메뉴 건너뛰기




Volumn , Issue , 2011, Pages

A model for temporal dependencies in event streams

Author keywords

[No Author keywords available]

Indexed keywords

BAYESIAN NETWORKS; INFORMATION RETRIEVAL; LEARNING ALGORITHMS; LEARNING SYSTEMS; POISSON DISTRIBUTION; SUPERCOMPUTERS;

EID: 85162417196     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (77)

References (18)
  • 1
    • 0001051804 scopus 로고
    • Note on extreme values, competing risks and semi-Markov processes
    • Simeon M. Berman. Note on extreme values, competing risks and semi-Markov processes. Ann. Math. Stat., 34(3):1104-1106, 1963.
    • (1963) Ann. Math. Stat. , vol.34 , Issue.3 , pp. 1104-1106
    • Berman, S.M.1
  • 2
    • 0001926525 scopus 로고
    • Theory refinement on Bayesian networks
    • W. Buntine. Theory refinement on Bayesian networks. In UAI, 1991.
    • (1991) UAI
    • Buntine, W.1
  • 3
    • 0002248815 scopus 로고    scopus 로고
    • A Bayesian approach to learning Bayesian networks with local structure
    • David Maxwell Chickering, David Heckerman, and Christopher Meek. A Bayesian approach to learning Bayesian networks with local structure. In UAI, 1997.
    • (1997) UAI
    • Chickering, D.M.1    Heckerman, D.2    Meek, C.3
  • 5
    • 85055854784 scopus 로고
    • Probabilistic temporal reasoning
    • Thomas Dean and Keiji Kanazawa. Probabilistic temporal reasoning. In AAAI, 1988.
    • (1988) AAAI
    • Dean, T.1    Kanazawa, K.2
  • 6
    • 37849044185 scopus 로고    scopus 로고
    • Graphical models for marked point processes based on local independence
    • Vanessa Didelez. Graphical models for marked point processes based on local independence. J. Roy. Stat. Soc., Ser. B, 70(1):245-264, 2008.
    • (2008) J. Roy. Stat. Soc., Ser. B , vol.70 , Issue.1 , pp. 245-264
    • Didelez, V.1
  • 7
    • 84864629090 scopus 로고    scopus 로고
    • Sampling for approximate inference in continuous time Bayesian networks
    • Yu Fan and Christian R. Shelton. Sampling for approximate inference in continuous time Bayesian networks. In AI & M, 2008.
    • (2008) AI & M
    • Fan, Y.1    Shelton, C.R.2
  • 8
    • 0033707946 scopus 로고    scopus 로고
    • Using Bayesian networks to analyze expression data
    • N. Friedman, I. Nachman, and D. Peér. Using Bayesian networks to analyze expression data. J. Comp. Bio., 7:601-620, 2000.
    • (2000) J. Comp. Bio. , vol.7 , pp. 601-620
    • Friedman, N.1    Nachman, I.2    Peér, D.3
  • 9
    • 0000854197 scopus 로고    scopus 로고
    • Learning the structure of dynamic probabilistic networks
    • Nir Friedman, Kevin Murphy, and Stuart Russell. Learning the structure of dynamic probabilistic networks. In UAI, 1998.
    • (1998) UAI
    • Friedman, N.1    Murphy, K.2    Russell, S.3
  • 10
    • 0002123103 scopus 로고    scopus 로고
    • Dependency networks for inference, collaborative filtering, and data visualization
    • October
    • David Heckerman, David Maxwell Chickering, Christopher Meek, Robert Rounthwaite, and Carl Kadie. Dependency networks for inference, collaborative filtering, and data visualization. JMLR, 1:49-75, October 2000.
    • (2000) JMLR , vol.1 , pp. 49-75
    • Heckerman, D.1    Chickering, D.M.2    Meek, C.3    Rounthwaite, R.4    Kadie, C.5
  • 11
    • 0001911428 scopus 로고
    • The "horse race" random utility model for choice probabilities and reaction times, and its competing risks interpretation
    • A. A. J. Marley and Hans Colonius. The "horse race" random utility model for choice probabilities and reaction times, and its competing risks interpretation. J. Math. Psych., 36:1-20, 1992.
    • (1992) J. Math. Psych. , vol.36 , pp. 1-20
    • Marley, A.A.J.1    Colonius, H.2
  • 12
    • 29344449098 scopus 로고    scopus 로고
    • Continuous time Bayesian networks
    • Uri Nodelman, Christian R. Shelton, and Daphne Koller. Continuous time Bayesian networks. In UAI, 2002.
    • (2002) UAI
    • Nodelman, U.1    Shelton, C.R.2    Koller, D.3
  • 13
    • 77958587560 scopus 로고    scopus 로고
    • Expectation Maximization and complex duration distributions for continuous time Bayesian networks
    • Uri Nodelman, Christian R. Shelton, and Daphne Koller. Expectation Maximization and complex duration distributions for continuous time Bayesian networks. In UAI, 2005.
    • (2005) UAI
    • Nodelman, U.1    Shelton, C.R.2    Koller, D.3
  • 15
    • 84862633948 scopus 로고    scopus 로고
    • Poisson-networks: A model for structured point processes
    • Shyamsundar Rajaram, Thore Graepel, and Ralf Herbrich. Poisson-networks: A model for structured point processes. In AIStats, 2005.
    • (2005) AIStats
    • Rajaram, S.1    Graepel, T.2    Herbrich, R.3
  • 17
    • 80053136285 scopus 로고    scopus 로고
    • Modeling events with cascades of Poisson processes
    • Aleksandr Simma and Michael I. Jordan. Modeling events with cascades of Poisson processes. In UAI, 2010.
    • (2010) UAI
    • Simma, A.1    Jordan, M.I.2
  • 18
    • 12544253489 scopus 로고    scopus 로고
    • A point process framework relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects
    • Wilson Truccolo, Uri T. Eden, Matthew R. Gellows, John P. Donoghue, and Emery N. Brown. A point process framework relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects. J. Neurophysiol., 93:1074-1089, 2005.
    • (2005) J. Neurophysiol. , vol.93 , pp. 1074-1089
    • Truccolo, W.1    Eden, U.T.2    Gellows, M.R.3    Donoghue, J.P.4    Brown, E.N.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.