메뉴 건너뛰기




Volumn 31, Issue 9, 2009, Pages 1537-1551

Factorial switching linear dynamical systems applied to physiological condition monitoring

Author keywords

Condition monitoring; Intensive care; Novelty detection; Switching Kalman filter; Switching linear dynamical system

Indexed keywords

COMMON FACTORS; DIFFERENT MODES; DOMAIN KNOWLEDGE; EXPLICIT KNOWLEDGE; INTENSIVE CARE; INTENSIVE CARE UNIT MONITORING; NOVEL PATTERNS; NOVELTY DETECTION; PHYSIOLOGICAL CONDITION; PHYSIOLOGICAL MEASUREMENT; PREMATURE BABY; STATE OF HEALTH; SWITCHING LINEAR DYNAMICAL SYSTEM; SWITCHING LINEAR DYNAMICAL SYSTEMS; TIME STEP; UNDERLYING FACTORS;

EID: 67650995767     PISSN: 01628828     EISSN: None     Source Type: Journal    
DOI: 10.1109/TPAMI.2008.191     Document Type: Article
Times cited : (93)

References (40)
  • 1
    • 0015385037 scopus 로고
    • Nonlinear Bayesian Estimation Using Gaussian Sum Approximation
    • D. Alspach and H. Sorenson, "Nonlinear Bayesian Estimation Using Gaussian Sum Approximation," IEEE Trans. Automatic Control, vol. 17, pp. 439-447, 1972.
    • (1972) IEEE Trans. Automatic Control , vol.17 , pp. 439-447
    • Alspach, D.1    Sorenson, H.2
  • 2
    • 84950419507 scopus 로고
    • Dynamic Linear Models with Switching
    • R. Shumway and D. Stoffer, "Dynamic Linear Models with Switching," J. Am. Statistical Assoc., vol. 86, pp. 763-769, 1991.
    • (1991) J. Am. Statistical Assoc , vol.86 , pp. 763-769
    • Shumway, R.1    Stoffer, D.2
  • 4
    • 85156198668 scopus 로고    scopus 로고
    • Real-Time Monitoring of Complex Industrial Processes with Particle Filters
    • S. Becker, S. Thrun, and K. Obermayer, eds, MIT Press
    • R. Morales-Menedez, N. de Freitas, and D. Poole, "Real-Time Monitoring of Complex Industrial Processes with Particle Filters," Advances in Neural Information Processing Systems 15, S. Becker, S. Thrun, and K. Obermayer, eds., MIT Press, 2002.
    • (2002) Advances in Neural Information Processing Systems 15
    • Morales-Menedez, R.1    de Freitas, N.2    Poole, D.3
  • 7
    • 77953859307 scopus 로고    scopus 로고
    • Motion Texture: A Two-Level Statistical Model for Character Motion Synthesis
    • Y. Li, T. Wang, and H.-Y. Shum, "Motion Texture: A Two-Level Statistical Model for Character Motion Synthesis," Proc. ACM SIGGRAPH '02, pp. 465-472, 2002.
    • (2002) Proc. ACM SIGGRAPH '02 , pp. 465-472
    • Li, Y.1    Wang, T.2    Shum, H.-Y.3
  • 9
    • 0021001521 scopus 로고
    • Monitoring Renal Transplants: An Application of the Multiprocess Kalman Filter
    • A. Smith and M. West, "Monitoring Renal Transplants: An Application of the Multiprocess Kalman Filter," Biometrics, vol. 39, pp. 867-878, 1983.
    • (1983) Biometrics , vol.39 , pp. 867-878
    • Smith, A.1    West, M.2
  • 11
    • 0347761233 scopus 로고    scopus 로고
    • A Mixed Level Switching Dynamic System for Continuous Speech Recognition
    • J. Ma and L. Deng, "A Mixed Level Switching Dynamic System for Continuous Speech Recognition," Computer Speech and Language, vol. 18, pp. 49-65, 2004.
    • (2004) Computer Speech and Language , vol.18 , pp. 49-65
    • Ma, J.1    Deng, L.2
  • 13
    • 38149022175 scopus 로고    scopus 로고
    • Factorial Switching Kalman Filters for Condition Monitoring in Neonatal Intensive Care
    • Y. Weiss, B. Schölkopf, and J. Platt, eds, MIT Press
    • C. Williams, J. Quinn, and N. McIntosh, "Factorial Switching Kalman Filters for Condition Monitoring in Neonatal Intensive Care," Advances in Neural Information Processing Systems 18, Y. Weiss, B. Schölkopf, and J. Platt, eds., MIT Press, 2006.
    • (2006) Advances in Neural Information Processing Systems 18
    • Williams, C.1    Quinn, J.2    McIntosh, N.3
  • 14
    • 79951588472 scopus 로고    scopus 로고
    • Known Unknowns: Novelty Detection in Condition Monitoring
    • J. Martí, J.-M. Benedí, A.M. Mendonça, and J. Serrat, eds
    • J. Quinn and C. Williams, "Known Unknowns: Novelty Detection in Condition Monitoring," Proc. Third Iberian Conf. Pattern Recognition and Image Analysis, J. Martí, J.-M. Benedí, A.M. Mendonça, and J. Serrat, eds., 2007.
    • (2007) Proc. Third Iberian Conf. Pattern Recognition and Image Analysis
    • Quinn, J.1    Williams, C.2
  • 16
    • 0013288412 scopus 로고    scopus 로고
    • Dynamic Bayesian Networks: Representation, Inference and Learning,
    • PhD dissertation, Univ. of California, Berkeley
    • K. Tsien, "Dynamic Bayesian Networks: Representation, Inference and Learning," PhD dissertation, Univ. of California, Berkeley, 2002.
    • (2002)
    • Tsien, K.1
  • 17
    • 0003423085 scopus 로고    scopus 로고
    • Parameter Estimation for Linear Dynamical Systems,
    • Dept. of Computer Science, Univ. of Toronto
    • Z. Ghahramani and G. Hinton, "Parameter Estimation for Linear Dynamical Systems," technical report, Dept. of Computer Science, Univ. of Toronto, 1996.
    • (1996) technical report
    • Ghahramani, Z.1    Hinton, G.2
  • 18
    • 0001646121 scopus 로고    scopus 로고
    • Variational Learning for Switching State-Space Models
    • Z. Ghahramani and G. Hinton, "Variational Learning for Switching State-Space Models," Neural Computation, vol. 12, no. 4, pp. 963-996, 1998.
    • (1998) Neural Computation , vol.12 , Issue.4 , pp. 963-996
    • Ghahramani, Z.1    Hinton, G.2
  • 20
    • 85009267646 scopus 로고
    • Hidden Markov Models Using Vector Linear Prediction and Discriminative Output Distributions
    • P.C. Woodland, "Hidden Markov Models Using Vector Linear Prediction and Discriminative Output Distributions," Proc. IEEE Int'l Conf. Acoustics, Speech, and Signal Processing, vol. I, pp. 509-512, 1992.
    • (1992) Proc. IEEE Int'l Conf. Acoustics, Speech, and Signal Processing , vol.1 , pp. 509-512
    • Woodland, P.C.1
  • 21
    • 0031268341 scopus 로고    scopus 로고
    • Factorial Hidden Markov Models
    • Z. Ghahramani and M. Jordan, "Factorial Hidden Markov Models," Machine Learning, vol. 29, pp. 245-273, 1997.
    • (1997) Machine Learning , vol.29 , pp. 245-273
    • Ghahramani, Z.1    Jordan, M.2
  • 23
    • 38149118391 scopus 로고    scopus 로고
    • Bayesian Condition Monitoring in Neonatal Intensive Care,
    • PhD dissertation, Univ. of Edinburgh
    • J. Quinn, "Bayesian Condition Monitoring in Neonatal Intensive Care," PhD dissertation, Univ. of Edinburgh, http://www.era.lib. ed.ac.uk/handle/1842/1645, 2007.
    • (2007)
    • Quinn, J.1
  • 24
    • 0142063407 scopus 로고    scopus 로고
    • Novelty Detection: A Review - Part 1: Statistical Approaches
    • M. Markou and S. Singh, "Novelty Detection: A Review - Part 1: Statistical Approaches," Signal Processing, vol. 83, pp. 2481-2497, 2003.
    • (2003) Signal Processing , vol.83 , pp. 2481-2497
    • Markou, M.1    Singh, S.2
  • 26
    • 0028724758 scopus 로고
    • Markov Monitoring with Unknown States
    • P. Smyth, "Markov Monitoring with Unknown States," IEEE J. Selected Areas in Comm., vol. 12, no. 9, pp. 1600-1612, 1994.
    • (1994) IEEE J. Selected Areas in Comm , vol.12 , Issue.9 , pp. 1600-1612
    • Smyth, P.1
  • 28
    • 0242460462 scopus 로고    scopus 로고
    • Switching Kalman Filters,
    • Univ. of California, Berkeley
    • K. Murphy, "Switching Kalman Filters," technical report, Univ. of California, Berkeley, 1998.
    • (1998) technical report
    • Murphy, K.1
  • 29
    • 0003244404 scopus 로고    scopus 로고
    • Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks
    • A. Doucet, N. de Freitas, and N. Gordon, eds, Springer-Verlag
    • K. Murphy and S. Russell, "Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks," Sequential Monte Carlo in Practice, A. Doucet, N. de Freitas, and N. Gordon, eds., Springer-Verlag, 2001.
    • (2001) Sequential Monte Carlo in Practice
    • Murphy, K.1    Russell, S.2
  • 31
    • 0030294410 scopus 로고    scopus 로고
    • Utilizing Temporal Data Abstraction for Data Validation and Therapy Planning for Artificially Ventilated Newborn Infants
    • S. Miksch, W. Horn, C. Popow, and F. Paky, "Utilizing Temporal Data Abstraction for Data Validation and Therapy Planning for Artificially Ventilated Newborn Infants," Artificial Intelligence in Medicine, vol. 8, no. 6, pp. 543-576, 1996.
    • (1996) Artificial Intelligence in Medicine , vol.8 , Issue.6 , pp. 543-576
    • Miksch, S.1    Horn, W.2    Popow, C.3    Paky, F.4
  • 32
    • 0029411924 scopus 로고
    • Clinical Monitoring Using Regression Based Trend Templates
    • I.J. Haimowitz, P.P. Le, and I.S. Kohane, "Clinical Monitoring Using Regression Based Trend Templates," Artificial Intelligence in Medicine, vol. 7, no. 6, pp. 473-496, 1995.
    • (1995) Artificial Intelligence in Medicine , vol.7 , Issue.6 , pp. 473-496
    • Haimowitz, I.J.1    Le, P.P.2    Kohane, I.S.3
  • 33
    • 0031647499 scopus 로고    scopus 로고
    • Statistical Pattern Detection in Univariate Time Series of Intensive Care In-Line Monitoring Data
    • M. Imhoff, M. Bauer, U. Gather, and D. Löhlein, "Statistical Pattern Detection in Univariate Time Series of Intensive Care In-Line Monitoring Data," Intensive Care Medicine, vol. 24, pp. 1305-1314, 1998.
    • (1998) Intensive Care Medicine , vol.24 , pp. 1305-1314
    • Imhoff, M.1    Bauer, M.2    Gather, U.3    Löhlein, D.4
  • 34
    • 0034487150 scopus 로고    scopus 로고
    • Automatic Artifact Identification in Anaesthesia Patient Record Keeping: A Comparison of Techniques
    • S. Hoare and P. Beatty, "Automatic Artifact Identification in Anaesthesia Patient Record Keeping: A Comparison of Techniques," Medical Eng. and Physics, vol. 22, pp. 547-553, 2000.
    • (2000) Medical Eng. and Physics , vol.22 , pp. 547-553
    • Hoare, S.1    Beatty, P.2
  • 35
    • 1242276321 scopus 로고    scopus 로고
    • On-Line Segmentation Algorithm for Continuously Monitored Data in Intensive Care Units
    • S. Charbonnier, G. Becq, and G. Biot, "On-Line Segmentation Algorithm for Continuously Monitored Data in Intensive Care Units," IEEE Trans. Biomedical Eng., vol. 51, no. 3, pp. 484-492, 2004.
    • (2004) IEEE Trans. Biomedical Eng , vol.51 , Issue.3 , pp. 484-492
    • Charbonnier, S.1    Becq, G.2    Biot, G.3
  • 36
    • 0029560489 scopus 로고
    • A Modified Trigg's Tracking Variable as an 'Advisory' Alarm during Anaesthesia
    • R. Kennedy, "A Modified Trigg's Tracking Variable as an 'Advisory' Alarm during Anaesthesia," J. Clinical Monitoring and Computing, vol. 12, pp. 197-204, 1995.
    • (1995) J. Clinical Monitoring and Computing , vol.12 , pp. 197-204
    • Kennedy, R.1
  • 38
    • 67650800368 scopus 로고    scopus 로고
    • Neonatal Baby Monitoring,
    • master's thesis, School of Informatics, Univ. of Edinburgh
    • A. Spengler, "Neonatal Baby Monitoring," master's thesis, School of Informatics, Univ. of Edinburgh, 2003.
    • (2003)
    • Spengler, A.1
  • 40
    • 84864048494 scopus 로고    scopus 로고
    • A Novel Gaussian Sum Smoother for Approximate Inference in Switching Linear Dynamical Systems
    • Y. Weiss, B. Schölkopf, and J. Platt, eds, MIT Press
    • D. Barber and B. Mesot, "A Novel Gaussian Sum Smoother for Approximate Inference in Switching Linear Dynamical Systems," Advances in Neural Information Processing Systems 18, Y. Weiss, B. Schölkopf, and J. Platt, eds., MIT Press, 2006.
    • (2006) Advances in Neural Information Processing Systems 18
    • Barber, D.1    Mesot, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.