메뉴 건너뛰기




Volumn 109, Issue 508, 2014, Pages 1385-1397

Combining Dynamic Predictions From Joint Models for Longitudinal and Time-to-Event Data Using Bayesian Model Averaging

Author keywords

Prognostic modeling; Random effects; Risk prediction; Time dependent covariates

Indexed keywords


EID: 84919784965     PISSN: 01621459     EISSN: 1537274X     Source Type: Journal    
DOI: 10.1080/01621459.2014.931236     Document Type: Article
Times cited : (91)

References (37)
  • 2
    • 30944433977 scopus 로고    scopus 로고
    • A Time-Dependent Discrimination Index for Survival Data
    • Antolini, L., Boracchi, P., and Biganzoli, E. (2005), “A Time-Dependent Discrimination Index for Survival Data,” Statistics in Medicine, 24, 3927–3944.
    • (2005) Statistics in Medicine , vol.24 , pp. 3927-3944
    • Antolini, L.1    Boracchi, P.2    Biganzoli, E.3
  • 4
    • 84865394029 scopus 로고    scopus 로고
    • Assessing the Association Between Trends in a Biomarker and Risk of Event With an Application in Pediatric HIV/AIDS
    • Brown, E.R. (2009), “Assessing the Association Between Trends in a Biomarker and Risk of Event With an Application in Pediatric HIV/AIDS,” The Annals of Applied Statistics, 3, 1163–1182.
    • (2009) The Annals of Applied Statistics , vol.3 , pp. 1163-1182
    • Brown, E.R.1
  • 5
    • 15044356987 scopus 로고    scopus 로고
    • A Flexible B-Spline Model for Multiple Longitudinal Biomarkers and Survival
    • Brown, E.R., Ibrahim, J.G., and DeGruttola, V. (2005), “A Flexible B-Spline Model for Multiple Longitudinal Biomarkers and Survival,” Biometrics, 61, 64–73.
    • (2005) Biometrics , vol.61 , pp. 64-73
    • Brown, E.R.1    Ibrahim, J.G.2    DeGruttola, V.3
  • 6
    • 0029763749 scopus 로고    scopus 로고
    • Simultaneously Modelling Censored Survival Data and Repeatedly Measured Covariates: A Gibbs Sampling Approach
    • Faucett, C.L., and Thomas, D.C. (1996), “Simultaneously Modelling Censored Survival Data and Repeatedly Measured Covariates: A Gibbs Sampling Approach,” Statistics in Medicine, 15, 1663–1685.
    • (1996) Statistics in Medicine , vol.15 , pp. 1663-1685
    • Faucett, C.L.1    Thomas, D.C.2
  • 7
    • 0033046689 scopus 로고    scopus 로고
    • Time-Dependent Covariates in the Cox Proportional-Hazards Regression Model
    • Fisher, L., and Lin, D.-Y. (1999), “Time-Dependent Covariates in the Cox Proportional-Hazards Regression Model,” Annual Review of Public Health, 20, 145–157.
    • (1999) Annual Review of Public Health , vol.20 , pp. 145-157
    • Fisher, L.1    Lin, D.-Y.2
  • 8
    • 84890890835 scopus 로고    scopus 로고
    • Importance Sampling, Simulated Tempering, and Umbrella Sampling
    • eds. S. Brooks, A. Gelman, G. Jones, and X.-L. Meng, Boca Raton, FL: Chapman & Hall/CRC Press
    • Geyer, C.J. (2011), “Importance Sampling, Simulated Tempering, and Umbrella Sampling,” in Handbook of Markov Chain Monte Carlo, eds. S. Brooks, A. Gelman, G. Jones, and X.-L. Meng, Boca Raton, FL: Chapman & Hall/CRC Press.
    • (2011) Handbook of Markov Chain Monte Carlo
    • Geyer, C.J.1
  • 9
    • 1342289473 scopus 로고    scopus 로고
    • Separate and Joint Modeling of Longitudinal and Event Time Data Using Standard Computer Packages
    • Guo, X., and Carlin, B.P. (2004), “Separate and Joint Modeling of Longitudinal and Event Time Data Using Standard Computer Packages,” The American Statistician, 58, 16–24.
    • (2004) The American Statistician , vol.58 , pp. 16-24
    • Guo, X.1    Carlin, B.P.2
  • 11
    • 0030069896 scopus 로고    scopus 로고
    • Multivariable Prognostic Models: Issues in Developing Models, Evaluating Assumptions and Adequacy, and Measuring and Reducing Errors
    • Harrell, F.E., Kerry, L.L., and Mark, D.B. (1996), “Multivariable Prognostic Models: Issues in Developing Models, Evaluating Assumptions and Adequacy, and Measuring and Reducing Errors,” Statistics in Medicine, 15, 361–387.
    • (1996) Statistics in Medicine , vol.15 , pp. 361-387
    • Harrell, F.E.1    Kerry, L.L.2    Mark, D.B.3
  • 12
    • 84864645579 scopus 로고    scopus 로고
    • Multilevel Bayesian Models for Survival Times and Longitudinal Patient-Reported Outcomes With Many Zeros
    • Hatfield, L.A., Boye, M.E., Hackshaw, M.D., and Carlin, B.P. (2012), “Multilevel Bayesian Models for Survival Times and Longitudinal Patient-Reported Outcomes With Many Zeros,” Journal of the American Statistical Association, 107, 875–885.
    • (2012) Journal of the American Statistical Association , vol.107 , pp. 875-885
    • Hatfield, L.A.1    Boye, M.E.2    Hackshaw, M.D.3    Carlin, B.P.4
  • 13
    • 0000710136 scopus 로고    scopus 로고
    • Joint Modelling of Longitudinal Measurements and Event Time Data
    • Henderson, R., Diggle, P., and Dobson, A. (2000), “Joint Modelling of Longitudinal Measurements and Event Time Data,” Biostatistics, 1, 465–480.
    • (2000) Biostatistics , vol.1 , pp. 465-480
    • Henderson, R.1    Diggle, P.2    Dobson, A.3
  • 14
    • 0344097453 scopus 로고    scopus 로고
    • Identification and Efficacy of Longitudinal Markers for Survival
    • (2002), “Identification and Efficacy of Longitudinal Markers for Survival,” Biostatistics, 3, 33–50.
    • (2002) Biostatistics , vol.3 , pp. 33-50
  • 16
    • 78651422985 scopus 로고    scopus 로고
    • A General Joint Model for Longitudinal Measurements and Competing Risks Survival Data With Heterogeneous Random Effects
    • Huang, X., Li, G., Elashoff, R., and Pan, J. (2011), “A General Joint Model for Longitudinal Measurements and Competing Risks Survival Data With Heterogeneous Random Effects,” Lifetime Data Analysis, 17, 80–100.
    • (2011) Lifetime Data Analysis , vol.17 , pp. 80-100
    • Huang, X.1    Li, G.2    Elashoff, R.3    Pan, J.4
  • 17
    • 70349235858 scopus 로고    scopus 로고
    • Latent-Model Robustness in Joint Models for a Primary Endpoint and a Longitudinal Process
    • Huang, X., Stefanski, L.A., and Davidian, M. (2009), “Latent-Model Robustness in Joint Models for a Primary Endpoint and a Longitudinal Process,” Biometrics, 64, 719–727.
    • (2009) Biometrics , vol.64 , pp. 719-727
    • Huang, X.1    Stefanski, L.A.2    Davidian, M.3
  • 20
    • 58149163015 scopus 로고    scopus 로고
    • Joint Analysis of Correlated Repeated Measures and Recurrent Events Processes in the Presence of Death, With Application to a Study on Acquired Immune Deficiency Syndrome
    • Liu, L., and Huang, X. (2009), “Joint Analysis of Correlated Repeated Measures and Recurrent Events Processes in the Presence of Death, With Application to a Study on Acquired Immune Deficiency Syndrome,” Journal of the Royal Statistical Society, Series C, 58, 65–81.
    • (2009) Journal of the Royal Statistical Society, Series C , vol.58 , pp. 65-81
    • Liu, L.1    Huang, X.2
  • 21
    • 70149108170 scopus 로고    scopus 로고
    • Development and Validation of a Dynamic Prognostic Tool for Prostate Cancer Recurrence Using Repeated Measures of Posttreatment PSA: A Joint Modeling Approach
    • Proust-Lima, C., and Taylor, J.M. (2009), “Development and Validation of a Dynamic Prognostic Tool for Prostate Cancer Recurrence Using Repeated Measures of Posttreatment PSA: A Joint Modeling Approach,” Biostatistics, 10, 535–549.
    • (2009) Biostatistics , vol.10 , pp. 535-549
    • Proust-Lima, C.1    Taylor, J.M.2
  • 22
    • 80052787679 scopus 로고    scopus 로고
    • Dynamic Predictions and Prospective Accuracy in Joint Models for Longitudinal and Time-to-Event Data
    • Rizopoulos, D. (2011), “Dynamic Predictions and Prospective Accuracy in Joint Models for Longitudinal and Time-to-Event Data,” Biometrics, 67, 819–829.
    • (2011) Biometrics , vol.67 , pp. 819-829
    • Rizopoulos, D.1
  • 24
    • 79955847737 scopus 로고    scopus 로고
    • A Bayesian Semiparametric Multivariate Joint Model for Multiple Longitudinal Outcomes and a Time-to-Event
    • Rizopoulos, D., and Ghosh, P. (2011), “A Bayesian Semiparametric Multivariate Joint Model for Multiple Longitudinal Outcomes and a Time-to-Event,” Statistics in Medicine, 30, 1366–1380.
    • (2011) Statistics in Medicine , vol.30 , pp. 1366-1380
    • Rizopoulos, D.1    Ghosh, P.2
  • 25
    • 40249113335 scopus 로고    scopus 로고
    • Shared Parameter Models Under Random Effects Misspecification
    • Rizopoulos, D., Verbeke, G., and Molenberghs, G. (2008), “Shared Parameter Models Under Random Effects Misspecification,” Biometrika, 95, 63–74.
    • (2008) Biometrika , vol.95 , pp. 63-74
    • Rizopoulos, D.1    Verbeke, G.2    Molenberghs, G.3
  • 28
    • 70449337834 scopus 로고    scopus 로고
    • Flexible Modeling of the Cumulative Effects of Time-Dependent Exposures on the Hazard
    • Sylvestre, M.-P., and Abrahamowicz, M. (2009), “Flexible Modeling of the Cumulative Effects of Time-Dependent Exposures on the Hazard,” Statistics in Medicine, 28, 3437–3453.
    • (2009) Statistics in Medicine , vol.28 , pp. 3437-3453
    • Sylvestre, M.-P.1    Abrahamowicz, M.2
  • 30
    • 84950871099 scopus 로고
    • Accurate Approximations for Posterior Moments and Marginal Densities
    • Tierney, L., and Kadane, J.B. (1986), “Accurate Approximations for Posterior Moments and Marginal Densities,” Journal of the American Statistical Association, 81, 82–86.
    • (1986) Journal of the American Statistical Association , vol.81 , pp. 82-86
    • Tierney, L.1    Kadane, J.B.2
  • 31
    • 8644246036 scopus 로고    scopus 로고
    • Joint Modeling of Longitudinal and Time-to-Event Data: An Overview
    • Tsiatis, A.A., and Davidian, M. (2004), “Joint Modeling of Longitudinal and Time-to-Event Data: An Overview,” Statistica Sinica, 14, 809–834.
    • (2004) Statistica Sinica , vol.14 , pp. 809-834
    • Tsiatis, A.A.1    Davidian, M.2
  • 32
    • 33847345021 scopus 로고    scopus 로고
    • Dynamic Prediction by Landmarking in Event History Analysis
    • van Houwelingen, H.C. (2007), “Dynamic Prediction by Landmarking in Event History Analysis,” Scandinavian Journal of Statistics, 34, 70–85.
    • (2007) Scandinavian Journal of Statistics , vol.34 , pp. 70-85
    • van Houwelingen, H.C.1
  • 34
    • 0030893266 scopus 로고    scopus 로고
    • A Joint Model for Survival and Longitudinal Data Measured With Error
    • Wulfsohn, M.S., and Tsiatis, A.A. (1997), “A Joint Model for Survival and Longitudinal Data Measured With Error,” Biometrics, 53, 330–339.
    • (1997) Biometrics , vol.53 , pp. 330-339
    • Wulfsohn, M.S.1    Tsiatis, A.A.2
  • 35
    • 56049124129 scopus 로고    scopus 로고
    • Semiparametric Modeling of Longitudinal Measurements and Time-to-Event Data—A Two Stage Regression Calibration Approach
    • Ye, W., Lin, X., and Taylor, J.M. (2008), “Semiparametric Modeling of Longitudinal Measurements and Time-to-Event Data—A Two Stage Regression Calibration Approach,” Biometrics, 64, 1238–1246.
    • (2008) Biometrics , vol.64 , pp. 1238-1246
    • Ye, W.1    Lin, X.2    Taylor, J.M.3
  • 36
    • 42349110012 scopus 로고    scopus 로고
    • Individualized Prediction in Prostate Cancer Studies Using a Joint Longitudinal-Survival-Cure Model
    • Yu, M., Taylor, J. M.G., and Sandler, H. (2008), “Individualized Prediction in Prostate Cancer Studies Using a Joint Longitudinal-Survival-Cure Model,” Journal of the American Statistical Association, 103, 178–187.
    • (2008) Journal of the American Statistical Association , vol.103 , pp. 178-187
    • Yu, M.1    Taylor, J.M.G.2    Sandler, H.3
  • 37
    • 34547662942 scopus 로고    scopus 로고
    • Prospective Accuracy for Longitudinal Markers
    • Zheng, Y., and Heagerty, P.J. (2007), “Prospective Accuracy for Longitudinal Markers,” Biometrics, 63, 332–341.
    • (2007) Biometrics , vol.63 , pp. 332-341
    • Zheng, Y.1    Heagerty, P.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.