-
2
-
-
0035829842
-
Early goal-directed therapy in the treatment of severe sepsis and septic shock
-
E. Rivers, et al., "Early goal-directed therapy in the treatment of severe sepsis and septic shock," New England J. Med., vol. 345, no. 19, pp. 1368-1377, 2001.
-
(2001)
New England J. Med
, vol.345
, Issue.19
, pp. 1368-1377
-
-
Rivers, E.1
-
3
-
-
0025605590
-
Clinical antecedents to in-hospital cardiopulmonary arrest
-
R. M. Schein, N. Hazday, M. Pena, B. H. Ruben, and C. L. Sprung, "Clinical antecedents to in-hospital cardiopulmonary arrest," Chest, vol. 98, no. 6, pp. 1388-1392, 1990.
-
(1990)
Chest
, vol.98
, Issue.6
, pp. 1388-1392
-
-
Schein, R.M.1
Hazday, N.2
Pena, M.3
Ruben, B.H.4
Sprung, C.L.5
-
4
-
-
0032102643
-
Can some in-hospital cardio-respiratory arrests be prevented? A prospective survey
-
A. F. Smith and J. Wood, "Can some in-hospital cardio-respiratory arrests be prevented? A prospective survey," Resuscitation, vol. 37, no. 3, pp. 133-137, 1998.
-
(1998)
Resuscitation
, vol.37
, Issue.3
, pp. 133-137
-
-
Smith, A.F.1
Wood, J.2
-
5
-
-
33744527833
-
Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock
-
A. Kumar, et al., "Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock," Critical Care Med., vol. 34, no. 6, pp. 1589-1596, 2006.
-
(2006)
Critical Care Med
, vol.34
, Issue.6
, pp. 1589-1596
-
-
Kumar, A.1
-
6
-
-
84953869901
-
Gorilla: A fast, scalable, in-memory time series database
-
T. Pelkonen, et al., "Gorilla: A fast, scalable, in-memory time series database," Proc. VLDB Endowment, vol. 8, no. 12, pp. 1816-1827, 2015.
-
(2015)
Proc. VLDB Endowment
, vol.8
, Issue.12
, pp. 1816-1827
-
-
Pelkonen, T.1
-
10
-
-
80052787679
-
Dynamic predictions and prospective accuracy in joint models for longitudinal and time-to-event data
-
Sep
-
D. Rizopoulos, "Dynamic predictions and prospective accuracy in joint models for longitudinal and time-to-event data," Biometrics, vol. 67, no. 3, pp. 819-829, Sep. 2011.
-
(2011)
Biometrics
, vol.67
, Issue.3
, pp. 819-829
-
-
Rizopoulos, D.1
-
11
-
-
77955157844
-
JM : An R package for the joint modelling of longitudinal and time-to-event data
-
D. Rizopoulos, "JM : An R package for the joint modelling of longitudinal and time-to-event data," J. Statist. Softw., vol. 35, no. 9, pp. 1-33, 2010.
-
(2010)
J. Statist. Softw
, vol.35
, Issue.9
, pp. 1-33
-
-
Rizopoulos, D.1
-
12
-
-
84892600752
-
Joint latent class models for longitudinal and time-to-event data: A review
-
C. Proust-Lima, M. Séne, J. M. Taylor, and H. Jacqmin-Gadda, "Joint latent class models for longitudinal and time-to-event data: A review," Statist. Methods Med. Res., vol. 23, no. 1, pp. 74-90, 2014.
-
(2014)
Statist. Methods Med. Res
, vol.23
, Issue.1
, pp. 74-90
-
-
Proust-Lima, C.1
Séne, M.2
Taylor, J.M.3
Jacqmin-Gadda, H.4
-
13
-
-
84954368071
-
Joint modeling of repeated multivariate cognitive measures and competing risks of dementia and death: A latent process and latent class approach
-
C. Proust-Lima, J. F. Dartigues, and H. Jacqmin-Gadda, "Joint modeling of repeated multivariate cognitive measures and competing risks of dementia and death: A latent process and latent class approach," Statist. Med., vol. 35, no. 3, pp. 382-398, 2016.
-
(2016)
Statist. Med
, vol.35
, Issue.3
, pp. 382-398
-
-
Proust-Lima, C.1
Dartigues, J.F.2
Jacqmin-Gadda, H.3
-
14
-
-
84919784965
-
Combining dynamic predictions from joint models for longitudinal and time-to-event data using Bayesian model averaging
-
D. Rizopoulos, L. A. Hatfield, B. P. Carlin, and J. J. M. Takkenberg, "Combining dynamic predictions from joint models for longitudinal and time-to-event data using Bayesian model averaging," J. Amer. Statist. Assoc., vol. 109, no. 508, pp. 1385-1397, 2014.
-
(2014)
J. Amer. Statist. Assoc
, vol.109
, Issue.508
, pp. 1385-1397
-
-
Rizopoulos, D.1
Hatfield, L.A.2
Carlin, B.P.3
Takkenberg, J.J.M.4
-
15
-
-
85002251471
-
Scalable joint modeling of longitudinal and point process data for disease trajectory prediction and improving management of chronic kidney disease
-
J. Futoma, M. Sendak, C. B. Cameron, and K. Heller, "Scalable joint modeling of longitudinal and point process data for disease trajectory prediction and improving management of chronic kidney disease," in Proc. Conf. Uncertainty Artif. Intell., 2016, pp. 222-231.
-
(2016)
Proc. Conf. Uncertainty Artif. Intell
, pp. 222-231
-
-
Futoma, J.1
Sendak, M.2
Cameron, C.B.3
Heller, K.4
-
16
-
-
8644246036
-
Joint modeling of longitudinal and time-to-event data: An overview
-
A. Tsiatis and M. Davidian, "Joint modeling of longitudinal and time-to-event data: An overview," Statistica Sinica, vol. 14, pp. 809-834, 2004.
-
(2004)
Statistica Sinica
, vol.14
, pp. 809-834
-
-
Tsiatis, A.1
Davidian, M.2
-
17
-
-
80052418167
-
Joint modelling of longitudinal and time-to-event data with application to predicting abdominal aortic aneurysm growth and rupture
-
M. Sweeting and S. Thompson, "Joint modelling of longitudinal and time-to-event data with application to predicting abdominal aortic aneurysm growth and rupture," Biometrical J., vol. 53, pp. 750-763, 2011.
-
(2011)
Biometrical J
, vol.53
, pp. 750-763
-
-
Sweeting, M.1
Thompson, S.2
-
18
-
-
84938704873
-
A targeted real-time early warning score (TREWScore) for septic shock
-
Art. no. 299ra122
-
K. E. Henry, D. N. Hager, P. J. Pronovost, and S. Saria, "A targeted real-time early warning score (TREWScore) for septic shock," Sci. Transl. Med., vol. 7, no. 299, 2015, Art. no. 299ra122.
-
Sci. Transl. Med
, vol.7
, Issue.299
, pp. 2015
-
-
Henry, K.E.1
Hager, D.N.2
Pronovost, P.J.3
Saria, S.4
-
19
-
-
84959548610
-
A multivariate timeseries modeling approach to severity of illness assessment and forecasting in ICU with sparse, heterogeneous clinical data
-
M. Ghassemi, et al., "A multivariate timeseries modeling approach to severity of illness assessment and forecasting in ICU with sparse, heterogeneous clinical data," in Proc. AAAI Conf. Artif. Intell., 2015, pp. 446-453.
-
(2015)
Proc. AAAI Conf. Artif. Intell
, pp. 446-453
-
-
Ghassemi, M.1
-
20
-
-
85019759969
-
Understanding vasopressor intervention and weaning: Risk prediction in a public heterogeneous clinical time series database
-
M. Wu, M. Ghassemi, M. Feng, L. A. Celi, P. Szolovits, and F. Doshi- Velez, "Understanding vasopressor intervention and weaning: Risk prediction in a public heterogeneous clinical time series database," J. Amer. Med. Informat. Assoc., vol. 24, pp. 488-495, 2017.
-
(2017)
J. Amer. Med. Informat. Assoc
, vol.24
, pp. 488-495
-
-
Wu, M.1
Ghassemi, M.2
Feng, M.3
Celi, L.A.4
Szolovits, P.5
Doshi-Velez, F.6
-
21
-
-
84937744538
-
An optimum character recognition system using decision functions
-
Dec
-
C. K. Chow, "An optimum character recognition system using decision functions," IRE Trans. Electron. Comput., vol. EC-6, no. 4, pp. 247-254, Dec. 1957.
-
(1957)
IRE Trans. Electron. Comput
, vol.EC-6
, Issue.4
, pp. 247-254
-
-
Chow, C.K.1
-
22
-
-
0031192984
-
On the error-reject tradeoff in biometric verification systems
-
Jul
-
M. Golfarelli, D. Maio, and D. Malton, "On the error-reject tradeoff in biometric verification systems," IEEE Trans. Pattern Anal. Mach. Intell., vol. 19, no. 7, pp. 786-796, Jul. 1997.
-
(1997)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.19
, Issue.7
, pp. 786-796
-
-
Golfarelli, M.1
Maio, D.2
Malton, D.3
-
23
-
-
50949100181
-
Classification with a reject option using a hinge loss
-
P. L. Bartlett and M. H. Wegkamp, "Classification with a reject option using a hinge loss," J. Mach. Learn. Res., vol. 9, pp. 1823- 1840, 2008.
-
(2008)
J. Mach. Learn. Res
, vol.9
, pp. 1823-1840
-
-
Bartlett, P.L.1
Wegkamp, M.H.2
-
24
-
-
84893460092
-
Classifying with confidence from incomplete information
-
N. Parrish, H. S. Anderson, M. R. Gupta, and D. Y. Hsiao, "Classifying with confidence from incomplete information," J. Mach. Learn. Res., vol. 14, no. 1, pp. 3561-3589, 2013.
-
(2013)
J. Mach. Learn. Res
, vol.14
, Issue.1
, pp. 3561-3589
-
-
Parrish, N.1
Anderson, H.S.2
Gupta, M.R.3
Hsiao, D.Y.4
-
25
-
-
84998636444
-
Early and reliable event detection using proximity space representation
-
M. Sangnier, J. Gauthier, and A. Rakotomamonjy, "Early and reliable event detection using proximity space representation," in Proc. Int. Conf. Mach. Learn., 2016, pp. 2310-2319.
-
(2016)
Proc. Int. Conf. Mach. Learn
, pp. 2310-2319
-
-
Sangnier, M.1
Gauthier, J.2
Rakotomamonjy, A.3
-
26
-
-
84897108420
-
Max-margin early event detectors
-
M. Hoai and F. De La Torre, "Max-margin early event detectors," Int. J. Comput. Vis., vol. 107, no. 2, pp. 191-202, 2014.
-
(2014)
Int. J. Comput. Vis
, vol.107
, Issue.2
, pp. 191-202
-
-
Hoai, M.1
De La Torre, F.2
-
28
-
-
33847345021
-
Dynamic prediction by landmarking in event history analysis
-
H. C. Van Houwelingen, "Dynamic prediction by landmarking in event history analysis," Scandinavian J. Statist., vol. 34, no. 1, pp. 70-85, 2007.
-
(2007)
Scandinavian J. Statist
, vol.34
, Issue.1
, pp. 70-85
-
-
Van Houwelingen, H.C.1
-
31
-
-
79960146318
-
Computationally efficient convolved multiple output Gaussian processes
-
M. A. - Alvarez and N. D. Lawrence, "Computationally efficient convolved multiple output Gaussian processes," J. Mach. Learn. Res., vol. 12, pp. 1459-1500, 2009.
-
(2009)
J. Mach. Learn. Res
, vol.12
, pp. 1459-1500
-
-
Alvarez, M.A.1
Lawrence, N.D.2
-
32
-
-
0017133178
-
Inference and missing data
-
D. B. Rubin, "Inference and missing data," Biometrika, vol. 63, no. 3, pp. 581-592, 1976.
-
(1976)
Biometrika
, vol.63
, Issue.3
, pp. 581-592
-
-
Rubin, D.B.1
-
33
-
-
85011661288
-
Integrative analysis using coupled latent variable models for individualizing prognoses
-
P. Schulam and S. Saria, "Integrative analysis using coupled latent variable models for individualizing prognoses," J. Mach. Learn. Res., vol. 17, no. 234, pp. 1-35, 2016.
-
(2016)
J. Mach. Learn. Res
, vol.17
, Issue.234
, pp. 1-35
-
-
Schulam, P.1
Saria, S.2
-
35
-
-
84855386927
-
Robust Gaussian process regression with a student-t likelihood
-
P. Jylänki, J. Vanhatalo, and A. Vehtari, "Robust Gaussian process regression with a student-t likelihood," J. Mach. Learn. Res., vol. 12, pp. 3227-3257, 2011.
-
(2011)
J. Mach. Learn. Res
, vol.12
, pp. 3227-3257
-
-
Jylänki, P.1
Vanhatalo, J.2
Vehtari, A.3
-
36
-
-
84857502045
-
Risk of recurrence of gastrointestinal stromal tumour after surgery: An analysis of pooled population-based cohorts
-
H. Joensuu, et al., "Risk of recurrence of gastrointestinal stromal tumour after surgery: An analysis of pooled population-based cohorts," Lancet Oncology, vol. 13, no. 3, pp. 265-274, 2012.
-
(2012)
Lancet Oncology
, vol.13
, Issue.3
, pp. 265-274
-
-
Joensuu, H.1
-
37
-
-
85032981175
-
Chained Gaussian processes
-
A. D. Saul, J. Hensman, A. Vehtari, and N. D. Lawrence, "Chained Gaussian processes," in Proc. Int. Conf. Artif. Intell. Statist., 2016, pp. 1-23.
-
(2016)
Proc. Int. Conf. Artif. Intell. Statist
, pp. 1-23
-
-
Saul, A.D.1
Hensman, J.2
Vehtari, A.3
Lawrence, N.D.4
-
38
-
-
85018897327
-
Gaussian processes for survival analysis
-
T. Fernández, N. Rivera, and Y. W. Teh, "Gaussian processes for survival analysis," in Proc. Int. Conf. Neural Inf. Process. Syst., pp. 5021-5029, 2016.
-
(2016)
Proc. Int. Conf. Neural Inf. Process. Syst
, pp. 5021-5029
-
-
Fernández, T.1
Rivera, N.2
Teh, Y.W.3
-
39
-
-
85040183400
-
Deep survival analysis
-
R. Ranganath, A. Perotte, N. Elhadad, and D. Blei, "Deep survival analysis," in Proc. Mach. Learn. Healthcare, 2016, pp. 1-13.
-
(2016)
Proc. Mach. Learn. Healthcare
, pp. 1-13
-
-
Ranganath, R.1
Perotte, A.2
Elhadad, N.3
Blei, D.4
-
40
-
-
84954313610
-
Deep exponential families
-
R. Ranganath, A. Perotte, N. Elhadad, and D. Blei, "Deep exponential families," in Proc. Int. Conf. Artif. Intell. Statist., 2015, pp. 762-771.
-
(2015)
Proc. Int. Conf. Artif. Intell. Statist
, pp. 762-771
-
-
Ranganath, R.1
Perotte, A.2
Elhadad, N.3
Blei, D.4
-
41
-
-
84862292378
-
Variational model selection for sparse gaussian process regression
-
M. K. Titsias, "Variational model selection for sparse gaussian process regression," in Proc. Int. Conf. Artif. Intell. Statist., 2009, pp. 1-20.
-
(2009)
Proc. Int. Conf. Artif. Intell. Statist
, pp. 1-20
-
-
Titsias, M.K.1
-
42
-
-
84888155846
-
Gaussian processes for big data
-
J. Hensman, N. Fusi, and N. D. Lawrence, "Gaussian processes for big data," in Proc. Conf. Uncertainty Artif. Intell., 2013, pp. 282-290.
-
(2013)
Proc. Conf. Uncertainty Artif. Intell
, pp. 282-290
-
-
Hensman, J.1
Fusi, N.2
Lawrence, N.D.3
-
44
-
-
85032944981
-
On sparse variational methods and the Kullback-Leibler divergence between stochastic processes
-
A. G. de G. Matthews, J. Hensman, R. E. Turner, and Z. Ghahramani, "On sparse variational methods and the Kullback-Leibler divergence between stochastic processes," in Proc. Int. Conf. Artif. Intell. Statist., 2016, pp. 231-239.
-
(2016)
Proc. Int. Conf. Artif. Intell. Statist
, pp. 231-239
-
-
Matthews, A.G.D.G.1
Hensman, J.2
Turner, R.E.3
Ghahramani, Z.4
-
45
-
-
84877774592
-
Active learning of model evidence using Bayesian quadrature
-
M. Osborne, D. Duvenaud, R. Garnett, C. E. Rasmussen, S. J. Roberts, and Z. Ghahramani, "Active learning of model evidence using Bayesian quadrature," in Proc. Int. Conf. Neural Inf. Process. Syst., 2012, pp. 46-54.
-
(2012)
Proc. Int. Conf. Neural Inf. Process. Syst
, pp. 46-54
-
-
Osborne, M.1
Duvenaud, D.2
Garnett, R.3
Rasmussen, C.E.4
Roberts, S.J.5
Ghahramani, Z.6
-
49
-
-
0000732463
-
A limited memory algorithm for bound constrained optimization
-
R. Byrd, P. Lu, J. Nocedal, and C. Zhu, "A limited memory algorithm for bound constrained optimization," SIAM J. Sci. Comput., vol. 16, no. 5, pp. 1190-1208, 1995.
-
(1995)
SIAM J. Sci. Comput
, vol.16
, Issue.5
, pp. 1190-1208
-
-
Byrd, R.1
Lu, P.2
Nocedal, J.3
Zhu, C.4
-
51
-
-
84965144591
-
A framework for individualizing predictions of disease trajectories by exploiting multi-resolution structure
-
P. Schulam and S. Saria, "A framework for individualizing predictions of disease trajectories by exploiting multi-resolution structure," in Proc. Int. Conf. Neural Inf. Process. Syst., 2015, pp. 748-756.
-
(2015)
Proc. Int. Conf. Neural Inf. Process. Syst
, pp. 748-756
-
-
Schulam, P.1
Saria, S.2
-
54
-
-
0004093524
-
-
Thousand Oaks, CA, USA: Sage Publications
-
P. D. Allison, Missing Data. Thousand Oaks, CA, USA: Sage Publications, 2001.
-
(2001)
Missing Data
-
-
Allison, P.D.1
-
55
-
-
84920982270
-
Handling missing values in longitudinal panel data with multiple imputation
-
R. Young and D. R. Johnson, "Handling missing values in longitudinal panel data with multiple imputation," J. Marriage Family, vol. 77, pp. 277-294, 2015.
-
(2015)
J. Marriage Family
, vol.77
, pp. 277-294
-
-
Young, R.1
Johnson, D.R.2
-
56
-
-
84927170042
-
Autoregressive hidden Markov models for the early detection of neonatal sepsis
-
Sep
-
I. Stanculescu, C. K. Williams, and Y. Freer, "Autoregressive hidden Markov models for the early detection of neonatal sepsis," IEEE J. Biomed. Health Informat., vol. 18, no. 5, pp. 1560-1570, Sep. 2014.
-
(2014)
IEEE J. Biomed. Health Informat
, vol.18
, Issue.5
, pp. 1560-1570
-
-
Stanculescu, I.1
Williams, C.K.2
Freer, Y.3
-
57
-
-
85007158206
-
Learning adaptive forecasting models from irregularly sampled multivariate clinical data
-
Z. Liu and M. Hauskrecht, "Learning adaptive forecasting models from irregularly sampled multivariate clinical data," in Proc. AAAI Conf. Artif. Intell., 2016, pp. 1273-1279.
-
(2016)
Proc. AAAI Conf. Artif. Intell
, pp. 1273-1279
-
-
Liu, Z.1
Hauskrecht, M.2
-
58
-
-
85046586636
-
Personalized risk scoring for critical care patients using mixtures of Gaussian process experts
-
A. M. Alaa, J. Yoon, S. Hu, and M. van der Schaar, "Personalized risk scoring for critical care patients using mixtures of Gaussian process experts," in Proc. Int. Conf. Mach. Learn. Workshop Comput. Frameworks Personalization, 2016.
-
(2016)
Proc. Int. Conf. Mach. Learn. Workshop Comput. Frameworks Personalization
-
-
Alaa, A.M.1
Yoon, J.2
Hu, S.3
Van Schaar Der, M.4
-
59
-
-
84879468407
-
Computational phenotype discovery using unsupervised feature learning over noisy, sparse, and irregular clinical data
-
Jun
-
T. A. Lasko, J. C. Denny, and M. A. Levy, "Computational phenotype discovery using unsupervised feature learning over noisy, sparse, and irregular clinical data," PLoS One, vol. 8, no. 6, pp. 1- 13, Jun. 2013.
-
(2013)
PLoS One
, vol.8
, Issue.6
, pp. 1-13
-
-
Lasko, T.A.1
Denny, J.C.2
Levy, M.A.3
-
60
-
-
67650995767
-
Factorial switching linear dynamical systems applied to physiological condition monitoring
-
Sep
-
J. A. Quinn, C. K. Williams, and N. McIntosh, "Factorial switching linear dynamical systems applied to physiological condition monitoring," IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 9, pp. 1537-1551, Sep. 2009.
-
(2009)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.31
, Issue.9
, pp. 1537-1551
-
-
Quinn, J.A.1
Williams, C.K.2
McIntosh, N.3
-
61
-
-
85045725364
-
Directly modeling missing data in sequences with RNNs: Improved classification of clinical time series
-
Z. C. Lipton, D. C. Kale, and R. Wetzel, "Directly modeling missing data in sequences with RNNs: Improved classification of clinical time series," in Proc. Mach. Learn. Healthcare, 2016, pp. 1-17.
-
(2016)
Proc. Mach. Learn. Healthcare
, pp. 1-17
-
-
Lipton, Z.C.1
Kale, D.C.2
Wetzel, R.3
-
62
-
-
85162417196
-
A model for temporal dependencies in event streams
-
A. Gunawardana, C. Meek, and P. Xu, "A model for temporal dependencies in event streams," in Proc. Int. Conf. Neural Inf. Process. Syst., 2011, pp. 1962-1970.
-
(2011)
Proc. Int. Conf. Neural Inf. Process. Syst
, pp. 1962-1970
-
-
Gunawardana, A.1
Meek, C.2
Xu, P.3
-
63
-
-
85019182876
-
A scalable end-to-end gaussian process adapter for irregularly sampled time series classification
-
S. C.-X. Li and B. M. Marlin, "A scalable end-to-end gaussian process adapter for irregularly sampled time series classification," in Proc. Int. Conf. Neural Inf. Process. Syst., 2016, pp. 1804-1812.
-
(2016)
Proc. Int. Conf. Neural Inf. Process. Syst
, pp. 1804-1812
-
-
Li, S.C.-X.1
Marlin, B.M.2
-
64
-
-
14844283547
-
PhysioBank, PhysioToolkit, and Physio- Net: Components of a new research resource for complex physiologic signals
-
A. L. Goldberger, et al., "PhysioBank, PhysioToolkit, and Physio- Net: Components of a new research resource for complex physiologic signals," Circulation, vol. 101, no. 23, pp. 215-220, 2000.
-
(2000)
Circulation
, vol.101
, Issue.23
, pp. 215-220
-
-
Goldberger, A.L.1
-
65
-
-
0000732463
-
A limited memory algorithm for bound constrained optimization
-
R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu, "A limited memory algorithm for bound constrained optimization," SIAM J. Sci. Comput., vol. 16, no. 5, pp. 1190-1208, 1995.
-
(1995)
SIAM J. Sci. Comput
, vol.16
, Issue.5
, pp. 1190-1208
-
-
Byrd, R.H.1
Lu, P.2
Nocedal, J.3
Zhu, C.4
-
67
-
-
85031117549
-
-
J. Hensman, et al., "GPflow," 2016. [Online]. Available: https:// github.com/GPflow/GPflow
-
(2016)
GPflow
-
-
Hensman, J.1
|