. 155-171
    • Vives-Bauza, C.1    Yang, L.2    Manfredi, G.3
  • 78
    • 33750378958 scopus 로고    scopus 로고
    • Blue native PAGE
    • 1740626
    • Wittig I, Braun HP, Schagger H, Blue native PAGE. Nat Protoc. 2006;1(1):418–28. doi: 10.1038/nprot.2006.62 17406264.
    • (2006) Nat Protoc , vol.1 , Issue.1 , pp. 418-428
    • Wittig, I.1    Braun, H.P.2    Schagger, H.3
  • 79
    • 84971379259 scopus 로고    scopus 로고
    • Accurate quantification of mouse mitochondrial DNA without co-amplification of nuclear mitochondrial insertion sequences
    • 2718104
    • Malik AN, Czajka A, Cunningham P, Accurate quantification of mouse mitochondrial DNA without co-amplification of nuclear mitochondrial insertion sequences. Mitochondrion. 2016;29:59–64. doi: 10.1016/j.mito.2016.05.003 27181048.
    • (2016) Mitochondrion , vol.29 , pp. 59-64
    • Malik, A.N.1    Czajka, A.2    Cunningham, P.3
  • 80
  • 81
    • 65249144535 scopus 로고    scopus 로고
    • A refined method to calculate false discovery rates for peptide identification using decoy databases
    • 19714873, Epub 2009/08/29
    • Navarro P, Vazquez J, A refined method to calculate false discovery rates for peptide identification using decoy databases. J Proteome Res. 2009;8(4):1792–6. Epub 2009/08/29. doi: 10.1021/pr800362h 19714873.
    • (2009) J Proteome Res , vol.8 , Issue.4 , pp. 1792-1796
    • Navarro, P.1    Vazquez, J.2
  • 82
    • 84922622214 scopus 로고    scopus 로고
    • Revisiting peptide identification by high-accuracy mass spectrometry: problems associated with the use of narrow mass precursor windows
    • 25494653, Epub 2014/12/17
    • Bonzon-Kulichenko E, Garcia-Marques F, Trevisan-Herraz M, Vazquez J, Revisiting peptide identification by high-accuracy mass spectrometry: problems associated with the use of narrow mass precursor windows. J Proteome Res. 2015;14(2):700–10. Epub 2014/12/17. doi: 10.1021/pr5007284 25494653.
    • (2015) J Proteome Res , vol.14 , Issue.2 , pp. 700-710
    • Bonzon-Kulichenko, E.1    Garcia-Marques, F.2    Trevisan-Herraz, M.3    Vazquez, J.4
  • 84
    • 84964789127 scopus 로고    scopus 로고
    • A Novel Systems-Biology Algorithm for the Analysis of Coordinated Protein Responses Using Quantitative Proteomics
    • 2689302
    • Garcia-Marques F, Trevisan-Herraz M, Martinez-Martinez S, Camafeita E, Jorge I, Lopez JA, et al. A Novel Systems-Biology Algorithm for the Analysis of Coordinated Protein Responses Using Quantitative Proteomics. Mol Cell Proteomics. 2016;15(5):1740–60. doi: 10.1074/mcp.M115.055905 26893027.
    • (2016) Mol Cell Proteomics , vol.15 , Issue.5 , pp. 1740-1760
    • Garcia-Marques, F.1    Trevisan-Herraz, M.2    Martinez-Martinez, S.3    Camafeita, E.4    Jorge, I.5    Lopez, J.A.6
  • 85
    • 27144509163 scopus 로고    scopus 로고
    • A network-based analysis of systemic inflammation in humans
    • 16136080, Epub 2005/09/02
    • Calvano SE, Xiao W, Richards DR, Felciano RM, Baker HV, Cho RJ, et al. A network-based analysis of systemic inflammation in humans. Nature. 2005;437(7061):1032–7. Epub 2005/09/02. doi: 10.1038/nature03985 16136080.
    • (2005) Nature , vol.437 , Issue.7061 , pp. 1032-1037
    • Calvano, S.E.1    Xiao, W.2    Richards, D.R.3    Felciano, R.M.4    Baker, H.V.5    Cho, R.J.6
  • 86
    • 3042734655 scopus 로고    scopus 로고
    • Computational knowledge integration in biopharmaceutical research
    • 14582520, Epub 2003/10/30
    • Ficenec D, Osborne M, Pradines J, Richards D, Felciano R, Cho RJ, et al. Computational knowledge integration in biopharmaceutical research. Brief Bioinform. 2003;4(3):260–78. Epub 2003/10/30. 14582520.
    • (2003) Brief Bioinform , vol.4 , Issue.3 , pp. 260-278
    • Ficenec, D.1    Osborne, M.2    Pradines, J.3    Richards, D.4    Felciano, R.5    Cho, R.J.6
  • 87
    • 70149085189 scopus 로고    scopus 로고
    • Extracting biological meaning from large gene lists with DAVID
    • 19728287,..;:. Epub 2009/09/04
    • Huang da W, Sherman BT, Zheng X, Yang J, Imamichi T, Stephens R, et al. Extracting biological meaning from large gene lists with DAVID. Curr Protoc Bioinformatics. 2009;Chapter 13:Unit 13 1. Epub 2009/09/04. doi: 10.1002/0471250953.bi1311s27 19728287.
    • (2009) Curr Protoc Bioinformatics , vol.Chapter 13 , pp. Unit 13 1
    • Huang da, W.1    Sherman, B.T.2    Zheng, X.3    Yang, J.4    Imamichi, T.5    Stephens, R.6
  • 88
    • 85027927447 scopus 로고    scopus 로고
    • A survey of current software for network analysis in molecular biology
    • 2065082
    • Thomas S, Bonchev D, A survey of current software for network analysis in molecular biology. Hum Genomics. 2010;4(5):353–60. doi: 10.1186/1479-7364-4-5-353 20650822.
    • (2010) Hum Genomics , vol.4 , Issue.5 , pp. 353-360
    • Thomas, S.1    Bonchev, D.2
  • 89
    • 85006356094 scopus 로고    scopus 로고
    • Platforms and Pipelines for Proteomics Data Analysis and Management
    • 2797521
    • Codrea MC, Nahnsen S, Platforms and Pipelines for Proteomics Data Analysis and Management. Adv Exp Med Biol. 2016;919:203–15. doi: 10.1007/978-3-319-41448-5_9 27975218.
    • (2016) Adv Exp Med Biol , vol.919 , pp. 203-215
    • Codrea, M.C.1    Nahnsen, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.