메뉴 건너뛰기




Volumn 24, Issue 3, 2017, Pages 488-495

Understanding vasopressor intervention and weaning: Risk prediction in a public heterogeneous clinical time series database

Author keywords

Autoregressive models; Electronic health records; Latent variable models; Risk prediction

Indexed keywords

HYPERTENSIVE FACTOR; VASOCONSTRICTOR AGENT;

EID: 85019759969     PISSN: 10675027     EISSN: 1527974X     Source Type: Journal    
DOI: 10.1093/jamia/ocw138     Document Type: Article
Times cited : (46)

References (32)
  • 1
    • 84883586438 scopus 로고    scopus 로고
    • Critical care: where have we been and where are we going?
    • Vincent J-L. Critical care: where have we been and where are we going? Crit Care. 2013;17:S2.
    • (2013) Crit Care. , vol.17 , pp. S2
    • Vincent, J.-L.1
  • 2
    • 77958104704 scopus 로고    scopus 로고
    • Critical care: advances and future perspectives
    • Vincent J-L, Singer M. Critical care: advances and future perspectives. Lancet. 2010;376:1354-61.
    • (2010) Lancet. , vol.376 , pp. 1354-1361
    • Vincent, J.-L.1    Singer, M.2
  • 3
    • 41649116334 scopus 로고    scopus 로고
    • Multicenter, randomized controlled trials evaluating mortality in intensive care: doomed to fail?
    • Ospina-Tascón GA, Büchele GL, Vincent J-L. Multicenter, randomized controlled trials evaluating mortality in intensive care: doomed to fail? Crit Care Med. 2008;36:1311-22.
    • (2008) Crit Care Med. , vol.36 , pp. 1311-1322
    • Ospina-Tascón, G.A.1    Büchele, G.L.2    Vincent, J.-L.3
  • 4
    • 79955479858 scopus 로고    scopus 로고
    • Multiparameter Intelligent Monitoring in Intensive Care II (MIMIC-II): a public-access intensive care unit database
    • Saeed M, Villarroel M, Reisner AT, et al. Multiparameter Intelligent Monitoring in Intensive Care II (MIMIC-II): a public-access intensive care unit database. Crit Care Med. 2011;39:952.
    • (2011) Crit Care Med. , vol.39 , pp. 952
    • Saeed, M.1    Villarroel, M.2    Reisner, A.T.3
  • 8
    • 84940373302 scopus 로고    scopus 로고
    • Risk prediction for chronic kidney disease progression using heterogeneous electronic health record data and time series analysis
    • Perotte A, Ranganath R, Hirsch JS, et al. Risk prediction for chronic kidney disease progression using heterogeneous electronic health record data and time series analysis. J Am Med Inform Assoc. 2015;22:872-80.
    • (2015) J Am Med Inform Assoc. , vol.22 , pp. 872-880
    • Perotte, A.1    Ranganath, R.2    Hirsch, J.S.3
  • 10
    • 84940750679 scopus 로고    scopus 로고
    • Blood pressure targets for vasopressor therapy: a systematic review
    • D'Aragon F, Belley-Cote EP, Meade MO, et al. Blood pressure targets for vasopressor therapy: a systematic review. Shock. 2015;43:530-9.
    • (2015) Shock. , vol.43 , pp. 530-539
    • D'Aragon, F.1    Belley-Cote, E.P.2    Meade, M.O.3
  • 11
    • 84879468407 scopus 로고    scopus 로고
    • Computational phenotype discovery using unsupervised feature learning over noisy, sparse, and irregular clinical data
    • Lasko TA, Denny JC, Levy MA. Computational phenotype discovery using unsupervised feature learning over noisy, sparse, and irregular clinical data. PLoS One. 2013;8:e66341.
    • (2013) PLoS One. , vol.8
    • Lasko, T.A.1    Denny, J.C.2    Levy, M.A.3
  • 14
    • 77249126457 scopus 로고    scopus 로고
    • Comparison of techniques for handling missing covariate data within prognostic modelling studies: a simulation study
    • Marshall A, Altman DG, Royston P, et al. Comparison of techniques for handling missing covariate data within prognostic modelling studies: a simulation study. BMC Med Res Methodol. 2010;10:7.
    • (2010) BMC Med Res Methodol. , vol.10 , pp. 7
    • Marshall, A.1    Altman, D.G.2    Royston, P.3
  • 16
    • 77952419524 scopus 로고    scopus 로고
    • Missing covariate data in medical research: to impute is better than to ignore
    • Janssen KJM, Donders ART, Harrell FE, et al. Missing covariate data in medical research: to impute is better than to ignore. J Clin Epidemiol. 2010;63:721-7.
    • (2010) J Clin Epidemiol. , vol.63 , pp. 721-727
    • Janssen, K.J.M.1    Donders, A.R.T.2    Harrell, F.E.3
  • 17
    • 84929379643 scopus 로고    scopus 로고
    • A physiological time series dynamics-based approach to patient monitoring and outcome prediction
    • Lehman LW, Adams RP, Mayaud L, et al. A physiological time series dynamics-based approach to patient monitoring and outcome prediction. IEEE J Biomed Heal Informatics. 2015;19:1068.
    • (2015) IEEE J Biomed Heal Informatics. , vol.19 , pp. 1068
    • Lehman, L.W.1    Adams, R.P.2    Mayaud, L.3
  • 18
    • 67650995767 scopus 로고    scopus 로고
    • Factorial switching linear dynamical systems applied to physiological condition monitoring
    • Quinn J, Williams CKI, McIntosh N, et al. Factorial switching linear dynamical systems applied to physiological condition monitoring. Pattern Anal Mach Intell IEEE Trans. 2009;31:1537-51.
    • (2009) Pattern Anal Mach Intell IEEE Trans. , vol.31 , pp. 1537-1551
    • Quinn, J.1    Williams, C.K.I.2    McIntosh, N.3
  • 19
    • 84880838139 scopus 로고    scopus 로고
    • Prognostic physiology: modeling patient severity in intensive care units using radial domain folding
    • Joshi R, Szolovits P. Prognostic physiology: modeling patient severity in intensive care units using radial domain folding. In: AMIA Annual Symposium Proceedings. 2012: 1276.
    • (2012) AMIA Annual Symposium Proceedings , pp. 1276
    • Joshi, R.1    Szolovits, P.2
  • 20
    • 84959548610 scopus 로고    scopus 로고
    • A multivariate timeseries modeling approach to severity of illness assessment and forecasting in ICU with sparse, heterogeneous clinical data
    • AAAI Conference on Artificial Intelligence. NIH Public Access
    • Ghassemi M, Pimentel MAF, Naumann T, Brennan T, Clifton DA, Szolovits P, Feng M. A multivariate timeseries modeling approach to severity of illness assessment and forecasting in ICU with sparse, heterogeneous clinical data. In: Proceedings of the. AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence. (Vol. 2015, p. 446). NIH Public Access. 2015
    • (2015) Proceedings of the. AAAI Conference on Artificial Intelligence , vol.2015 , pp. 446
    • Ghassemi, M.1    Pimentel, M.A.F.2    Naumann, T.3    Brennan, T.4    Clifton, D.A.5    Szolovits, P.6    Feng, M.7
  • 21
    • 0021739699 scopus 로고
    • A simplified acute physiology score for ICU patients
    • Le Gall J-R, Loirat P, Alperovitch A, et al. A simplified acute physiology score for ICU patients. Crit Care Med. 1984;12:975-77.
    • (1984) Crit Care Med. , vol.12 , pp. 975-977
    • Le Gall, J.-R.1    Loirat, P.2    Alperovitch, A.3
  • 22
    • 0030015661 scopus 로고    scopus 로고
    • The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure
    • Vincent J-L, Moreno R, Takala J, et al. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. Intensive Care Med. 1996;22:707-10.
    • (1996) Intensive Care Med. , vol.22 , pp. 707-710
    • Vincent, J.-L.1    Moreno, R.2    Takala, J.3
  • 23
    • 79953799606 scopus 로고    scopus 로고
    • ICU acuity: real-time models versus daily models
    • Hug CW, Szolovits P. ICU acuity: real-time models versus daily models. AMIA Annu Symp Proc. 2009;2009:260-4.
    • (2009) AMIA Annu Symp Proc. , vol.2009 , pp. 260-264
    • Hug, C.W.1    Szolovits, P.2
  • 24
    • 77958136867 scopus 로고    scopus 로고
    • An investigation of patterns in hemodynamic data indicative of impending hypotension in intensive care
    • Lee J,Mark RG. An investigation of patterns in hemodynamic data indicative of impending hypotension in intensive care. Biomed EngOnline. 2010;9:62.
    • (2010) Biomed EngOnline. , vol.9 , pp. 62
    • Lee, J.1    Mark, R.G.2
  • 25
    • 79955869962 scopus 로고    scopus 로고
    • Unsupervised similarity-based risk stratification for cardiovascular events using long-term time-series data
    • Syed Z, Guttag J V. Unsupervised similarity-based risk stratification for cardiovascular events using long-term time-series data. J Mach Learn Res. 2011;12:999-1024.
    • (2011) J Mach Learn Res. , vol.12 , pp. 999-1024
    • Syed, Z.1    Guttag, J.V.2
  • 26
    • 34748849213 scopus 로고    scopus 로고
    • A novel method for the efficient retrieval of similar multiparameter physiologic time series using wavelet-based symbolic representations
    • AMIA Symposium
    • Saeed M, Mark R. A novel method for the efficient retrieval of similar multiparameter physiologic time series using wavelet-based symbolic representations. In: AMIA. Annual Symposium proceedings/AMIA Symposium. AMIA Symposium. 2005;679-83.
    • (2005) AMIA. Annual Symposium proceedings/AMIA Symposium , pp. 679-683
    • Saeed, M.1    Mark, R.2
  • 27
    • 34548093287 scopus 로고    scopus 로고
    • Experiencing SAX: a novel symbolic representation of time series
    • Lin J, Keogh E, Wei L, et al. Experiencing SAX: a novel symbolic representation of time series. Data Min Knowl Discov. 2007;15:107-44.
    • (2007) Data Min Knowl Discov. , vol.15 , pp. 107-144
    • Lin, J.1    Keogh, E.2    Wei, L.3
  • 28
    • 84889848678 scopus 로고    scopus 로고
    • Disease-based modeling to predict fluid response in intensive care units
    • Fialho AS, Celi LA, Cismondi F, et al. Disease-based modeling to predict fluid response in intensive care units. Methods Inf Med. 2013;52:494- 502.
    • (2013) Methods Inf Med. , vol.52 , pp. 494- 502
    • Fialho, A.S.1    Celi, L.A.2    Cismondi, F.3
  • 29
    • 77649282276 scopus 로고    scopus 로고
    • Comparison of dopamine and norepinephrine in the treatment of shock
    • De Backer D, Biston P, Devriendt J, et al. Comparison of dopamine and norepinephrine in the treatment of shock.NEngl JMed. 2010;362:779-89.
    • (2010) NEngl JMed , vol.362 , pp. 779-789
    • De Backer, D.1    Biston, P.2    Devriendt, J.3
  • 30
    • 84938704873 scopus 로고    scopus 로고
    • A targeted real-time early warning score (TREWScore) for septic shock
    • Henry KE, Hager DN, Pronovost PJ, et al. A targeted real-time early warning score (TREWScore) for septic shock. Sci Transl Med. 2015;7:299ra122-299ra122.
    • (2015) Sci Transl Med. , vol.7 , pp. 299ra122-299ra122
    • Henry, K.E.1    Hager, D.N.2    Pronovost, P.J.3
  • 31
    • 0025896865 scopus 로고
    • A prospective study of indexes predicting the outcome of trials of weaning from mechanical ventilation
    • Yang KL, Tobin MJ. A prospective study of indexes predicting the outcome of trials of weaning from mechanical ventilation. N Engl J Med 1991;324:1445-50.
    • (1991) N Engl J Med , vol.324 , pp. 1445-1450
    • Yang, K.L.1    Tobin, M.J.2
  • 32
    • 0004155675 scopus 로고    scopus 로고
    • Principles and practice of mechanical ventilation
    • McGraw Hill Professional.
    • Tobin MJ. Principles and practice of mechanical ventilation. 2006. McGraw Hill Professional.
    • (2006)
    • Tobin, M.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.