메뉴 건너뛰기




Volumn 12, Issue , 2011, Pages 3227-3257

Robust gaussian process regression with a student-t likelihood

Author keywords

Approximate inference; Expectation propagation; Gaussian process; Robust regression; Student t distribution

Indexed keywords

APPROXIMATE INFERENCE; EXPECTATION PROPAGATION; GAUSSIAN PROCESSES; ROBUST REGRESSIONS; STUDENT-T DISTRIBUTION;

EID: 84855386927     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (153)

References (45)
  • 2
    • 80053399411 scopus 로고    scopus 로고
    • Properties of Bethe free energies and message passing in Gaussian models
    • Botond Cseke and Tom Heskes. Properties of Bethe free energies and message passing in Gaussian models. Journal of Artificial Intelligence Research, 41:1-24, 2011.
    • (2011) Journal of Artificial Intelligence Research , vol.41 , pp. 1-24
    • Cseke, B.1    Heskes, T.2
  • 3
    • 0015720889 scopus 로고
    • Posterior expectations for large observations
    • A. Philip Dawid. Posterior expectations for large observations. Biometrika, 60(3):664-667, 1973.
    • (1973) Biometrika , vol.60 , Issue.3 , pp. 664-667
    • Dawid, A.P.1
  • 5
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines
    • Jerome H. Friedman. Multivariate adaptive regression splines. Annals of Statistics, 19(1):1-67, 1991.
    • (1991) Annals of Statistics , vol.19 , Issue.1 , pp. 1-67
    • Friedman, J.H.1
  • 7
    • 84986088295 scopus 로고
    • Bayesian treatment of the independent Student-t linear model
    • John Geweke. Bayesian treatment of the independent Student-t linear model. Journal of Applied Econometrics, 8:519-540, 1993.
    • (1993) Journal of Applied Econometrics , vol.8 , pp. 519-540
    • Geweke, J.1
  • 8
    • 84972511893 scopus 로고
    • Practical markov chain monte carlo
    • Charles J. Geyer. Practical markov chain monte carlo. Statistical Science, 7(12):473-483, 1992.
    • (1992) Statistical Science , vol.7 , Issue.12 , pp. 473-483
    • Geyer, C.J.1
  • 10
    • 0040424226 scopus 로고    scopus 로고
    • Regression with inputdependent noise: A Gaussian process treatment. In M. I. Jordan, M. J. Kearns, and S. A Solla, editors
    • MIT Press, Cambridge, MA
    • Paul W. Goldberg, Christopher K. I. Williams, and Christopher M. Bishop. Regression with inputdependent noise: A Gaussian process treatment. In M. I. Jordan, M. J. Kearns, and S. A Solla, editors, Advances in Neural Information Processing Systems 10. MIT Press, Cambridge, MA, 1998.
    • (1998) Advances in Neural Information Processing Systems , vol.10
    • Goldberg, P.W.1    Williams, C.K.I.2    Bishop, C.M.3
  • 11
    • 85161971986 scopus 로고    scopus 로고
    • Regulator discovery from gene expression time series of malaria parasites: A hierarchical approach. In J. C. Platt, D. Koller, Y. Singer, and S. Roweis, editors
    • MIT Press, Cambridge, MA
    • José Miguel Hernández-Lobato, Tjeerd Dijkstra, and Tom Heskes. Regulator discovery from gene expression time series of malaria parasites: A hierarchical approach. In J. C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems 20, pages 649-656. MIT Press, Cambridge, MA, 2008.
    • (2008) Advances in Neural Information Processing Systems , vol.20 , pp. 649-656
    • Hernández-Lobato, J.M.1    Dijkstra, T.2    Heskes, T.3
  • 12
    • 27344435412 scopus 로고    scopus 로고
    • Expectation propagation for approximate inference in dynamic Bayesian networks
    • In A. Darwiche and N. Friedman, editors, Morgan Kaufmann, San Francisco, CA
    • Tom Heskes and Onno Zoeter. Expectation propagation for approximate inference in dynamic Bayesian networks. In A. Darwiche and N. Friedman, editors, Uncertainty in Artificial Intelligence: Proceedings of the Eighteenth Conference (UAI-2002), pages 216-233. Morgan Kaufmann, San Francisco, CA, 2002.
    • (2002) Uncertainty in Artificial Intelligence: Proceedings of the Eighteenth Conference (UAI-2002) , pp. 216-233
    • Heskes, T.1    Zoeter, O.2
  • 15
    • 0002864973 scopus 로고
    • ML estimation of the t distribution using EMand its extensions, ECM and ECME
    • Chuanhai Liu and Donald B. Rubin. ML estimation of the t distribution using EMand its extensions, ECM and ECME. Statistica Sinica, 5:19-39, 1995.
    • (1995) Statistica Sinica , vol.5 , pp. 19-39
    • Liu, C.1    Rubin, D.B.2
  • 18
    • 27744528998 scopus 로고    scopus 로고
    • Technical report, Microsoft Research, Cambridge
    • Thomas P. Minka. Power EP. Technical report, Microsoft Research, Cambridge, 2004.
    • (2004) Power EP
    • Minka, T.P.1
  • 21
    • 85162058127 scopus 로고    scopus 로고
    • Robust regression with twinned Gaussian processes
    • In J. C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, MIT Press, Cambridge, MA
    • Andrew Naish-Guzman and Sean Holden. Robust regression with twinned Gaussian processes. In J. C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems 20, pages 1065-1072. MIT Press, Cambridge, MA, 2008.
    • (2008) Advances in Neural Information Processing Systems , vol.20 , pp. 1065-1072
    • Naish-Guzman, A.1    Holden, S.2
  • 23
    • 0000273048 scopus 로고    scopus 로고
    • Annealed importance sampling
    • DOI 10.1023/A:1008923215028
    • Radford M. Neal. Annealed importance sampling. Statistics and Computing, 11(2):125-139, 2001. (Pubitemid 33638185)
    • (2001) Statistics and Computing , vol.11 , Issue.2 , pp. 125-139
    • Neal, R.M.1
  • 24
    • 56349122110 scopus 로고    scopus 로고
    • Approximations for binary Gaussian process classification
    • Hannes Nickisch and Carl E. Rasmussen. Approximations for binary Gaussian process classification. Journal of Machine Learning Research, 9:2035-2078, 2008.
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 2035-2078
    • Nickisch, H.1    Rasmussen, C.E.2
  • 26
    • 63249135864 scopus 로고    scopus 로고
    • The variational Gaussian approximation revisited
    • Manfred Opper and Cédric Archambeau. The variational Gaussian approximation revisited. Neural Computation, 21(3):786-792, 2009.
    • (2009) Neural Computation , vol.21 , Issue.3 , pp. 786-792
    • Opper, M.1    Archambeau, C.2
  • 27
    • 29244438430 scopus 로고    scopus 로고
    • Expectation consistent approximate inference
    • Manfred Opper and OleWinther. Expectation consistent approximate inference. Journal ofMachine Learning Research, 6:2177-2204, 2005. (Pubitemid 41832629)
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 2177-2204
    • Opper, M.1    Winther, O.2
  • 28
  • 30
    • 62849120031 scopus 로고    scopus 로고
    • Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations
    • Håvard Rue, Sara Martino, and Nicolas Chopin. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. Journal of the Royal statistical Society (Series B), 71(2):1-35, 2009.
    • (2009) Journal of the Royal statistical Society (Series B) , vol.71 , Issue.2 , pp. 1-35
    • Rue, H.1    Martino, S.2    Chopin, N.3
  • 31
    • 43449137394 scopus 로고    scopus 로고
    • Technical report, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
    • Matthias Seeger. Expectation propagation for exponential families. Technical report, Max Planck Institute for Biological Cybernetics, Tübingen, Germany, 2005.
    • (2005) Expectation Propagation for Exponential Families
    • Seeger, M.1
  • 32
    • 44649181578 scopus 로고    scopus 로고
    • Bayesian inference and optimal design for the sparse linear model
    • Matthias Seeger. Bayesian inference and optimal design for the sparse linear model. Journal of Machine Learning Research, 9:759-813, 2008.
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 759-813
    • Seeger, M.1
  • 34
    • 35548979581 scopus 로고    scopus 로고
    • Vectorized adaptive quadrature in MATLAB
    • DOI 10.1016/j.cam.2006.11.021, PII S037704270600700X
    • Lawrence F. Shampine. Vectorized adaptive quadrature in MATLAB. Journal of Computational and Applied Mathematics, 211:131-140, 2008. (Pubitemid 350016632)
    • (2008) Journal of Computational and Applied Mathematics , vol.211 , Issue.2 , pp. 131-140
    • Shampine, L.F.1
  • 36
    • 84950871099 scopus 로고
    • Accurate approximations for posterior moments and marginal densities
    • Luke Tierney and Joseph B. Kadane. Accurate approximations for posterior moments and marginal densities. Journal of the American Statistical Association, 81(393):82-86, 1986.
    • (1986) Journal of the American Statistical Association , vol.81 , Issue.393 , pp. 82-86
    • Tierney, L.1    Kadane, J.B.2
  • 38
    • 27844592624 scopus 로고    scopus 로고
    • Variational inference for Student-t models: Robust Bayesian interpolation and generalised component analysis
    • DOI 10.1016/j.neucom.2005.02.016, PII S0925231205001694
    • Michael E. Tipping and Neil D. Lawrence. Variational inference for Student-t models: Robust bayesian interpolation and generalised component analysis. Neurocomputing, 69:123-141, 2005. (Pubitemid 41644427)
    • (2005) Neurocomputing , vol.69 , Issue.1-3 , pp. 123-141
    • Tipping, M.E.1    Lawrence, N.D.2
  • 39
    • 78049353036 scopus 로고    scopus 로고
    • Bayesian source localization with the multivariate Laplace prior
    • In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors
    • Marcel van Gerven, Botond Cseke, Robert Oostenveld, and Tom Heskes. Bayesian source localization with the multivariate Laplace prior. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors, Advances in Neural Information Processing Systems 22, pages 1901-1909, 2009.
    • (2009) Advances in Neural Information Processing Systems , vol.22 , pp. 1901-1909
    • Van Gerven, M.1    Cseke, B.2    Oostenveld, R.3    Heskes, T.4
  • 40
  • 41
    • 84855393080 scopus 로고    scopus 로고
    • Gaussian process regression with Student-t likelihood
    • In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors
    • Jarno Vanhatalo, Pasi Jylänki, and Aki Vehtari. Gaussian process regression with Student-t likelihood. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors, Advances in Neural Information Processing Systems 22, pages 1910-1918, 2009.
    • (2009) Advances in Neural Information Processing Systems , vol.22 , pp. 1910-1918
    • Vanhatalo, J.1    Jylänki, P.2    Vehtari, A.3
  • 42
    • 0036781790 scopus 로고    scopus 로고
    • Bayesian model assessment and comparison using crossvalidation predictive densities
    • Aki Vehtari and Jouko Lampinen. Bayesian model assessment and comparison using crossvalidation predictive densities. Neural Computation, 14(10):2439-2468, 2002.
    • (2002) Neural Computation , vol.14 , Issue.10 , pp. 2439-2468
    • Vehtari, A.1    Lampinen, J.2
  • 43
    • 0000108540 scopus 로고
    • Outlier models and prior distributions in Bayesian linear regression
    • Mike West. Outlier models and prior distributions in Bayesian linear regression. Journal of the Royal Statistical Society (Series B), 46(3):431-439, 1984.
    • (1984) Journal of the Royal Statistical Society (Series B) , vol.46 , Issue.3 , pp. 431-439
    • West, M.1
  • 45
    • 0032295215 scopus 로고    scopus 로고
    • Modeling of strength of high-performance concrete using artificial neural networks
    • PII S0008884698001653
    • I-Cheng Yeh. Modeling of strength of high performance concrete using artificial neural networks. Cement and Concrete Research, 28(12):1797-1808, 1998. (Pubitemid 128638428)
    • (1998) Cement and Concrete Research , vol.28 , Issue.12 , pp. 1797-1808
    • Yeh, I.-C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.