메뉴 건너뛰기




Volumn 40, Issue 8, 2018, Pages 1948-1963

Scalable Joint Models for Reliable Uncertainty-Aware Event Prediction

Author keywords

joint modeling; missing data; scalable Gaussian processes; survival analysis; time series; Uncertainty aware prediction

Indexed keywords

DATA STRUCTURES; DETECTORS; FORECASTING; GAUSSIAN DISTRIBUTION; RELIABILITY; RELIABILITY ANALYSIS; TIME SERIES; TIME SERIES ANALYSIS; UNCERTAINTY ANALYSIS;

EID: 85028517618     PISSN: 01628828     EISSN: None     Source Type: Journal    
DOI: 10.1109/TPAMI.2017.2742504     Document Type: Article
Times cited : (59)

References (67)
  • 2
    • 0035829842 scopus 로고    scopus 로고
    • Early goal-directed therapy in the treatment of severe sepsis and septic shock
    • E. Rivers, et al., "Early goal-directed therapy in the treatment of severe sepsis and septic shock," New England J. Med., vol. 345, no. 19, pp. 1368-1377, 2001.
    • (2001) New England J. Med , vol.345 , Issue.19 , pp. 1368-1377
    • Rivers, E.1
  • 3
    • 0025605590 scopus 로고
    • Clinical antecedents to in-hospital cardiopulmonary arrest
    • R. M. Schein, N. Hazday, M. Pena, B. H. Ruben, and C. L. Sprung, "Clinical antecedents to in-hospital cardiopulmonary arrest," Chest, vol. 98, no. 6, pp. 1388-1392, 1990.
    • (1990) Chest , vol.98 , Issue.6 , pp. 1388-1392
    • Schein, R.M.1    Hazday, N.2    Pena, M.3    Ruben, B.H.4    Sprung, C.L.5
  • 4
    • 0032102643 scopus 로고    scopus 로고
    • Can some in-hospital cardio-respiratory arrests be prevented? A prospective survey
    • A. F. Smith and J. Wood, "Can some in-hospital cardio-respiratory arrests be prevented? A prospective survey," Resuscitation, vol. 37, no. 3, pp. 133-137, 1998.
    • (1998) Resuscitation , vol.37 , Issue.3 , pp. 133-137
    • Smith, A.F.1    Wood, J.2
  • 5
    • 33744527833 scopus 로고    scopus 로고
    • Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock
    • A. Kumar, et al., "Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock," Critical Care Med., vol. 34, no. 6, pp. 1589-1596, 2006.
    • (2006) Critical Care Med , vol.34 , Issue.6 , pp. 1589-1596
    • Kumar, A.1
  • 6
    • 84953869901 scopus 로고    scopus 로고
    • Gorilla: A fast, scalable, in-memory time series database
    • T. Pelkonen, et al., "Gorilla: A fast, scalable, in-memory time series database," Proc. VLDB Endowment, vol. 8, no. 12, pp. 1816-1827, 2015.
    • (2015) Proc. VLDB Endowment , vol.8 , Issue.12 , pp. 1816-1827
    • Pelkonen, T.1
  • 10
    • 80052787679 scopus 로고    scopus 로고
    • Dynamic predictions and prospective accuracy in joint models for longitudinal and time-to-event data
    • Sep
    • D. Rizopoulos, "Dynamic predictions and prospective accuracy in joint models for longitudinal and time-to-event data," Biometrics, vol. 67, no. 3, pp. 819-829, Sep. 2011.
    • (2011) Biometrics , vol.67 , Issue.3 , pp. 819-829
    • Rizopoulos, D.1
  • 11
    • 77955157844 scopus 로고    scopus 로고
    • JM : An R package for the joint modelling of longitudinal and time-to-event data
    • D. Rizopoulos, "JM : An R package for the joint modelling of longitudinal and time-to-event data," J. Statist. Softw., vol. 35, no. 9, pp. 1-33, 2010.
    • (2010) J. Statist. Softw , vol.35 , Issue.9 , pp. 1-33
    • Rizopoulos, D.1
  • 12
    • 84892600752 scopus 로고    scopus 로고
    • Joint latent class models for longitudinal and time-to-event data: A review
    • C. Proust-Lima, M. Séne, J. M. Taylor, and H. Jacqmin-Gadda, "Joint latent class models for longitudinal and time-to-event data: A review," Statist. Methods Med. Res., vol. 23, no. 1, pp. 74-90, 2014.
    • (2014) Statist. Methods Med. Res , vol.23 , Issue.1 , pp. 74-90
    • Proust-Lima, C.1    Séne, M.2    Taylor, J.M.3    Jacqmin-Gadda, H.4
  • 13
    • 84954368071 scopus 로고    scopus 로고
    • Joint modeling of repeated multivariate cognitive measures and competing risks of dementia and death: A latent process and latent class approach
    • C. Proust-Lima, J. F. Dartigues, and H. Jacqmin-Gadda, "Joint modeling of repeated multivariate cognitive measures and competing risks of dementia and death: A latent process and latent class approach," Statist. Med., vol. 35, no. 3, pp. 382-398, 2016.
    • (2016) Statist. Med , vol.35 , Issue.3 , pp. 382-398
    • Proust-Lima, C.1    Dartigues, J.F.2    Jacqmin-Gadda, H.3
  • 14
    • 84919784965 scopus 로고    scopus 로고
    • Combining dynamic predictions from joint models for longitudinal and time-to-event data using Bayesian model averaging
    • D. Rizopoulos, L. A. Hatfield, B. P. Carlin, and J. J. M. Takkenberg, "Combining dynamic predictions from joint models for longitudinal and time-to-event data using Bayesian model averaging," J. Amer. Statist. Assoc., vol. 109, no. 508, pp. 1385-1397, 2014.
    • (2014) J. Amer. Statist. Assoc , vol.109 , Issue.508 , pp. 1385-1397
    • Rizopoulos, D.1    Hatfield, L.A.2    Carlin, B.P.3    Takkenberg, J.J.M.4
  • 15
    • 85002251471 scopus 로고    scopus 로고
    • Scalable joint modeling of longitudinal and point process data for disease trajectory prediction and improving management of chronic kidney disease
    • J. Futoma, M. Sendak, C. B. Cameron, and K. Heller, "Scalable joint modeling of longitudinal and point process data for disease trajectory prediction and improving management of chronic kidney disease," in Proc. Conf. Uncertainty Artif. Intell., 2016, pp. 222-231.
    • (2016) Proc. Conf. Uncertainty Artif. Intell , pp. 222-231
    • Futoma, J.1    Sendak, M.2    Cameron, C.B.3    Heller, K.4
  • 16
    • 8644246036 scopus 로고    scopus 로고
    • Joint modeling of longitudinal and time-to-event data: An overview
    • A. Tsiatis and M. Davidian, "Joint modeling of longitudinal and time-to-event data: An overview," Statistica Sinica, vol. 14, pp. 809-834, 2004.
    • (2004) Statistica Sinica , vol.14 , pp. 809-834
    • Tsiatis, A.1    Davidian, M.2
  • 17
    • 80052418167 scopus 로고    scopus 로고
    • Joint modelling of longitudinal and time-to-event data with application to predicting abdominal aortic aneurysm growth and rupture
    • M. Sweeting and S. Thompson, "Joint modelling of longitudinal and time-to-event data with application to predicting abdominal aortic aneurysm growth and rupture," Biometrical J., vol. 53, pp. 750-763, 2011.
    • (2011) Biometrical J , vol.53 , pp. 750-763
    • Sweeting, M.1    Thompson, S.2
  • 18
    • 84938704873 scopus 로고    scopus 로고
    • A targeted real-time early warning score (TREWScore) for septic shock
    • Art. no. 299ra122
    • K. E. Henry, D. N. Hager, P. J. Pronovost, and S. Saria, "A targeted real-time early warning score (TREWScore) for septic shock," Sci. Transl. Med., vol. 7, no. 299, 2015, Art. no. 299ra122.
    • Sci. Transl. Med , vol.7 , Issue.299 , pp. 2015
    • Henry, K.E.1    Hager, D.N.2    Pronovost, P.J.3    Saria, S.4
  • 19
    • 84959548610 scopus 로고    scopus 로고
    • A multivariate timeseries modeling approach to severity of illness assessment and forecasting in ICU with sparse, heterogeneous clinical data
    • M. Ghassemi, et al., "A multivariate timeseries modeling approach to severity of illness assessment and forecasting in ICU with sparse, heterogeneous clinical data," in Proc. AAAI Conf. Artif. Intell., 2015, pp. 446-453.
    • (2015) Proc. AAAI Conf. Artif. Intell , pp. 446-453
    • Ghassemi, M.1
  • 20
    • 85019759969 scopus 로고    scopus 로고
    • Understanding vasopressor intervention and weaning: Risk prediction in a public heterogeneous clinical time series database
    • M. Wu, M. Ghassemi, M. Feng, L. A. Celi, P. Szolovits, and F. Doshi- Velez, "Understanding vasopressor intervention and weaning: Risk prediction in a public heterogeneous clinical time series database," J. Amer. Med. Informat. Assoc., vol. 24, pp. 488-495, 2017.
    • (2017) J. Amer. Med. Informat. Assoc , vol.24 , pp. 488-495
    • Wu, M.1    Ghassemi, M.2    Feng, M.3    Celi, L.A.4    Szolovits, P.5    Doshi-Velez, F.6
  • 21
    • 84937744538 scopus 로고
    • An optimum character recognition system using decision functions
    • Dec
    • C. K. Chow, "An optimum character recognition system using decision functions," IRE Trans. Electron. Comput., vol. EC-6, no. 4, pp. 247-254, Dec. 1957.
    • (1957) IRE Trans. Electron. Comput , vol.EC-6 , Issue.4 , pp. 247-254
    • Chow, C.K.1
  • 22
    • 0031192984 scopus 로고    scopus 로고
    • On the error-reject tradeoff in biometric verification systems
    • Jul
    • M. Golfarelli, D. Maio, and D. Malton, "On the error-reject tradeoff in biometric verification systems," IEEE Trans. Pattern Anal. Mach. Intell., vol. 19, no. 7, pp. 786-796, Jul. 1997.
    • (1997) IEEE Trans. Pattern Anal. Mach. Intell , vol.19 , Issue.7 , pp. 786-796
    • Golfarelli, M.1    Maio, D.2    Malton, D.3
  • 23
    • 50949100181 scopus 로고    scopus 로고
    • Classification with a reject option using a hinge loss
    • P. L. Bartlett and M. H. Wegkamp, "Classification with a reject option using a hinge loss," J. Mach. Learn. Res., vol. 9, pp. 1823- 1840, 2008.
    • (2008) J. Mach. Learn. Res , vol.9 , pp. 1823-1840
    • Bartlett, P.L.1    Wegkamp, M.H.2
  • 24
    • 84893460092 scopus 로고    scopus 로고
    • Classifying with confidence from incomplete information
    • N. Parrish, H. S. Anderson, M. R. Gupta, and D. Y. Hsiao, "Classifying with confidence from incomplete information," J. Mach. Learn. Res., vol. 14, no. 1, pp. 3561-3589, 2013.
    • (2013) J. Mach. Learn. Res , vol.14 , Issue.1 , pp. 3561-3589
    • Parrish, N.1    Anderson, H.S.2    Gupta, M.R.3    Hsiao, D.Y.4
  • 25
    • 84998636444 scopus 로고    scopus 로고
    • Early and reliable event detection using proximity space representation
    • M. Sangnier, J. Gauthier, and A. Rakotomamonjy, "Early and reliable event detection using proximity space representation," in Proc. Int. Conf. Mach. Learn., 2016, pp. 2310-2319.
    • (2016) Proc. Int. Conf. Mach. Learn , pp. 2310-2319
    • Sangnier, M.1    Gauthier, J.2    Rakotomamonjy, A.3
  • 26
    • 84897108420 scopus 로고    scopus 로고
    • Max-margin early event detectors
    • M. Hoai and F. De La Torre, "Max-margin early event detectors," Int. J. Comput. Vis., vol. 107, no. 2, pp. 191-202, 2014.
    • (2014) Int. J. Comput. Vis , vol.107 , Issue.2 , pp. 191-202
    • Hoai, M.1    De La Torre, F.2
  • 28
    • 33847345021 scopus 로고    scopus 로고
    • Dynamic prediction by landmarking in event history analysis
    • H. C. Van Houwelingen, "Dynamic prediction by landmarking in event history analysis," Scandinavian J. Statist., vol. 34, no. 1, pp. 70-85, 2007.
    • (2007) Scandinavian J. Statist , vol.34 , Issue.1 , pp. 70-85
    • Van Houwelingen, H.C.1
  • 31
    • 79960146318 scopus 로고    scopus 로고
    • Computationally efficient convolved multiple output Gaussian processes
    • M. A. - Alvarez and N. D. Lawrence, "Computationally efficient convolved multiple output Gaussian processes," J. Mach. Learn. Res., vol. 12, pp. 1459-1500, 2009.
    • (2009) J. Mach. Learn. Res , vol.12 , pp. 1459-1500
    • Alvarez, M.A.1    Lawrence, N.D.2
  • 32
    • 0017133178 scopus 로고
    • Inference and missing data
    • D. B. Rubin, "Inference and missing data," Biometrika, vol. 63, no. 3, pp. 581-592, 1976.
    • (1976) Biometrika , vol.63 , Issue.3 , pp. 581-592
    • Rubin, D.B.1
  • 33
    • 85011661288 scopus 로고    scopus 로고
    • Integrative analysis using coupled latent variable models for individualizing prognoses
    • P. Schulam and S. Saria, "Integrative analysis using coupled latent variable models for individualizing prognoses," J. Mach. Learn. Res., vol. 17, no. 234, pp. 1-35, 2016.
    • (2016) J. Mach. Learn. Res , vol.17 , Issue.234 , pp. 1-35
    • Schulam, P.1    Saria, S.2
  • 35
    • 84855386927 scopus 로고    scopus 로고
    • Robust Gaussian process regression with a student-t likelihood
    • P. Jylänki, J. Vanhatalo, and A. Vehtari, "Robust Gaussian process regression with a student-t likelihood," J. Mach. Learn. Res., vol. 12, pp. 3227-3257, 2011.
    • (2011) J. Mach. Learn. Res , vol.12 , pp. 3227-3257
    • Jylänki, P.1    Vanhatalo, J.2    Vehtari, A.3
  • 36
    • 84857502045 scopus 로고    scopus 로고
    • Risk of recurrence of gastrointestinal stromal tumour after surgery: An analysis of pooled population-based cohorts
    • H. Joensuu, et al., "Risk of recurrence of gastrointestinal stromal tumour after surgery: An analysis of pooled population-based cohorts," Lancet Oncology, vol. 13, no. 3, pp. 265-274, 2012.
    • (2012) Lancet Oncology , vol.13 , Issue.3 , pp. 265-274
    • Joensuu, H.1
  • 41
    • 84862292378 scopus 로고    scopus 로고
    • Variational model selection for sparse gaussian process regression
    • M. K. Titsias, "Variational model selection for sparse gaussian process regression," in Proc. Int. Conf. Artif. Intell. Statist., 2009, pp. 1-20.
    • (2009) Proc. Int. Conf. Artif. Intell. Statist , pp. 1-20
    • Titsias, M.K.1
  • 49
    • 0000732463 scopus 로고
    • A limited memory algorithm for bound constrained optimization
    • R. Byrd, P. Lu, J. Nocedal, and C. Zhu, "A limited memory algorithm for bound constrained optimization," SIAM J. Sci. Comput., vol. 16, no. 5, pp. 1190-1208, 1995.
    • (1995) SIAM J. Sci. Comput , vol.16 , Issue.5 , pp. 1190-1208
    • Byrd, R.1    Lu, P.2    Nocedal, J.3    Zhu, C.4
  • 51
    • 84965144591 scopus 로고    scopus 로고
    • A framework for individualizing predictions of disease trajectories by exploiting multi-resolution structure
    • P. Schulam and S. Saria, "A framework for individualizing predictions of disease trajectories by exploiting multi-resolution structure," in Proc. Int. Conf. Neural Inf. Process. Syst., 2015, pp. 748-756.
    • (2015) Proc. Int. Conf. Neural Inf. Process. Syst , pp. 748-756
    • Schulam, P.1    Saria, S.2
  • 54
    • 0004093524 scopus 로고    scopus 로고
    • Thousand Oaks, CA, USA: Sage Publications
    • P. D. Allison, Missing Data. Thousand Oaks, CA, USA: Sage Publications, 2001.
    • (2001) Missing Data
    • Allison, P.D.1
  • 55
    • 84920982270 scopus 로고    scopus 로고
    • Handling missing values in longitudinal panel data with multiple imputation
    • R. Young and D. R. Johnson, "Handling missing values in longitudinal panel data with multiple imputation," J. Marriage Family, vol. 77, pp. 277-294, 2015.
    • (2015) J. Marriage Family , vol.77 , pp. 277-294
    • Young, R.1    Johnson, D.R.2
  • 56
    • 84927170042 scopus 로고    scopus 로고
    • Autoregressive hidden Markov models for the early detection of neonatal sepsis
    • Sep
    • I. Stanculescu, C. K. Williams, and Y. Freer, "Autoregressive hidden Markov models for the early detection of neonatal sepsis," IEEE J. Biomed. Health Informat., vol. 18, no. 5, pp. 1560-1570, Sep. 2014.
    • (2014) IEEE J. Biomed. Health Informat , vol.18 , Issue.5 , pp. 1560-1570
    • Stanculescu, I.1    Williams, C.K.2    Freer, Y.3
  • 57
    • 85007158206 scopus 로고    scopus 로고
    • Learning adaptive forecasting models from irregularly sampled multivariate clinical data
    • Z. Liu and M. Hauskrecht, "Learning adaptive forecasting models from irregularly sampled multivariate clinical data," in Proc. AAAI Conf. Artif. Intell., 2016, pp. 1273-1279.
    • (2016) Proc. AAAI Conf. Artif. Intell , pp. 1273-1279
    • Liu, Z.1    Hauskrecht, M.2
  • 59
    • 84879468407 scopus 로고    scopus 로고
    • Computational phenotype discovery using unsupervised feature learning over noisy, sparse, and irregular clinical data
    • Jun
    • T. A. Lasko, J. C. Denny, and M. A. Levy, "Computational phenotype discovery using unsupervised feature learning over noisy, sparse, and irregular clinical data," PLoS One, vol. 8, no. 6, pp. 1- 13, Jun. 2013.
    • (2013) PLoS One , vol.8 , Issue.6 , pp. 1-13
    • Lasko, T.A.1    Denny, J.C.2    Levy, M.A.3
  • 60
    • 67650995767 scopus 로고    scopus 로고
    • Factorial switching linear dynamical systems applied to physiological condition monitoring
    • Sep
    • J. A. Quinn, C. K. Williams, and N. McIntosh, "Factorial switching linear dynamical systems applied to physiological condition monitoring," IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 9, pp. 1537-1551, Sep. 2009.
    • (2009) IEEE Trans. Pattern Anal. Mach. Intell , vol.31 , Issue.9 , pp. 1537-1551
    • Quinn, J.A.1    Williams, C.K.2    McIntosh, N.3
  • 61
    • 85045725364 scopus 로고    scopus 로고
    • Directly modeling missing data in sequences with RNNs: Improved classification of clinical time series
    • Z. C. Lipton, D. C. Kale, and R. Wetzel, "Directly modeling missing data in sequences with RNNs: Improved classification of clinical time series," in Proc. Mach. Learn. Healthcare, 2016, pp. 1-17.
    • (2016) Proc. Mach. Learn. Healthcare , pp. 1-17
    • Lipton, Z.C.1    Kale, D.C.2    Wetzel, R.3
  • 63
    • 85019182876 scopus 로고    scopus 로고
    • A scalable end-to-end gaussian process adapter for irregularly sampled time series classification
    • S. C.-X. Li and B. M. Marlin, "A scalable end-to-end gaussian process adapter for irregularly sampled time series classification," in Proc. Int. Conf. Neural Inf. Process. Syst., 2016, pp. 1804-1812.
    • (2016) Proc. Int. Conf. Neural Inf. Process. Syst , pp. 1804-1812
    • Li, S.C.-X.1    Marlin, B.M.2
  • 64
    • 14844283547 scopus 로고    scopus 로고
    • PhysioBank, PhysioToolkit, and Physio- Net: Components of a new research resource for complex physiologic signals
    • A. L. Goldberger, et al., "PhysioBank, PhysioToolkit, and Physio- Net: Components of a new research resource for complex physiologic signals," Circulation, vol. 101, no. 23, pp. 215-220, 2000.
    • (2000) Circulation , vol.101 , Issue.23 , pp. 215-220
    • Goldberger, A.L.1
  • 65
    • 0000732463 scopus 로고
    • A limited memory algorithm for bound constrained optimization
    • R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu, "A limited memory algorithm for bound constrained optimization," SIAM J. Sci. Comput., vol. 16, no. 5, pp. 1190-1208, 1995.
    • (1995) SIAM J. Sci. Comput , vol.16 , Issue.5 , pp. 1190-1208
    • Byrd, R.H.1    Lu, P.2    Nocedal, J.3    Zhu, C.4
  • 67
    • 85031117549 scopus 로고    scopus 로고
    • J. Hensman, et al., "GPflow," 2016. [Online]. Available: https:// github.com/GPflow/GPflow
    • (2016) GPflow
    • Hensman, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.